Нейрофизиология зрительной системы. Ганглиозные клетки сетчатки глаза Латеральное коленчатое тело

Слуховая система

В качестве рецептивных полей слуховой системы могут рассматриваться части слухового пространства (англ. auditory space ) или диапазоны слуховых частот . Лишь немногие исследователи трактуют слуховые рецептивные поля как определённые участки сенсорного эпителия , например, группы волосковых клеток спирального органа улитки внутреннего уха млекопитающих .

Соматосенсорная система

Большое рецептивное поле нейрона позволяет отслеживать изменения на большей площади чувствительной поверхности, но обеспечивает меньшую разрешающую способность ощущения . Таким образом, пальцы , которые должны осязать тонкие детали, имеют множество плотно расположенных (до 500 на 1 см 3) механорецепторов с маленькими рецептивными полями (около 10 мм 2), тогда как спина , бёдра и голени имеют меньшее количество рецепторов, объединённых в большие рецептивные поля. Как правило, в центральной части большого рецептивного поля имеется одно «горячее пятно», стимуляция которого вызывает наиболее интенсивный ответ.

Ганглионарные клетки сетчатки

Ганглионарные (ганглиозные) клетки сетчатки
с on - и off - центрами отвечают диаметрально противоположным образом на освещение центра и периферии рецептивного поля.
Сильный ответ соответствует высокочастотному возбуждению, слабый - низкочастотному, отсутствие ответа - отсутствию активности.

Распознавание границ изображения (краёв, углов) рецептивными полями сетчатки - грубая компьютерная аппроксимация.
Размеры рецептивных полей увеличиваются от центра сетчатки к её периферии.
Визуальная информация от двух типов клеток (с on- и off- центрами) показана красным и зелёным цветом, соответственно.

Каждая ганглионарная (ганглиозная) клетка или оптическое нервное волокно (англ. optic nerve fiber ) порождает рецептивное поле, расширяющееся по мере возрастания интенсивности освещения. Если размер поля максимален, то свет на его периферии интенсивнее, нежели в центре, отражая то, что некоторые синаптические пути предпочтительнее других.

Организация рецептивных полей ганглиозных клеток, составленных из входов многих палочек или колбочек, позволяет обнаруживать контраст , что используется для выявления краевых частей наблюдаемых объектов. Каждое рецептивное поле подразделяется на две части: центральный диск - «центр » и концентрическое кольцо - «периферию »; каждая из этих частей реагирует на свет противоположным образом. Так, если освещение центра рецептивного поля увеличивает возбуждение конкретной ганглиозной клетки с так называемым on-центром (см. далее), то воздействие света на периферию этого же поля оказывает тормозящее воздействие на эту ганглиозную клетку.

Существует два основных типа ганглиозных клеток: с «on-центром » и «off-центром ». Клетка с on-центром возбуждается при освещении центра и тормозится при освещении периферии её рецептивного поля. Реакция на свет клетки с off -центром диаметрально противоположная. Кроме того, у млекопитающих имеются клетки промежуточного (on-off ) типа, которым свойственна кратковременная реакция на освещение по on -типу и на затенение по off -типу. Освещение центральной части рецептивного поля приводит к деполяризации и возрастанию возбуждения нейрона (например, ганглионарной клетки) с on -центром, освещение периферии рецептивного поля приводит к гиперполяризации (англ.) русск. и торможению этого нейрона, а одновременная световая стимуляция и центра, и периферии рецептивного поля вызывает слабую активацию (вследствие суммации эффектов, связанных с реакциями центральной и периферической частей рецептивного поля). Ганглионарная клетка (или другой нейрон) с off -центром возбуждается при световой стимуляции периферии и тормозится при освещении центра своего рецептивного поля (см. рисунок).

Фоторецепторы, которые включены в состав рецептивных полей нескольких ганглиозных клеток, способны как возбуждать, так и тормозить постсинаптические нейроны (англ. postsynaptic neurons ), поскольку они высвобождают нейротрансмиттер глутамат на своих синапсах, что может способствовать как деполяризации, так и гиперполяризации мембранного потенциала клетки, в зависимости от того, какие именно ионные каналы открываются нейротрансмиттером. Организация рецептивного поля по принципу центр-периферия позволяет ганглиозным клеткам передавать информацию не только о том, освещены ли фоторецепторные клетки, но также и о различиях в параметрах возбуждения подобных клеток, расположенных в центре и на периферии рецептивного поля. Последнее даёт возможность ганглиозным клеткам посылать нейронам более высоких синаптических уровней информацию о контрастности изображения. Размер рецептивного поля влияет на пространственную частоту (англ. spatial frequency ) визуальной информации: небольшие рецептивные поля активируются сигналами с высокими пространственными частотами и тонкой детализацией изображения; большие рецептивные поля - сигналами с низкими пространственными частотами и плохой детализацией. Рецептивные поля ганглиозных клеток сетчатки передают информацию о дискретности распределения света, падающего на сетчатку, а это зачастую позволяет обнаруживать краевые части визуальных объектов. При адаптации к темноте инактивируется периферийная зона рецептивного поля, но его активная часть, а следовательно, площадь суммации сигналов и совокупная чувствительность, могут реально возрасти вследствие ослабления взаимного горизонтального торможения центра и периферии рецептивного поля.

