Закон распределения дискретной случайной величины. Примеры решения задач

Можно выделить наиболее часто встречающиеся законы распределения дискретных случайных величин:

  • Биномиальный закон распределения
  • Пуассоновский закон распределения
  • Геометрический закон распределения
  • Гипергеометрический закон распределения

Для данных распределений дискретных случайных величин расчет вероятностей их значений, а также числовых характеристик (математическое ожидание, дисперсия, и т.д.) производится по определенных «формулам». Поэтому очень важно знать данные типы распределений и их основные свойства.


1. Биномиальный закон распределения.

Дискретная случайная величина $X$ подчинена биномиальному закону распределения вероятностей, если она принимает значения $0,\ 1,\ 2,\ \dots ,\ n$ с вероятностями $P\left(X=k\right)=C^k_n\cdot p^k\cdot {\left(1-p\right)}^{n-k}$. Фактически, случайная величина $X$ - это число появлений события $A$ в $n$ независимых испытаний . Закон распределения вероятностей случайной величины $X$:

$\begin{array}{|c|c|}
\hline
X_i & 0 & 1 & \dots & n \\
\hline
p_i & P_n\left(0\right) & P_n\left(1\right) & \dots & P_n\left(n\right) \\
\hline
\end{array}$

Для такой случайной величины математическое ожидание $M\left(X\right)=np$, дисперсия $D\left(X\right)=np\left(1-p\right)$.

Пример . В семье двое детей. Считая вероятности рождения мальчика и девочки равными $0,5$, найти закон распределения случайной величины $\xi $ - числа мальчиков в семье.

Пусть случайная величина $\xi $ - число мальчиков в семье. Значения, которые может принимать $\xi:\ 0,\ 1,\ 2$. Вероятности этих значений можно найти по формуле $P\left(\xi =k\right)=C^k_n\cdot p^k\cdot {\left(1-p\right)}^{n-k}$, где $n=2$ - число независимых испытаний, $p=0,5$ - вероятность появления события в серии из $n$ испытаний. Получаем:

$P\left(\xi =0\right)=C^0_2\cdot {0,5}^0\cdot {\left(1-0,5\right)}^{2-0}={0,5}^2=0,25;$

$P\left(\xi =1\right)=C^1_2\cdot 0,5\cdot {\left(1-0,5\right)}^{2-1}=2\cdot 0,5\cdot 0,5=0,5;$

$P\left(\xi =2\right)=C^2_2\cdot {0,5}^2\cdot {\left(1-0,5\right)}^{2-2}={0,5}^2=0,25.$

Тогда закон распределения случайной величины $\xi $ есть соответствие между значениями $0,\ 1,\ 2$ и их вероятностями, то есть:

$\begin{array}{|c|c|}
\hline
\xi & 0 & 1 & 2 \\
\hline
P(\xi) & 0,25 & 0,5 & 0,25 \\
\hline
\end{array}$

Сумма вероятностей в законе распределения должна быть равна $1$, то есть $\sum _{i=1}^{n}P(\xi _{{\rm i}})=0,25+0,5+0,25=1 $.

Математическое ожидание $M\left(\xi \right)=np=2\cdot 0,5=1$, дисперсия $D\left(\xi \right)=np\left(1-p\right)=2\cdot 0,5\cdot 0,5=0,5$, среднее квадратическое отклонение $\sigma \left(\xi \right)=\sqrt{D\left(\xi \right)}=\sqrt{0,5}\approx 0,707$.

2. Закон распределения Пуассона.

Если дискретная случайная величина $X$ может принимать только целые неотрицательные значения $0,\ 1,\ 2,\ \dots ,\ n$ с вероятностями $P\left(X=k\right)={{{\lambda }^k}\over {k!}}\cdot e^{-\lambda }$, то говорят, что она подчинена закону распределения Пуассона с параметром $\lambda $. Для такой случайной величины математическое ожидание и дисперсия равны между собой и равны параметру $\lambda $, то есть $M\left(X\right)=D\left(X\right)=\lambda $.

Замечание . Особенность этого распределения заключается в том, что мы на основании опытных данных находим оценки $M\left(X\right),\ D\left(X\right)$, если полученные оценки близки между собой, то у нас есть основание утверждать, что случайная величина подчинена закону распределения Пуассона.

Пример . Примерами случайных величин, подчиненных закону распределения Пуассона, могут быть: число автомашин, которые будут обслужены завтра автозаправочной станцией; число бракованных изделий в произведенной продукции.

Пример . Завод отправил на базу $500$ изделий. Вероятность повреждения изделия в пути равна $0,002$. Найти закон распределения случайной величины $X$, равной числу поврежденных изделий; чему равно $M\left(X\right),\ D\left(X\right)$.

