Виды ионизирующих излучений и их свойства. Виды ионизирующих излучений, единицы измерения, воздействие на организм человека

ИЗЛУЧЕНИЕ электромагнитное,

1) в классической электродинамике - процесс образования свободного электромагнитного поля, происходящий при взаимодействии электрически заряженных частиц (или их систем); в квантовой теории - процесс рождения (испускания) фотонов при изменении состояния квантовой системы;

2) свободное электромагнитное поле - электромагнитные волны.

Основы классической теории излучения - электродинамики - заложены в 1-й половине 19 века в работах М. Фарадея и Дж. К. Максвелла, который развил идеи Фарадея, придав законам излучения строгую математическую форму. Из Максвелла уравнений следовало, что электромагнитные волны в вакууме в любой системе отсчёта распространяются с одной скоростью - со скоростью света с = 3·10 8 м/с. Теория Максвелла объяснила многие физические явления, объединила оптические, электрические и магнитные явления, стала основой электротехники и радиотехники, но ряд явлений (например, спектры атомов и молекул) удалось объяснить только после создания квантовой теории излучения, основы которой заложили М. Плат, А. Эйнштейн, Н. Бор, П. Дирак и др. Полное обоснование теория излучения получила в квантовой электродинамике, которая была завершена в 1950-х годах в работах Р. Ф. Фейнмана, Дж. Швингера, Ф. Дайсона и др.

Характеристики процесса излучения и свободного электромагнитного поля (интенсивность излучения, спектр излучения, распределение в нём энергии, плотность потока энергии излучения и др.) зависят от свойств излучающей заряженной частицы (или системы частиц) и условий взаимодействия её с электрическими и/или магнитными полями, приводящего к излучению. Так, при прохождении заряженной частицы в веществе в результате взаимодействия с атомами вещества скорость частицы изменяется и она испускает так называемое тормозное излучение (смотри ниже). Свободное электромагнитное поле в зависимости от диапазона длин волн λ называют радиоизлучением (смотри Радиоволны), инфракрасным излучением, оптическим излучением, ультрафиолетовым излучением, рентгеновским излучением, гамма-излучением.

Электромагнитное поле равномерно и прямолинейно движущейся в вакууме заряженной частицы на далёких от неё расстояниях пренебрежимо мало, и можно сказать, что увлекаемое ею поле движется вместе с ней с той же скоростью. Свойства такого собственного поля заряженной частицы зависят от величины и направления её скорости и не меняются, если она постоянна; такая частица не излучает. Если скорость заряженной частицы изменилась (например, при столкновении с другой частицей), то собственное поле до и после изменения скорости различно - при изменении скорости собственное поле перестраивается так, что часть его отрывается и уже не связана с заряженной частицей - становится свободным полем. Т.о., образование электромагнитных волн происходит при изменении скорости заряженной частицы; причины изменения скорости разнообразны, в соответствии с этим возникают различные типы излучения (тормозное, магнитотормозное и т. п.). Излучение системы частиц зависит от её структуры; оно может быть аналогично излучению частицы, представлять собой излучения диполя (дипольное излучение) или мультиполя (мультипольное излучение).

При аннигиляции электрона и позитрона (смотри Аннигиляция и рождение пар) также образуется свободное электромагнитное поле (фотоны). Энергия и импульс аннигилирующих частиц сохраняются, т. е. передаются электромагнитному полю. Это означает, что поле излучения всегда обладает энергией и импульсом.

Образовавшиеся в процессе излучения электромагнитные волны образуют поток уходящей от источника энергии, плотность которого S(r,t) (Пойнтинга вектор - энергия, протекающая за единицу времени через единичную поверхность, перпендикулярную потоку) в момент времени t на расстоянии r от излучающей заряженной частицы пропорциональна векторному произведению напряжённостей магнитного Н(r,t) и электрического Е(r,t) полей:

Полную энергию W, теряемую заряженной частицей за единицу времени в процессе излучения, можно получить, вычислив поток энергии через сферу бесконечно большого радиуса r.

где dΩ. - элемент телесного угла, n - единичный вектор в направлении распространения излучения Собственное поле системы зарядов на далёких расстояниях убывает с расстоянием быстрее, чем 1/r, а поле излучения на больших расстояниях от источника убывает как 1/r.

Когерентность излучателей. Плотность потока излучения, приходящего в определённую точку пространства от двух одинаковых источников, пропорциональна векторному произведению сумм напряжённостей электрических E 1 (r, t) и Е 2 (r, t) и магнитных Н 1 (r,t) и Н 2 (r,t) полей электромагнитных волн от источников 1 и 2:

Результат сложения двух синусоидальных плоских волн зависит от фаз, в которых они приходят в данную точку. Если фазы одинаковы, то поля Е и Н удваиваются, а энергия поля в данной точке увеличивается в 4 раза по сравнению с энергией поля от одного источника. В том случае, когда волны от двух разных источников приходят к детектору с противоположными фазами, перекрёстные произведения полей и [Е 2 (r,t)Н 1 (r,t)]в(3) обращаются в нуль. В результате от двух излучателей в данную точку приходит энергия вдвое большая, чем от одного излучателя. В случае N излучателей, волны от которых приходят в данную точку в одинаковых фазах, энергия увеличится в N 2 раз. Такие излучатели называются когерентными. Если же фазы приходящих к детектору волн от каждого излучателя случайные, то поля от разных излучателей при сложении в точке наблюдения частично погашаются. Тогда от N источников детектор зарегистрирует энергию в N раз большую, чем от одного источника. Такие источники (и их излучения) называют некогерентными. К ним относятся практически все обычные источники света (пламя свечи, лампы накаливания, люминесцентные лампы и т.п.); в них моменты времени высвечивания каждого атома или молекулы (и, соответственно, фазы, в которых приходят в определённую точку волны их излучения) случайны. Когерентными источниками излучения являются лазеры, в которых создаются условия для одновременного высвечивания всех атомов рабочего вещества.