Как правило, рецептивные поля лучше реагируют на движущиеся объекты - такие как светлое или тёмное пятно, пересекающее поле от центра к периферии (или в противоположном направлении), а также на контуры объектов - вследствие нарушения равномерности в распределении света по поверхности поля. Диаметр центральной части рецептивного поля ганглионарной клетки сетчатки совпадает с протяжённостью её дендритов , тогда как площадь периферии рецептивного поля определяется амакринными клетками, утанавливающими связь данной ганглионарной клетки со множеством биполярных клеток. Кроме того, амакринные клетки могут не допускать передачи сигналов в ганглионарную клетку от периферии её рецептивного поля, тем самым усиливая доминирование реакции центра рецептивного поля («включённый центр и выключенная периферия» - англ. “on-center, off-periphery” ). Ганглионарная клетка сетчатки кролика возбуждается при движении светового пятна в «предпочитаемом» (англ. "preferred" ) направлении и не реагирует, если направление является противоположным («нулевым», англ. "null" ). Ганглиозные клетки, способные различать направление движения, найдены также в сетчатке кошки, земляной белки, голубя. Считается, что обнаруженные свойства рецептивных полей ганглиозных клеток связаны с особеннностями сложных механизмов торможения, действующих в сетчатке.

Латеральное коленчатое тело

На более высоких уровнях зрительной системы группы ганглионарных (ганглиозных) клеток формируют рецептивные поля нейронов подкоркового зрительного центра - латерального (наружного) коленчатого тела . Рецептивные поля напоминают таковые ганглионарных клеток, с антагонистической системой «центр-периферия»; здесь также имеются нейроны с on- или off- центрами (приблизительно в равном количестве).

Зрительная кора больших полушарий

Рецептивные поля нейронов зрительной зоны коры крупнее по размерам и имеют большую избирательность по отношению к визуальным стимулам, нежели ганглиозные клетки сетчатки или нейроны латерального коленчатого тела. Хьюбел и Визель (например, Hubel, 1963) подразделили рецептивные поля корковых нейронов зрительной системы на «простые» , «сложные» и «сверхсложные» . «Простые» рецептивные поля имеют удлинённую форму, к примеру, с центральной эллипсовидной зоной возбуждения и антагонистической зоной торможения по периферии эллипса. Либо они могут быть почти прямоугольными; при этом одна из длинных сторон прямоугольника является зоной возбуждения, а другая - антагонистической зоной торможения. Изображения, активирующие нейроны этих рецептивных полей, должны быть ориентированы определённым образом. Чтобы возбудить нейрон со «сложным» рецептивных полем, световому стимулу в виде полоски недостаточно быть правильно ориентированным - нужно ещё и двигаться, причём в строго определённом направлении. Для активации корковых нейронов со «сверхсложными» рецептивными полями зрительному стимулу в виде полоски необходимо обладать всеми вышеперечисленными свойствами, и к тому же длина этой полоски должна быть строго определённой.

Экстрастриарная зрительная кора

Экстрастриарная зрительная кора (поля Бродмана 18 и 19) находится за пределами первичной зрительной коры. Здесь нейроны могут иметь очень большие рецептивные поля, и для их активации могут потребоваться очень непростые изображения. Например, рецептивные поля нейронов нижневисочной извилины (англ. inferotemporal cortex ), пересекают среднюю линию зрительного пространства, и эти нейроны активируются такими сложными визуальными образами, как радиальная решётка или кисти рук. Также было обнаружено, что нервные клетки вентральной поверхности веретеновидной извилины (на границе между затылочной и височной долями), где находится так называемая «зона распознавания лиц» (англ.) русск. , реагируют, в основном, на изображения лиц. Это важное открытие было получено с помощью технологии функциональной магнитно-резонансной томографии . Позднее оно было подтверждено на уровне исследования нервных клеток. Подобным способом проводятся поиски других специфических зон зрительной коры; например, имеются относительно недавние публикации, полагающие, что так называемая парагиппокампальная навигационная зона (англ. parahippocampal place area ) может быть отчасти специализрована к распознаванию зданий. Кстати, в одном из последних исследований высказывается предположение, что «зона распознавания лиц» веретеновидной извилины, возможно, не только выполняет функцию, отражённую в её наименовании, но и вообще служит для различения отдельных частей целого.