Пусть дискретная случайная величина $X$ - число поврежденных изделий. Такая случайная величина подчинена закону распределения Пуассона с параметром $\lambda =np=500\cdot 0,002=1$. Вероятности значений равны $P\left(X=k\right)={{{\lambda }^k}\over {k!}}\cdot e^{-\lambda }$. Очевидно, что все вероятности всех значений $X=0,\ 1,\ \dots ,\ 500$ перечислить невозможно, поэтому мы ограничимся лишь первыми несколькими значениями.

$P\left(X=0\right)={{1^0}\over {0!}}\cdot e^{-1}=0,368;$

$P\left(X=1\right)={{1^1}\over {1!}}\cdot e^{-1}=0,368;$

$P\left(X=2\right)={{1^2}\over {2!}}\cdot e^{-1}=0,184;$

$P\left(X=3\right)={{1^3}\over {3!}}\cdot e^{-1}=0,061;$

$P\left(X=4\right)={{1^4}\over {4!}}\cdot e^{-1}=0,015;$

$P\left(X=5\right)={{1^5}\over {5!}}\cdot e^{-1}=0,003;$

$P\left(X=6\right)={{1^6}\over {6!}}\cdot e^{-1}=0,001;$

$P\left(X=k\right)={{{\lambda }^k}\over {k!}}\cdot e^{-\lambda }$

Закон распределения случайной величины $X$:

$\begin{array}{|c|c|}
\hline
X_i & 0 & 1 & 2 & 3 & 4 & 5 & 6 & ... & k \\
\hline
P_i & 0,368; & 0,368 & 0,184 & 0,061 & 0,015 & 0,003 & 0,001 & ... & {{{\lambda }^k}\over {k!}}\cdot e^{-\lambda } \\
\hline
\end{array}$

Для такой случайной величины математическое ожидание и дисперсия равным между собой и равны параметру $\lambda $, то есть $M\left(X\right)=D\left(X\right)=\lambda =1$.

3. Геометрический закон распределения.

Если дискретная случайная величина $X$ может принимать только натуральные значения $1,\ 2,\ \dots ,\ n$ с вероятностями $P\left(X=k\right)=p{\left(1-p\right)}^{k-1},\ k=1,\ 2,\ 3,\ \dots $, то говорят, что такая случайная величина $X$ подчинена геометрическому закону распределения вероятностей. Фактически, геометрическое распределения представляется собой испытания Бернулли до первого успеха.

Пример . Примерами случайных величин, имеющих геометрическое распределение, могут быть: число выстрелов до первого попадания в цель; число испытаний прибора до первого отказа; число бросаний монеты до первого выпадения орла и т.д.

Математическое ожидание и дисперсия случайной величины, подчиненной геометрическому распределению, соответственно равны $M\left(X\right)=1/p$, $D\left(X\right)=\left(1-p\right)/p^2$.

Пример . На пути движения рыбы к месту нереста находится $4$ шлюза. Вероятность прохода рыбы через каждый шлюз $p=3/5$. Построить ряд распределения случайной величины $X$ - число шлюзов, пройденных рыбой до первого задержания у шлюза. Найти $M\left(X\right),\ D\left(X\right),\ \sigma \left(X\right)$.

Пусть случайная величина $X$ - число шлюзов, пройденных рыбой до первого задержания у шлюза. Такая случайная величина подчинена геометрическому закону распределения вероятностей. Значения, которые может принимать случайная величина $X:$ 1, 2, 3, 4. Вероятности этих значений вычисляются по формуле: $P\left(X=k\right)=pq^{k-1}$, где: $p=2/5$ - вероятность задержания рыбы через шлюз, $q=1-p=3/5$ - вероятность прохода рыбы через шлюз, $k=1,\ 2,\ 3,\ 4$.

$P\left(X=1\right)={{2}\over {5}}\cdot {\left({{3}\over {5}}\right)}^0={{2}\over {5}}=0,4;$

$P\left(X=2\right)={{2}\over {5}}\cdot {{3}\over {5}}={{6}\over {25}}=0,24;$

$P\left(X=3\right)={{2}\over {5}}\cdot {\left({{3}\over {5}}\right)}^2={{2}\over {5}}\cdot {{9}\over {25}}={{18}\over {125}}=0,144;$

$P\left(X=4\right)={{2}\over {5}}\cdot {\left({{3}\over {5}}\right)}^3+{\left({{3}\over {5}}\right)}^4={{27}\over {125}}=0,216.$

$\begin{array}{|c|c|}
\hline
X_i & 1 & 2 & 3 & 4 \\
\hline
P\left(X_i\right) & 0,4 & 0,24 & 0,144 & 0,216 \\
\hline
\end{array}$

Математическое ожидание:

$M\left(X\right)=\sum^n_{i=1}{x_ip_i}=1\cdot 0,4+2\cdot 0,24+3\cdot 0,144+4\cdot 0,216=2,176.$

Дисперсия:

$D\left(X\right)=\sum^n_{i=1}{p_i{\left(x_i-M\left(X\right)\right)}^2=}0,4\cdot {\left(1-2,176\right)}^2+0,24\cdot {\left(2-2,176\right)}^2+0,144\cdot {\left(3-2,176\right)}^2+$

$+\ 0,216\cdot {\left(4-2,176\right)}^2\approx 1,377.$

Среднее квадратическое отклонение:

$\sigma \left(X\right)=\sqrt{D\left(X\right)}=\sqrt{1,377}\approx 1,173.$

4. Гипергеометрический закон распределения.