См. также

Примечания

  1. Гилберт С. Биология развития: в 3-х т. = S.F. Gilbert. Developmental Biology. - 1988 by Sinauer Assotiates. - М .: Мир, 1993. - Т. 1: Пер. с англ. - 228 с. - ISBN 5-03-001831-X (русск.)
  2. Часть III. Общая и специальная сенсорная физиология // Физиология человека: в 3-х томах = Human Physiology. Ed. by R.F. Schmidt, G. Thews. 2nd, completely revised edition (translated from German by M.A. Biederman-Thorson) / под ред. Р. Шмидта и Г. Тевса. - изд-е 2-е, перераб. и дополн. - М .: Мир, 1996. - Т. 1. Пер. с англ. - С. 178-321. - 323 с. - 10 000 экз. - ISBN 5-03-002545-6
  3. Островский М. А., Шевелев И. А. Глава 14. Сенсорные системы // Физиология человека. Учебник (В двух томах. Т. II) / под ред. В. М. Покровского, Г. Ф. Коротько. - М . - С. 201-259. - 368 с. - (Учеб. лит. для студентов мед. вузов). - 10 000 экз. - ISBN 5-225-02693-1
  4. Barlow HB, Hill RM (1963). «Selective sensitivity to direction of motion in ganglion cells of the rabbit"s retina». Science 139 : 412-414.
  5. «eye, human.» Encyclopædia Britannica. Encyclopaedia Britannica Ultimate Reference Suite. Chicago: Encyclopædia Britannica, 2010.
Оглавление темы "Рецепторный потенциал палочек и колбочек. Рецептивные поля клеток сетчатки. Проводящие пути и центры зрительной системы. Зрительное восприятие.":
1. Рецепторный потенциал палочек и колбочек. Ток ионов через мембрану фоторецептора в темноте и на свету.
2. Адаптация фоторецепторов к изменениям освещенности. Световая адаптация. Десенситизация. Темновая адаптация.
3. Рецептивные поля клеток сетчатки. Прямой путь передачи сигналов от фоторецепторов к ганглиозной клетке. Непрямой путь передачи сигналов.
4. Рецептивные поля с оn-центрами и off-центрами. On-нейроны. Off-нейроны. Ганглиозная клетка on-типа. Ганглиозная клетка off-типа.
5. Рецептивные поля цветового восприятия. Восприятие цвета. Первичные цвета. Монохромазия. Дихромазия. Трихромазия.
6. М- и Р-типы ганглиозных клеток сетчатки. Магноцеллюлярные (М-клетки) клетки. Парвоцеллюлярные (Р-клетки) ганглиозные клетки сетчатки.
7. Проводящие пути и центры зрительной системы. Зрительный нерв. Зрительные тракты. Глазодвигательный рефлекс.
8. Латеральное коленчатое тело. Функциональная организация латерального коленчатого тела. Рецептивные поля латерального коленчатого тела.
9. Переработка зрительной сенсорной информации в коре. Проекционная зрительная кора. Световая грань. Комплексные нейроны. Двойные противоцветные клетки.
10. Зрительное восприятие. Магноцеллюлярный путь. Парвоцеллюлярный путь. Восприятие формы, цвета.

Рецептивные поля с оn-центрами и off-центрами. On-нейроны. Off-нейроны. Ганглиозная клетка on-типа. Ганглиозная клетка off-типа.

В сетчатке человека имеются два типа ганглиозных клеток , отличающихся реакцией на точечные световые стимулы, воздействовавшие на центр или периферию их рецептивного поля (рис. 17.9). Примерно половина ганглиозных клеток возбуждается действием света на центр рецептивного поля и тормозится при действии светового стимула на периферию рецептивного поля . Такие клетки принято называть оn-нейронами . Другая половина ганглиозных клеток возбуждается действием светового раздражителя на периферию рецептивного поля и тормозится в ответ на световую стимуляцию центра рецептивного поля - они получили название off-нейронов .

Рис. 17.9. Рецептивные поля ганглиозных клеток сетчатки с on- и off-центрами .

A. Рецептивное поле ганглиозной клетки образуют все фоторецепторы и биполярные клетки, имеющие с нею синаптические контакты. Ганглиозные клетки постоянно генерируют потенциалы действия, частота возникновения которых зависит от активности фоторецепторов и биполярных клеток, входящих в ее рецептивное поле.

Б. Ганглиозная клетка on-типа увеличивает частоту электрических разрядов в ответ на световое раздражение центра рецептивного поля и снижает свою электрическую активность при действии светового раздражителя на периферию рецептивного поля.

B. Ганглиозная клетка off-типа тормозится при действии света на центр ее рецептивного поля и увеличивает частоту нервных импульсов в ответ на раздражение периферии рецептивного поля.