Если $N$ объектов, среди которых $m$ объектов обладают заданным свойством. Случайных образом без возвращения извлекают $n$ объектов, среди которых оказалось $k$ объектов, обладающих заданным свойством. Гипергеометрическое распределение дает возможность оценить вероятность того, что ровно $k$ объектов в выборке обладают заданным свойством. Пусть случайная величина $X$ - число объектов в выборке, обладающих заданным свойством. Тогда вероятности значений случайной величины $X$:

$P\left(X=k\right)={{C^k_mC^{n-k}_{N-m}}\over {C^n_N}}$

Замечание . Статистическая функция ГИПЕРГЕОМЕТ мастера функций $f_x$ пакета Excel дает возможность определить вероятность того, что определенное количество испытаний будет успешным.

$f_x\to $ статистические $\to $ ГИПЕРГЕОМЕТ $\to $ ОК . Появится диалоговое окно, которое нужно заполнить. В графе Число_успехов_в_выборке указываем значение $k$. Размер_выборки равен $n$. В графе Число_успехов_в_совокупности указываем значение $m$. Размер_совокупности равен $N$.

Математическое ожидание и дисперсия дискретной случайной величины $X$, подчиненной геометрическому закону распределения, соответственно равны $M\left(X\right)=nm/N$, $D\left(X\right)={{nm\left(1-{{m}\over {N}}\right)\left(1-{{n}\over {N}}\right)}\over {N-1}}$.

Пример . В кредитном отделе банка работают 5 специалистов с высшим финансовым образованием и 3 специалиста с высшим юридическим образованием. Руководство банка решило направить 3 специалистов Для повышения квалификации, отбирая их в случайном порядке.

а) Составьте ряд распределения числа специалистов с высшим финансовым образованием, которые могут быть направлены на повышение квалификации;

б) Найдите числовые характеристики этого распределения.

Пусть случайная величина $X$ - число специалистов с высшим финансовым образованием среди трех отобранных. Значения, которые может принимать $X:0,\ 1,\ 2,\ 3$. Данная случайная величина $X$ распределена по гипергеометрическому распределению с параметрами: $N=8$ - размер совокупности, $m=5$ - число успехов в совокупности, $n=3$ - размер выборки, $k=0,\ 1,\ 2,\ 3$ - число успехов в выборке. Тогда вероятности $P\left(X=k\right)$ можно рассчитать по формуле: $P(X=k)={C_{m}^{k} \cdot C_{N-m}^{n-k} \over C_{N}^{n} } $. Имеем:

$P\left(X=0\right)={{C^0_5\cdot C^3_3}\over {C^3_8}}={{1}\over {56}}\approx 0,018;$

$P\left(X=1\right)={{C^1_5\cdot C^2_3}\over {C^3_8}}={{15}\over {56}}\approx 0,268;$

$P\left(X=2\right)={{C^2_5\cdot C^1_3}\over {C^3_8}}={{15}\over {28}}\approx 0,536;$

$P\left(X=3\right)={{C^3_5\cdot C^0_3}\over {C^3_8}}={{5}\over {28}}\approx 0,179.$

Тогда ряд распределения случайной величины $X$:

$\begin{array}{|c|c|}
\hline
X_i & 0 & 1 & 2 & 3 \\
\hline
p_i & 0,018 & 0,268 & 0,536 & 0,179 \\
\hline
\end{array}$

Рассчитаем числовые характеристики случайной величины $X$ по общим формулам гипергеометрического распределения.

$M\left(X\right)={{nm}\over {N}}={{3\cdot 5}\over {8}}={{15}\over {8}}=1,875.$

$D\left(X\right)={{nm\left(1-{{m}\over {N}}\right)\left(1-{{n}\over {N}}\right)}\over {N-1}}={{3\cdot 5\cdot \left(1-{{5}\over {8}}\right)\cdot \left(1-{{3}\over {8}}\right)}\over {8-1}}={{225}\over {448}}\approx 0,502.$

$\sigma \left(X\right)=\sqrt{D\left(X\right)}=\sqrt{0,502}\approx 0,7085.$

Назначение сервиса . Онлайн-калькулятор используется для построения таблицы распределения случайной величины X – числа произведенных опытов и вычисления всех характеристик ряда: математического ожидания, дисперсии и среднеквадратического отклонения. Отчет с решением оформляется в формате Word .
Пример 1 . В урне белых и черных шара. Шары наудачу достают из урны без возвращения до тех пор, пока не появится белый шар. Как только это произойдет, процесс прекращается.
Данный тип заданий относится к задаче построения геометрического распределения .