Рецептивные поля ганглиозных клеток обоих типов в сетчатке представлены поровну, чередуясь друг с другом. Оба типа клеток очень слабо отвечают на равномерную диффузную засветку всего рецептивного поля, а наиболее сильным раздражителем для них является световой контраст , т. е. различная интенсивность засветки центра и периферии. Именно контрастирование деталей изображения дает необходимую информацию для зрительного восприятия в целом, тогда как абсолютная интенсивность отраженного от наблюдаемого объекта света не столь важна. Восприятие граней , т. е. восприятие контраста между соседними поверхностями с разной освещенностью, является наиболее информативным признаком изображения, определяющим протяженность и позиции разных объектов.

При изучении сетчатки мы сталкиваемся с двумя главными проблемами. Во-первых, каким образом палочки и колбочки преобразуют поглощаемый ими свет в электрические и химические сигналы? Во-вторых, как последующие клетки двух других слоев - биполяры, горизонтальные, амакриновые и ганглиозные - интерпретируют эту информацию? Прежде чем обсуждать физиологию рецепторов и промежуточных клеток, я хочу забежать вперед и описать выходные сигналы сетчатки, представленные активностью ганглиозных клеток. Содержательной, удобной и компактной характеристикой нейрона, а тем самым и информации, доставляемой его выходными сигналами, может служить карта его рецептивного поля. Она может помочь нам понять, почему клетки промежуточных уровней соединены именно так, а не иначе, и объяснить назначение прямого и непрямого путей. Если мы узнаем, что́ ганглиозные клетки сообщают мозгу, мы значительно продвинемся в понимании работы сетчатки в целом.

Примерно в 1950 году Стивен Куффлер впервые зарегистрировал реакции ганглиозных клеток сетчатки на световые пятна у млекопитающего, а именно у кошки. Он работал тогда в Уилмеровском офтальмологическом институте при больнице Джонса Гопкинса. Ретроспективно можно сказать, что выбор животного оказался удачным, поскольку сетчатка кошки как будто бы не обладает ни сложностью реакций на движение, наблюдаемой у лягушки или кролика, ни особенностями, связанными с цветом, как у рыб, птиц или обезьян.

Рис. 23. Стивен Куффлер на лабораторном пикнике. Снимок сделан около 1965 года.

Куффлер использовал световой стимулятор, сконструированный С. Талботом. С помощью этого оптического прибора - видоизмененного медицинского офтальмоскопа - можно было равномерно освещать всю сетчатку постоянным слабым фоновым светом, а также проецировать маленькие, более яркие пятнышки, непосредственно наблюдая как стимул, так и кончик электрода. Фоновый свет позволял стимулировать либо палочки, либо колбочки, либо рецепторы обоих типов, поскольку при очень ярком освещении работают только колбочки, а при слабом - только палочки. Куффлер отводил реакции внеклеточными электродами, вводимыми через склеру (белая часть глаза) непосредственно в сетчатку с передней ее стороны. Находить ганглиозные клетки было нетрудно, так как они лежат под самой поверхностью сетчатки и довольно крупные.

При постоянном рассеянном фоновом свете и даже в абсолютной темноте большинство ганглиозных клеток сетчатки проявляет стационарную, несколько нерегулярную активность с частотой от 1–2 до примерно 20 импульсов в секунду. Так как можно было бы ожидать, что в полной темноте клетки должны молчать, эта импульсация сама по себе оказалась неожиданной.

Применяя маленькое световое пятнышко, Куффлер смог отыскивать на сетчатке области, с которых он мог влиять на импульсацию ганглиозных клеток - увеличивать ее или подавлять. Такие области и были рецептивными полями соответствующих ганглиозных клеток. Как и следовало ожидать, рецептивное поле обычно окружало кончик электрода или находилось очень близко к нему. Вскоре выяснилось, что ганглиозные клетки бывают двух типов, и по причинам, которые я скоро объясню, Куффлер назвал их клетками с on-центром и клетками с off-центром. Клетка с on-центром разряжается с заметно повышенной частотой, если небольшое пятнышко света появляется где-то внутри определенной зоны в центре или около центра рецептивного поля. Если слушать разряды такой клетки через громкоговоритель, то сначала вы услышите спонтанную импульсацию, отдельные случайные щелчки, а затем, после включения света, возникает залп импульсов, напоминающий пулеметную очередь. Мы назовем эту форму реакции on-реакцией. Когда Куффлер перемещал световое пятнышко чуть подальше от центра рецептивного поля, свет подавлял спонтанную импульсацию клетки, а при выключении света клетка давала залп учащенных импульсов, длившийся около секунды. Такую последовательность - подавление импульсации во время воздействия света и разряд после его выключения - мы называем off-реакцией. Исследование рецептивного поля этого типа вскоре показало, что оно четко подразделено на круглую on-зону и окаймляющую ее намного бо́льшую кольцеообразную off-зону.