Пример 2 . Два Три стрелка делают по одному выстрелу в мишень. Вероятность попадания в нее первым стрелком равна , вторым – . Составить закон распределения случайной величины Х – числа попаданий в мишень.

Пример 2a . Стрелок делает по два три четыре выстрела. Вероятность попадания при соответствующем выстреле равна , . При первом промахе стрелок в дальнейших состязаниях не участвует. Составить закон распределения случайной величины Х - число попаданий в мишень.

Пример 3 . В партии из деталей бракованных стандартных. Контролер наудачу достает детали. Составить закон распределения случайной величины Х – числа бракованных годных деталей в выборке.
Аналогичное задание : В корзине m красных и n синих шаров. Наудачу вынимают k шаров. Составить закон распределения ДСВ X – появление синих шаров.
см. другие примеры решений .

Пример 4 . Вероятность появления события в одном испытании равна . Производится испытаний. Составить закон распределения случайной величины Х – числа появлений события.
Аналогичные задания для этого вида распределения :
1. Составить закон распределения случайной величины Х числа попаданий при четырех выстрелах, если вероятность попадания в цель при одном выстреле равна 0.8 .
2. Монету подбрасывают 7 раз. Найти математическое ожидание и дисперсию числа появлений герба. Составить таблицу распределения Х – числа появлений герба.

Пример №1 . Бросаются три монеты. Вероятность выпадения герба при одном бросании равна 0.5. Составьте закон распределения случайной величины X - числа выпавших гербов.
Решение.
Вероятность того, что не выпало ни одного герба: P(0) = 0,5*0,5*0,5= 0,125
P(1) = 0,5 *0,5*0,5 + 0,5*0,5 *0,5 + 0,5*0,5*0,5 = 3*0,125=0,375
P(2) = 0,5 *0,5 *0,5 + 0,5 *0,5*0,5 + 0,5*0,5 *0,5 = 3*0,125=0,375
Вероятность того, что выпало три герба: P(3) = 0,5*0,5*0,5 = 0,125

Закон распределения случайной величины X:

X 0 1 2 3
P 0,125 0,375 0,375 0,125
Проверка: P = P(0) + P(1) + P(2) + P(3) = 0,125 + 0,375 + 0,375 + 0,125 = 1

Пример №2 . Вероятность попадания в мишень одного стрелка при одном выстреле для первого стрелка равна 0.8, для второго стрелка – 0.85. Стрелки произвели по одному выстрелу в мишень. Считая попадание в цель для отдельных стрелков событиями независимыми, найти вероятность события А – ровно одно попадание в цель.
Решение.
Рассмотрим событие A - одно попадание в цель. Возможные варианты наступления этого события следующие:

  1. Попал первый стрелок, второй стрелок промахнулся: P(A/H1)=p 1 *(1-p 2)=0.8*(1-0.85)=0.12
  2. Первый стрелок промахнулся, второй стрелок попал в мишень: P(A/H2)=(1-p 1)*p 2 =(1-0.8)*0.85=0.17
  3. Первый и второй стрелки независимо друг от друга попали в мишень: P(A/H1H2)=p 1 *p 2 =0.8*0.85=0.68
Тогда вероятность события А – ровно одно попадание в цель, будет равна: P(A) = 0.12+0.17+0.68 = 0.97

Х ; значение F (5); вероятность того, что случайная величина Х примет значения из отрезка . Построить многоугольник распределения.

  1. Известна функция распределения F(x) дискретной случайной величины Х :

Задать закон распределения случайной величины Х в виде таблицы.

  1. Дан закон распределения случайной величины Х :
Х –28 –20 –12 –4
p 0,22 0,44 0,17 0,1 0,07
  1. Вероятность того, что в магазине есть сертификаты качества для полного ассортимента товаров, равна 0,7. Комиссия проверила наличие сертификатов в четырёх магазинах района. Составить закон распределения, вычислить математическое ожидание и дисперсию числа магазинов, в которых при проверке не обнаружены сертификаты качества.
  1. Для определения средней продолжительности горения электроламп в партии из 350 одинаковых ящиков было взято на проверку по одной электролампе из каждого ящика. Оценить снизу вероятность того, что средняя продолжительность горения отобранных электроламп отличается от средней продолжительности горения всей партии по абсолютной величине меньше чем на 7 часов, если известно, что среднее квадратичное отклонение продолжительности горения электроламп в каждом ящике меньше 9 часов.
  1. На телефонной станции неправильное соединение происходит с вероятностью 0,002. Найти вероятность того, что среди 500 соединений произойдёт:

Найти функцию распределения случайной величины Х . Построить графики функций и . Вычислить математическое ожидание, дисперсию, моду и медиану случайной величины Х .