Чем бо́льшая часть данной зоны, on- или off-, заполнялась стимулом, тем сильнее был ответ, так что максимальные on-реакции получались на круглое пятно определенного диаметра, а максимальные off-реакции - на кольцо определенных размеров (с определенным внутренним и наружным диаметром). На рис. 24 приведены типичные записи реакций на такие стимулы. Центральная и периферическая зоны проявляли взаимный антагонизм: реакция на пятно в центре уменьшалась в результате вспышки второго пятна на периферии, как если бы клетку заставляли разряжаться одновременно быстрее и медленнее. Наиболее впечатляющая демонстрация этого взаимодействия между центром и периферией получалась при покрытии всего рецептивного поля одним большим пятном. Это вызывало намного более слабую реакцию, чем при заполнении пятном только центра; для некоторых же клеток эффекты стимуляции обеих зон полностью погашали друг друга.

Прямо противоположным было поведение клетки с off-центром. Ее рецептивное поле состояло из маленького центра, с которого получалась off-реакция, и периферии, дававшей on-реакцию. Клетки обоих типов были перемешаны и встречались примерно одинаково часто. Клетки с off-центром разряжаются с наибольшей частотой в ответ на черное пятно на белом фоне, поскольку при этом освещается только периферия ее рецептивного поля. В природе темные объекты, по-видимому, столь же распространены, что и светлые; этим можно объяснить, почему информация от сетчатки передается клетками как с on-центром, так и с off-центром.

Рис. 24. Слева: четыре записи ответов типичной ганглиозной клетки с on-центром. Каждая запись получена при одиночной развертке луча осциллографа длительностью 2,5 секунды. Из-за столь медленной развертки восходящая и нисходящая фазы импульса сливаются, так что каждый импульс имеет вид одной вертикальной линии. Слева показаны стимулы. Верхняя запись - состояние покоя (стимула нет): импульсы возникают редко и более или менее случайно. Три нижние записи - реакции на небольшое (оптимальной величины) пятно, на крупное пятно, покрывающее центр и периферию рецептивного поля, и на кольцо, покрывающее только периферию. Справа: реакции ганглиозной клетки с off-центром на такой же набор стимулов.

Если постепенно увеличивать пятно, реакция возрастает, пока не заполнится центр рецептивного поля, а затем она начинает убывать, по мере того как захватывается все бо́льшая и бо́льшая доля периферии, как это можно видеть на приведенном графике (рис. 26). При пятне, покрывающем поле целиком, либо слегка преобладает действие центра, либо реакция нулевая. Это позволяет понять, почему нейрофизиологи до Куффлера были столь неудачливыми: при регистрации активности от ганглиозных клеток они всегда использовали рассеянный свет - далеко не лучший стимул.

Можно представить себе удивление исследователей, когда магниевая вспышка, направленная прямо в глаз животного, вызывала столь слабые реакции или не вызывала их вовсе. Казалось бы, следовало ожидать, что освещение всех рецепторов, гарантируемое при такой вспышке, будет наиболее сильным, а не слабым стимулом. Ошибка здесь - в забвении того, насколько важны для нервной системы тормозные синапсы. Не располагая ничем, кроме схемы связей вроде изображенной на рис. 14, мы не можем предсказать влияние данного стимула на любую данную клетку, если не знаем, какие синапсы возбуждающие, а какие тормозные. В начале 50-х годов, когда Куффлер регистрировал реакции ганглиозных клеток, важность торможения в нервной системе только начинали осознавать.

Рис. 25. Два главных типа рецептивных полей ганглиозных клеток сетчатки - с on-центром и тормозящей периферией и с off-центром и возбуждающей периферией. Знак «плюс» - область, дающая on-реакции; знак «минус» - область, дающая off-реакции.

Рис. 26. Если стимулировать одиночную ганглиозную клетку с on-центром все более крупными световыми пятнами, реакция будет постепенно усиливаться вплоть до пятна с величиной около 1 градуса. Это совпадает с величиной центра. Дальнейшее увеличение пятна ведет к уменьшению реакции, так как при этом пятно начинает захватывать антагонистическую периферию. При размерах пятна более 3 градусов реакция перестает уменьшаться, поэтому 3 градуса - это поперечник всего рецептивного поля, включая центр и периферию.

Прежде чем перейти к описанию рецепторов и других клеток сетчатки, я хочу рассмотреть еще три вопроса относительно рецептивных полей. Первый из них касается общего понятия «рецептивное поле», а два других - некоторых особенностей рецептивных полей ганглиозных клеток сетчатки: их перекрывания и их размеров.