  1. Станок-автомат изготавливает валики. Считается, что их диаметр – нормально распределённая случайная величина со средним значением 10мм. Чему равно среднее квадратичное отклонение, если с вероятностью 0,99 диаметр заключён в интервале от 9,7мм до 10,3мм.

Выборка А : 6 9 7 6 4 4

Выборка В: 55 72 54 53 64 53 59 48

42 46 50 63 71 56 54 59

54 44 50 43 51 52 60 43

50 70 68 59 53 58 62 49

59 51 52 47 57 71 60 46

55 58 72 47 60 65 63 63

58 56 55 51 64 54 54 63

56 44 73 41 68 54 48 52

52 50 55 49 71 67 58 46

50 51 72 63 64 48 47 55

Вариант 17.

  1. Среди 35 деталей 7 нестандартных. Найти вероятность того, что две наудачу взятые детали окажутся стандартными.
  1. Бросают три игральные кости. Найти вероятность того, что сумма очков на выпавших гранях кратна 9.
  1. Слово «ПРИКЛЮЧЕНИЕ» составлено из карточек, на каждой из которых написана одна буква. Карточки перемешивают и вынимают без возврата по одной. Найти вероятность того, что вынимаемые буквы в порядке появления образуют слово: а) ПРИКЛЮЧЕНИЕ; б) ПЛЕН.
  1. В урне содержится 6 чёрных и 5 белых шаров. Случайным образом вынимают 5 шаров. Найти вероятность того, что среди них имеются:
    1. 2 белых шара;
    2. меньше чем 2 белых шара;
    3. хотя бы один чёрный шар.
  1. А в одном испытании равна 0,4. Найти вероятности следующих событий:
    1. событие А появится 3 раза в серии из 7 независимых испытаний;
    2. событие А появится не менее 220 и не более 235 раз в серии из 400 испытаний.
  1. Завод отправил на базу 5000 доброкачественных изделий. Вероятность повреждения каждого изделия в пути равна 0,002. Найти вероятность того, что в пути будет повреждено не более 3 изделий.
  1. В первой урне 4 белых и 9 чёрных шаров, а во второй урне 7 белых и 3 чёрных шара. Из первой урны случайным образом вынимают 3 шара, а из второй урны – 4. Найти вероятность того, что все вынутые шары одного цвета.
  1. Дан закон распределения случайной величины Х :

Вычислить её математическое ожидание и дисперсию.

  1. В коробке лежат 10 карандашей. Наудачу извлекается 4 карандаша. Случайная величина Х – число синих карандашей среди отобранных. Найти закон её распределения, начальный и центральные моменты 2-го и 3-го порядков.
  1. Отдел технического контроля проверяет 475 изделий на брак. Вероятность того, что изделие бракованное равна 0,05. Найти с вероятностью 0,95 границы, в которых будет заключено количество бракованных изделий среди проверенных.
  1. На телефонной станции неправильное соединение происходит с вероятностью 0,003. Найти вероятность того, что среди 1000 соединений произойдёт:
    1. хотя бы 4 неправильных соединения;
    2. более двух неправильных соединений.
  1. Случайная величина задана функцией плотности распределения:

Найти функцию распределения случайной величины Х . Построить графики функций и . Вычислить математическое ожидание, дисперсию, моду и медиану случайной величины Х.

  1. Случайная величина задана функцией распределения:
  1. По выборке А решить следующие задачи:
    1. составить вариационный ряд;

· выборочное среднее;

· выборочную дисперсию;

Моду и медиану;

Выборка А: 0 0 2 2 1 4

    1. вычислить числовые характеристики вариационного ряда:

· выборочное среднее;

· выборочную дисперсию;

· стандартное выборочное отклонение;

· моду и медиану;

Выборка В: 166 154 168 169 178 182 169 159

161 150 149 173 173 156 164 169

157 148 169 149 157 171 154 152

164 157 177 155 167 169 175 166

167 150 156 162 170 167 161 158

168 164 170 172 173 157 157 162

156 150 154 163 143 170 170 168

151 174 155 163 166 173 162 182

166 163 170 173 159 149 172 176

Вариант 18.