Какое же физиологическое значение имеет такая структура рецептивных полей биполярных клеток?

D - и З-биполярные клетки не просто возбуждаются в ответ на освещение. Они начинают анализ информации об элементарных паттернах света. Сигналы биполярных клеток несут информацию о различных падающих на сетчатку пятнах света, окруженных темным полем, либо, наоборот, о темных пятнах, окруженных светом, т.е. они отвечают на контрастные паттерны света и темноты в маленькой области сетчатки.

В дополнение к уже известным нам большим категориям D - и З-биполярных клеток имеется еще около 11 типов различных биполярных клеток, связанных с колбочками, которые различаются по морфологическим и иммуногистохимическим критериям. Базируясь на них, можно получить три принципиальных типа клеток:

1. Связанные с колбочками D - и Н-биполярные клетки, лучше всего отвечающие на мельчайшие пятна света или темноты.

2. D - и З-карликовые биполярные клетки центральной области сетчатки, образующие связи только с одной колбочкой.

3. Биполярные D-клетки, связанные с палочками центрального "on"-ответа, лучше всего реагирующие на малые яркие световые пятна.

Рецептивные поля ганглиозных клеток

Эфферентные сигналы сетчатки.

Еще за много лет до того, как от фоторецепторов и биполярных клеток сетчатки могли быть отведены электрические ответы, важная информация была получена при регистрации сигналов от ганглиозных клеток. В этих экспериментах был осуществлен первый анализ выходных сигналов в сетчатке, являющихся результатом происходящих там синаптических взаимодействий. Преимуществом изучения ганглиозных клеток является то, что их сигналы являются потенциалами действия и функционируют по принципу "все или ничего". Поэтому было возможно проведение регистрации сигнала при помощи внеклеточного электрода в то время, когда внутриклеточные электроды еще не существовали и пока не были разработаны соответствующие красители. Кроме того, простыми и удобными для изучения делало их то, что отростки ганглиозных клеток направляются из сетчатки в ЦНС. Именно на них были впервые описаны концентрические поля с "on" - и "off"-центрами. И именно они помогли потом понять смысл сигналов, регистрируемых на горизонтальных и биполярных клетках.

Стивен Куффлер был первым, кто выполнил экспериментальные исследования зрительной системы млекопитающих, обратив внимание на структуру рецептивных полей и их значение для зрительной сигнализации у кошки. В его экспериментах главный интерес состоял в конечных результатах синаптических взаимодействий, нежели в самих синаптических механизмах. Хьюбель впоследствии высоко оценил перспективы таких исследований:

Что особенно для меня интересно - это неожиданность результатов, поскольку никто до Куффлера не дошел до предположения о существовании рецептивных полей в виде структуры "центр - периферия" и что зрительный нерв фактически игнорирует любой раздражитель в виде рассеянного света любой интенсивности.

Принципиально новый подход был обусловлен не только новой техникой исследования, скорее, он обусловлен четкой формулировкой следующего вопроса: каким образом лучше всего стимулировать отдельную ганглиозную клетку? Ответ на этот вопрос привел к использованию отдельных кольцевидных световых пятен для стимулирования отдельных зон сетчатки вместо однородного диффузного освещения.

Рис. 6. Стимуляция сетчатки при помощи различных световых образов. Адаптировавшиеся глаза кошки или обезьяны, находящейся под наркозом, направляют в сторону кино - или телевизионного экрана, на котором показаны различные световые образы, генерируемые компьютером и/или спроецированные проектором. При этом при помощи электрода регистрируют ответы отдельного нейрона путей зрительного анализатора. Световые пучки, возникающие в определенной области экрана, увеличивают или уменьшают частоту разрядов данного нейрона. Таким образом может быть очерчено рецептивное поле этой клетки при помощи определения границ зон на экране, представление которых вызывает изменение частоты импульсации. В оригинальных экспериментах Kuffler направлял свет прямо в глаз при помощи специально сконструированного офтальмоскопа.

Эти исследования предвосхитили пионерские работы по исследованию глаза простых беспозвоночных: мечехвоста Limulus и сетчатки лягушек.

Изначальный выбор Куффлером глаза кошки был удачным: у кролика, к примеру, ситуация гораздо более сложная. Ганглиозные клетки сетчатки кролика имеют рецептивные поля, тонко реагирующие на такие сложные элементы, как края светового пятна и определенное направление его движения. Также сложны эти механизмы и у низших позвоночных, таких как лягушки. Можно выявить общую закономерность: чем глупее животное, тем умнее у него сетчатка (Д.А. Бейлор, личное сообщение).


Выходные сигналы, передаваемые в ЦНС от сетчатки, возникают только в ганглиозных клетках, импульсная активность которых зависит от возбуждения фоторецепторов, а затем биполярных клеток, входящих в округлое рецептивное поле ганглиозной клетки. Размер рецептивных полей и количество фоторецепторов, относящихся к одному рецептивному полю, варьируют от минимального в области центральной ямки до наибольшего на периферии сетчатки. Малые рецептивные поля служат для различения мелких деталей наблюдаемых объектов в тех случаях, когда соседние детали воспринимаются под углом в несколько угловых минут. Большие рецептивные поля вмещают изображение целого объекта, воспринимаемого под углом в несколько угловых градусов (Г соответствует рецептивному полю на поверхности сетчатки с диаметром около 0,25 мм).
Существуют два пути для передачи сигналов от фоторецепторов к ганглиозной клетке: прямой и непрямой. Прямой путь начинается от фоторецепторов, расположенных в центре рецептивного поля и образующих синапс с биполярной клеткой, которая через другой синапс действует на ганглиозную клетку. Непрямой путь берет начало от фоторецепторов периферии рецептивного поля, которая с центром состоит в реципрокных отношениях, обусловленных тормозным действием горизонтальных и амакрино- вых клеток (латеральное торможение). Рецептивные поля с on-центрами и off-центрами
В сетчатке человека имеются два типа ганглиозных клеток, отличающихся реакцией на точечные световые стимулы, воздействовавшие на центр или периферию их рецептивного поля (рис. 17.9). Примерно половина гангли-

Рис. 17.9. Рецептивные поля ганглиозных клеток сетчатки с on- и off-центрами. Рецептивное поле ганглиозной клетки образуют все фоторецепторы и биполярные клетки, имеющие с нею синаптические контакты. Ганглиозные клетки постоянно генерируют потенциалы действия, частота возникновения которых зависит от активности фоторецепторов и биполярных клеток, входящих в ее рецептивное поле.
Б. Ганглиозная клетка on-типа увеличивает частоту электрических разрядов в ответ на световое раздражение центра рецептивного поля и снижает свою электрическую активность при действии светового раздражителя на периферию рецептивного поля. Ганглиозная клетка off-типа тормозится при действии света на центр ее рецептивного поля и увеличивает частоту нервных импульсов в ответ на раздражение периферии рецептивного поля.

озных клеток возбуждается действием света на центр рецептивного поля и тормозится при действии светового стимула на периферию рецептивного поля. Такие клетки принято называть оп-нейронами. Другая половина ганглиозных клеток возбуждается действием светового раздражителя на периферию рецептивного поля и тормозится в ответ на световую стимуляцию центра рецептивного поля - они получили название off-нейронов.
Рецептивные поля ганглиозных клеток обоих типов в сетчатке представлены поровну, чередуясь друг с другом. Оба типа клеток очень слабо отвечают на равномерную диффузную засветку всего рецептивного поля, а наиболее сильным раздражителем для них является световой контраст, т. е. различная интенсивность засветки центра и периферии. Именно контрастирование деталей изображения дает необходимую информацию для зрительного восприятия в целом, тогда как абсолютная интенсивность отраженного от наблюдаемого объекта света не столь важна. Восприятие граней, т. е. восприятие контраста между соседними поверхностями с разной освещенностью, является наиболее информативным признаком изображения, определяющим протяженность и позиции разных объектов.
Рецептивные поля цветового восприятия
Восприятие цвета основано на существовании шести первичных цветов, образующих три антагонистичные, или цветооппонентных, пары, красный - зеленый, синий - желтый, белый - черный. Ганглиозные клетки, передающие в центральную нервную систему информацию о цвете, различаются организацией своих рецептивных полей, состоящих из комбинаций трех существующих типов колбочек. Каждая колбочка предназначена для поглощения электромагнитных волн определенной длины, однако сами они не кодируют информацию о длине волны и способны реагировать на очень яркий белый свет. И только наличие в рецептивном поле ганглиозной клетки антагонистичных фоторецепторов создает нейронный канал для передачи информации об определенном цвете. При наличии только одного типа колбочек (монохромазия) человек не способен различить ни один цвет и воспринимает окружающий мир в черно-белой градации, как при скотопическом зрении. При наличии только двух типов колбочек (ди- хромазия) цветовое восприятие ограничено, и лишь существование трех типов колбочек (трихромазия) обеспечивает полноту цветового восприятия. Возникновение монохромазии и дихромазии у человека обусловлено генетическими дефектами Х-хромосомы.
Концентрические широкополосные ганглиозные клетки имеют округлые рецептивные поля on- или off-типа, которые образованы колбочками, но предназначены для фотопического черно-белого зрения. Белый свет, попадающий в центр или на периферию такого рецептивного поля, возбуждает или тормозит активность соответствующей ганглиозной клетки, которая в итоге передает информацию об освещенности. Концентрические широкополосные клетки суммируют сигналы от колбочек, поглощающих красный и зеленый цвет и расположенных в центре и на периферии рецептивного поля. Поступление сигналов от колбочек обоих типов происходит независимо друг от друга, а потому не создает цветового антагонизма и не позволяет широкополосным клеткам дифференцировать цвет (рис. 17.10).
Наиболее сильным раздражителем для концентрических противоцветных ганглиозных клеток сетчатки является действие антагонистических цветов на центр и периферию рецептивного поля. Одну разновидность противоцветных ганглиозных клеток возбуждает действие красного цвета на центр ее рецептивного поля, в котором сосредоточены колбочки, чувствительные к красной части спектра, и зеленого цвета - на периферию, где имеются колбочки, чувствительные к нему. У другой разновидности концентрических противоцветных клеток в центре рецептивного поля расположены колбочки, чувствительные к зеленой части спектра, а на периферии - к красной. Эти две разновидности концентрических противоцветных клеток различаются ответными реакциями на действие красного или зеленого цвета на центр или периферию рецептивного поля подобно тому, как on- и off- нейроны различаются в зависимости от воздействия света на центр или периферию рецептивного поля. Каждая из двух разновидностей противоцветных клеток представляет собой нейронный канал, передающий информацию о действии красного или зеленого цвета, причем передача информации тормозится действием антагонистического или оппонентного цвета.
Оппонентные отношения при восприятии синего и желтого цветов обеспечиваются в результате объединения в рецептивном поле колбочек, поглощающих короткие волны (синий цвет) с комбинацией из колбочек, реагирующих на зеленый и красный цвет, что при смешении дает восприятие желтого цвета. Синий и желтый цвет оппонентны по отношению друг