  1. Среди 10 лотерейных билетов 2 являются выигрышными. Найти вероятность того, что из взятых наудачу пяти билетов один окажется выигрышным.
  1. Бросают три игральные кости. Найти вероятность того, что сумма выпавших очков больше 15.
  1. Слово «ПЕРИМЕТР» составлено из карточек, на каждой из которых написана одна буква. Карточки перемешивают и вынимают без возврата по одной. Найти вероятность того, что вынимаемые буквы образуют слово: а) ПЕРИМЕТР; б) МЕТР.
  1. В урне содержится 5 чёрных и 7 белых шаров. Случайным образом вынимают 5 шаров. Найти вероятность того, что среди них имеются:
    1. 4 белых шара;
    2. меньше чем 2 белых шара;
    3. хотя бы один чёрный шар.
  1. Вероятность наступления события А в одном испытании равна 0,55. Найти вероятности следующих событий:
    1. событие А появится 3 раза в серии из 5 испытаний;
    2. событие А появится не менее 130 и не более 200 раз в серии из 300 испытаний.
  1. Вероятность нарушения герметичности банки консервов равна 0,0005. Найти вероятность того, что среди 2000 банок две окажутся с нарушением герметичности.
  1. В первой урне 4 белых и 8 чёрных шаров, а во второй урне 7 белых и 4 чёрных шара. Из первой урны случайным образом вынимают 2 шара и из второй урны случайным образом вынимают по три шара. Найти вероятность того, что все вынутые шары одного цвета.
  1. Среди поступающих на сборку деталей, с первого станка 0,1% бракованных, со второго – 0,2%, с третьего – 0,25%, с четвёртого – 0,5%. Производительности станков относятся соответственно как 4:3:2:1. Взятая наудачу деталь оказалась стандартной. Найти вероятность того, что деталь изготовлена на первом станке.
  1. Дан закон распределения случайной величины Х :

Вычислить её математическое ожидание и дисперсию.

  1. У электромонтёра три лампочки, каждая из которых имеет дефект с вероятностью 0,1.. Лампочки ввинчиваются в патрон и включается ток. При включении тока дефектная лампочка сразу же перегорает и заменяется другой. Найти закон распределения, математическое ожидание и дисперсию числа опробованных лампочек.
  1. Вероятность поражения цели равна 0,3 при каждом из 900 независимых выстрелов. Пользуясь неравенством Чебышева, оценить вероятность того, что цель будет поражена не менее 240 раз и не более 300 раз.
  1. На телефонной станции неправильное соединение происходит с вероятностью 0,002. Найти вероятность того, что среди 800 соединений произойдёт:
    1. хотя бы три неправильных соединения;
    2. более четырёх неправильных соединений.
  1. Случайная величина задана функцией плотности распределения:

Найти функцию распределения случайной величины Х. Построить графики функций и . Вычислить математическое ожидание, дисперсию, моду и медиану случайной величины Х.

  1. Случайная величина задана функцией распределения:
  1. По выборке А решить следующие задачи:
    1. составить вариационный ряд;
    2. вычислить относительные и накопленные частоты;
    3. составить эмпирическую функцию распределения и построить её график;
    4. вычислить числовые характеристики вариационного ряда:

· выборочное среднее;

· выборочную дисперсию;

· стандартное выборочное отклонение;

· моду и медиану;

Выборка А : 4 7 6 3 3 4

  1. По выборке В решить следующие задачи:
    1. составить группированный вариационный ряд;
    2. построить гистограмму и полигон частот;
    3. вычислить числовые характеристики вариационного ряда:

· выборочное среднее;

· выборочную дисперсию;

· стандартное выборочное отклонение;

· моду и медиану;

Выборка В : 152 161 141 155 171 160 150 157

154 164 138 172 155 152 177 160

168 157 115 128 154 149 150 141

172 154 144 177 151 128 150 147

143 164 156 145 156 170 171 142

148 153 152 170 142 153 162 128

150 146 155 154 163 142 171 138

128 158 140 160 144 150 162 151

163 157 177 127 141 160 160 142

159 147 142 122 155 144 170 177

Вариант 19.

1. На участке работают 16 женщин и 5 мужчин. По табельным номерам отобраны наудачу 3 человека. Найти вероятность того, что все отобранные люди окажутся мужчинами.

2. Бросают четыре монеты. Найти вероятность того, что только на двух монетах появится «герб».

3. Слово «ПСИХОЛОГИЯ» составлено из карточек, на каждой из которых написана одна буква. Карточки перемешивают и вынимают без возврата по одной. Найти вероятность того, что вынимаемые буквы образуют слово: а) ПСИХОЛОГИЯ; б) ПОСОХ.

4. В урне содержится 6 чёрных и 7 белых шаров. Случайным образом вынимают 5 шаров. Найти вероятность того, что среди них имеются:

a. 3 белых шара;

b. меньше чем 3 белых шара;

c. хотя бы один белый шар.

5. Вероятность наступления события А в одном испытании равна 0,5. Найти вероятности следующих событий:

a. событие А появится 3 раза в серии из 5 независимых испытаний;

b. событие А появится не менее 30 и не более 40 раз в серии из 50 испытаний.

6. Имеется 100 станков одинаковой мощности, работающих независимо друг от друга в одинаковом режиме, при котором их привод оказывается включенным в течение 0,8 рабочего времени. Какова вероятность того, что в произвольно взятый момент времени окажутся включенными от 70 до 86 станков?

7. В первой урне 4 белых и 7 чёрных шаров, а во второй урне 8 белых и 3 чёрных шара. Из первой урны случайным образом вынимают 4 шара, а из второй – 1 шар. Найти вероятность того, что среди вынутых шаров только 4 чёрных шара.

8. В салон по продаже автомобилей ежедневно поступают автомобили трёх марок в объёмах: «Москвич» – 40%; «Ока» – 20%; «Волга» – 40% от всех привезённых машин. Среди машин марки «Москвич» 0,5% имеют противоугонное устройство, «Ока» – 0,01%, «Волга» – 0,1%. Найти вероятность того, что взятая для проверки машина имеет противоугонное устройство.

9. На отрезке наудачу выбраны числа и . Найти вероятность того, что эти числа удовлетворяют неравенствам .

10. Дан закон распределения случайной величины Х :

Х
p 0,1 0,2 0,3 0,4

Найти функцию распределения случайной величины Х ; значение F (2); вероятность того, что случайная величина Х примет значения из интервала . Построить многоугольник распределения.

Определение 1

Случайная величина $Х$ называется дискретной (прерывной), если множество ее значений бесконечное или конечное, но счетное.

Другими словами, величина называется дискретной, если ее значения можно занумеровать.

Описать случайную величину можно с используя закона распределения.

Закон распределения дискретной случайной величины $Х$ может быть задан в виде таблицы, в первой строке которой указаны все возможные значения случайной величины в порядке возрастания, а во второй строке соответствующие вероятности этих значений:

Рисунок 1.

где $р1+ р2+ ... + рn = 1$.

Даная таблица является рядом распределения дискретной случайной величины .

Если множество возможных значений случайной величины бесконечно, то ряд $р1+ р2+ ... + рn+ ...$ сходится и его сумма будет равна $1$.

Закон распределения дискретной случайной величины $Х$ можно представить графически, для чего в системе координат (прямоугольной) строят ломаную линию, которая последовательно соединяет точки с координатами $(xi;pi), i=1,2, ... n$. Линию, которую получили называют многоугольником распределения .

Рисунок 2.

Закон распределения дискретной случайной величины $Х$ может быть также представлен аналитически (с помощью формулы):

$P(X=xi)= \varphi (xi),i =1,2,3 ... n$.

Действия над дискретными вероятностями

При решении многих задач теории вероятности необходимо проводить операции умножения дискретной случайной величины на константу , сложения двух случайных величин, их умножения, поднесения к степени. В этих случаях необходимо придерживаться таких правил над случайными дискретными величинами:

Определение 3

Умножением дискретной случайной величины $X$ на константу $K$ называется дискретная случайная величина $Y=KX,$ которая обусловлена равенствами: $y_i=Kx_i,\ \ p\left(y_i\right)=p\left(x_i\right)=p_i,\ \ i=\overline{1,\ n}.$

Определение 4

Две случайные величины $x$ и $y$ называются независимыми , если закон распределения одной из них не зависит от того, какие возможные значения приобрела вторая величина.

Определение 5

Суммой двух независимых дискретных случайных величин $X$ и $Y$ называют случайную величину $Z=X+Y,$ обусловлена равенствами: $z_{ij}=x_i+y_j$, $P\left(z_{ij}\right)=P\left(x_i\right)P\left(y_j\right)=p_ip"_j$, $i=\overline{1,n}$, $j=\overline{1,m}$, $P\left(x_i\right)=p_i$, $P\left(y_j\right)=p"_j$.

Определение 6

Умножением двух независимых дискретных случайных величин $X$ и $Y$ называют случайную величину $Z=XY,$ обусловлена равенствами: $z_{ij}=x_iy_j$, $P\left(z_{ij}\right)=P\left(x_i\right)P\left(y_j\right)=p_ip"_j$, $i=\overline{1,n}$, $j=\overline{1,m}$, $P\left(x_i\right)=p_i$, $P\left(y_j\right)=p"_j$.

Примем во внимание, что некоторые произведения $x_{i\ \ \ \ \ }y_j$ могут быть равными между собой. В таком случае вероятность сложения произведения равна сумме соответствующих вероятностей.

Например, если $x_2\ \ y_3=x_5\ \ y_7,\ $то вероятность $x_2y_3$ (или тоже самое $x_5y_7$) будет равна $p_2\cdot p"_3+p_5\cdot p"_7.$

Сказанное выше касается также и суммы. Если $x_1+\ y_2=x_4+\ \ y_6,$ то вероятность $x_1+\ y_2$ (или тоже самое $x_4+\ y_6$) будет равняться $p_1\cdot p"_2+p_4\cdot p"_6.$

Пусnm случайные величины $X$ и $Y$ заданы законами распределения:

Рисунок 3.

Где $p_1+p_2+p_3=1,\ \ \ p"_1+p"_2=1.$ Тогда закон распределения сумы $X+Y$ будет иметь вид

Рисунок 4.

А закон распределения произведения $XY$ будет иметь вид

Рисунок 5.

Фунция распределения

Полное описание случайной величины дает также функция распределения.

Геометрически функция распределения разъясняется как вероятность того, что случайная величина $Х$ принимает значение, которое на числовой прямой изображается точкой, лежащей с левой стороны от точки $х$.