Рис. 17.10. Рецептивные поля ганглиозных клеток, образованные колбочками трех типов.

Концентрические широкополосные клетки имеют в своем рецептивном поле колбочки для восприятия красного (К) и зеленого (3) цветов. Колбочки обоих типов расположены в рецептивном поле так, что их входные сигналы суммируются независимо друг от друга, поэтому широкополосные ганглиозные клетки не передают информацию о цвете, а реагируют лишь на световой контраст между центром и периферией рецептивного поля как on- или off-нейроны. Б. Простые противоцветные клетки двух разновидностей, отвечающие на стимуляцию зеленым цветом центра или периферии рецептивного поля (красный цвет действует как антагонист зеленому). Простые противоцветные клетки двух разновидностей, различающиеся по характеру ответа на действие красного цвета в центре или на периферии рецептивного поля (зеленый цвет действует как антагонист красному).
Г. Колбочки, поглощающие короткие волны (синий цвет), находятся в антагонистических отношениях со входящими в общее рецептивное поле колбочками, поглощающими средние и длинные волны светового диапазона (зеленый и красный цвет).
к другу, и сочетание в рецептивном поле колбочек, поглощающих эти цвета, позволяет противоцветной ганглиозной клетке передавать информацию о действии одного из них. Каким именно окажется этот нейронный канал, т. е. передающим информацию о синем или желтом цвете, определяет расположение колбочек внутри рецептивного поля концентрической противоцветной клетки. В зависимости от этого нейронный канал возбуждается синим или желтым цветом и тормозится опнонентным цветом. М- и P-типы ганглиозных клеток сетчатки
Зрительное восприятие происходит в результате согласования друг с другом различных сведений о наблюдаемых объектах. Но на низших иерархических уровнях зрительной системы, начиная с сетчатки глаза, осуществляется независимая переработка информации о форме и глубине объекта, о его цвете и его движении. Паралелльная переработка информации об этих качествах зрительных объектов обеспечивается специализацией ганглиозных клеток сетчатки, которые подразделяются на магноцеллюлярные (М-клетки) и парвоцеллюлярные (Р-клетки).

В большом рецептивном поле относительно крупных М-клеток, состоящем преимущественно из палочек, может проецироваться цельное изображение крупных объектов: М-клетки регистрируют грубые признаки таких объектов и их движение в зрительном поле, отвечая на раздражение всего рецептивного поля непродолжительной импульсной активностью. Клетки P-типа имеют малые рецептивные поля, состоящие преимущественно из колбочек и предназначенные для восприятия мелких деталей формы объекта или для восприятия цвета. Среди ганглиозных клеток каждого типа имеются как оп-нейроны, так и off-нейроны, дающие наиболее сильный ответ на раздражение центра или периферии рецептивного поля. Существование М- и P-типов ганглиозных клеток позволяет разделить информацию о разных качествах наблюдаемого объекта, которая перерабатывается независимо в параллельных путях зрительной системы: о тонких деталях объекта и о его цвете (пути начинаются от соответствующих рецептивных полей клеток P-типа) и о движении объектов в зрительном поле (путь от клеток М-типа).