На этой странице мы собрали примеры решения учебных задач о дискретных случайных величинах . Это довольно обширный раздел: изучаются разные законы распределения (биномиальный, геометрический, гипергеометрический, Пуассона и другие), свойства и числовые характеристики, для каждого ряда распределения можно строить графические представления: полигон (многоугольник) вероятностей, функцию распределения.

Ниже вы найдете примеры решений о дискретных случайных величинах, в которых требуется применить знания из предыдущих разделов теории вероятностей для составления закона распределения, а затем вычислить математическое ожидание, дисперсию, среднее квадратическое отклонение, построить функцию распределения, дать ответы на вопросы о ДСВ и т.п.

Примеры для популярных законов распределения вероятностей:


Калькуляторы на характеристики ДСВ

  • Вычисление математического ожидания, дисперсии и среднего квадратического отклонения ДСВ .

Решенные задачи о ДСВ

Распределения, близкие к геометрическому

Задача 1. На пути движения автомашины 4 светофора, каждый из которых запрещает дальнейшее движение автомашины с вероятностью 0,5. Найти ряд распределения числа светофоров, пройденных машиной до первой остановки. Чему равны математическое ожидание и дисперсия этой случайной величины?

Задача 2. Охотник стреляет по дичи до первого попадания, но успевает сделать не более четырех выстрелов. Составить закон распределения числа промахов, если вероятность попадания в цель при одном выстреле равна 0,7. Найти дисперсию этой случайной величины.

Задача 3. Стрелок, имея 3 патрона, стреляет в цель до первого попадания. Вероятности попадания при первом, втором и третьем выстрелах соответственно 0,6, 0,5, 0,4. С.В. $\xi$ - число оставшихся патронов. Составить ряд распределения случайной величины, найти математическое ожидание, дисперсию, среднее квадратичное отклонение с.в., построить функцию распределения с.в., найти $P(|\xi-m| \le \sigma$.

Задача 4. В ящике содержится 7 стандартных и 3 бракованных детали. Вынимают детали последовательно до появления стандартной, не возвращая их обратно. $\xi$ - число извлеченных бракованных деталей.
Составить закон распределения дискретной случайной величины $\xi$, вычислить ее математическое ожидание, дисперсию, среднее квадратическое отклонение, начертить многоугольник распределения и график функции распределения.

Задачи с независимыми событиями

Задача 5. На переэкзаменовку по теории вероятностей явились 3 студента. Вероятность того, что первый сдаст экзамен, равна 0,8, второй - 0,7, третий - 0,9. Найдите ряд распределения случайной величины $\xi$ числа студентов, сдавших экзамен, постройте график функции распределения, найдите $М(\xi), D(\xi)$.

Задача 6. Вероятность попадания в цель при одном выстреле равна 0,8 и уменьшается с каждым выстрелом на 0,1. Составить закон распределения числа попаданий в цель, если сделано три выстрела. Найти математическое ожидание, дисперсию и С.К.О. этой случайной величины. Построить график функции распределения.

Задача 7. По цели производится 4 выстрела. Вероятность попадания при этом растет так: 0,2, 0,4, 0,6, 0,7. Найти закон распределения случайной величины $X$ - числа попаданий. Найти вероятность того, что $X \ge 1$.

Задача 8. Подбрасываются две симметричные монеты, подсчитывается число гербов на обеих верхних сторонах монет. Рассматривается дискретная случайная величина $X$- число выпадений гербов на обеих монетах. Записать закон распределения случайной величины $X$, найти ее математическое ожидание.

Другие задачи и законы распределения ДСВ

Задача 9. Два баскетболиста делают по три броска в корзину. Вероятность попадания для первого баскетболиста равна 0,6, для второго – 0,7. Пусть $X$ - разность между числом удачных бросков первого и второго баскетболистов. Найти ряд распределения, моду и функцию распределения случайной величины $X$. Построить многоугольник распределения и график функции распределения. Вычислить математическое ожидание, дисперсию и среднее квадратичное отклонение. Найти вероятность события $(-2 \lt X \le 1)$.

Задача 10. Число иногородних судов, прибывающих ежедневно под погрузку в определенный порт – случайная величина $X$, заданная так:
0 1 2 3 4 5
0,1 0,2 0,4 0,1 0,1 0,1
А) убедитесь, что задан ряд распределения,
Б) найдите функцию распределения случайной величины $X$,
В) если в заданный день прибывает больше трех судов, то порт берет на себя ответственность за издержки вследствие необходимости нанимать дополнительных водителей и грузчиков. Чему равна вероятность того, что порт понесет дополнительные расходы?
Г) найдите математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины $X$.

Задача 11. Бросают 4 игральные кости. Найти математическое ожидание суммы числа очков, которые выпадут на всех гранях.

Задача 12. Двое поочередно бросают монету до первого появления герба. Игрок, у которого выпал герб, получает от другого игрока 1 рубль. Найти математическое ожидание выигрыша каждого игрока.