Реакция излучения. Излучающая заряженная частица теряет энергию, так что в процессе излучения создаётся действующая на частицу сила, замедляющая её скорость и называемая силой реакции излучения или силой радиационного трения. При нерелятивистских скоростях заряженных частиц сила реакции излучения всегда мала, но при скоростях, близких к скорости света, она может играть основную роль. Так, в магнитном поле Земли потери энергии на излучения электронов космических лучей, обладающих высокой энергией, столь велики, что электроны не могут долететь до поверхности Земли. У частиц космических лучей с такой же энергией и большей массой потери энергии на излучения меньше, чем у электронов, и они долетают до поверхности Земли. Отсюда следует, что состав космических лучей, регистрируемый на поверхности Земли и с ИСЗ, может быть различен.

Длина когерентности излучения. Процессы излучения при нерелятивистских и ультрарелятивистских скоростях заряженной частицы различаются размерами области пространства, где формируется поле излучения. В нерелятивистском случае (когда скорость v частицы невелика) поле излучения уходит от заряда со скоростью света и процесс излучения заканчивается быстро, размер области формирования излучения (длина когерентности) L намного меньше длины волны излучения λ, L~λv/с. Если же скорость частицы близка к скорости света (при релятивистских скоростях), образовавшееся поле излучения и создавшая его частица движутся долгое время вблизи друг друга и расходятся, пролетев достаточно большой путь. Формирование поля излучения продолжается много дольше, и длина L много больше длины волны, L~λγ (где γ= -1/2 - лоренц-фактор частицы).

Тормозное излучение возникает при рассеянии заряженной частицы на атомах вещества. Если время Δt за которое частица с зарядом е при рассеянии изменяет скорость от v 1 до v 2 , много меньше времени формирования излучения L/v, то изменение скорости заряженной частицы можно считать мгновенным. Тогда распределение энергии излучения по углам и круговым частотам ω имеет вид:

Умножив это выражение на вероятность изменения скорости частицы при рассеянии от v 1 до v 2 и проинтегрировав полученное выражение по всем v 2 , можно получить распределение энергии тормозного излучения по частотам и углам (не зависящее от частоты). Более лёгкие частицы легче отклоняются при взаимодействии с атомом, поэтому интенсивность тормозного излучения обратно пропорциональна квадрату массы быстрой частицы. Тормозное излучение - основная причина потерь энергии релятивистских электронов в веществе в том случае, когда энергия электрона больше некоторой критической энергии, составляющей для воздуха 83 МэВ, для Al - 47 МэВ, для РЬ -59 МэВ.

Магнитотормозное излучение возникает при движении заряженной частицы в магнитном поле, искривляющем траекторию её движения. В постоянном и однородном магнитом поле траектория движения заряженной частицы массой m представляет собой спираль, т. е. складывается из равномерного движения вдоль направления поля и вращения вокруг него с частотой ω Н = еН/γmс.

Периодичность движения частицы приводит к тому, что излучаемые ею волны имеют частоты, кратные ω Н: ω = Мω Н, где N=1,2,3 ... . излучения ультрарелятивистских частиц в магнитном поле называется синхротронным излучением. Оно имеет широкий спектр частот с максимумом при ω порядка ω Н γ 3 и основная доля излучённой энергии лежит в области частот ω » ω Н. Интервалы между соседними частотами в этом случае много меньше частоты, поэтому распределение частот в спектре синхротронного излучения можно приближённо считать непрерывным. В области частот ω « ω Н γ 3 интенсивность излучения растёт с частотой как ω 2/3 , а в области частот ω » ω Н γ 3 интенсивность излучения экспоненциально убывает с ростом частоты. Синхротронное излучение имеет малую угловую расходимость (порядка l/γ) и высокую степень поляризации в плоскости орбиты частицы. Магнитотормозное излучение при нерелятивистских скоростях заряженных частиц называют циклотронным излучением, его частота ω = ω Н.

Ондуляторное излучение возникает при движении ультрарелятивистской заряженной частицы с малыми поперечными периодическими отклонениями, например при пролёте в периодически меняющемся электрическом поле (такое поле формируется, например, в специальных устройствах - ондуляторах). Частота ω ондуляторного излучения связана с частотой поперечных колебаний ω 0 частицы соотношением

где θ- угол между скоростью частицы v и направлением распространения ондуляторного излучения. Аналог этого типа излучения - излучение, возникающее при каналировании заряженных частиц в монокристаллах, когда движущаяся между соседними кристаллическими ографическими плоскостями частица испытывает поперечные колебания вследствие взаимодействия с внутрикристаллическим полем.

Излучение Вавилова - Черенкова наблюдается при равномерном движении заряженной частицы в среде со скоростью, превышающей фазовую скорость света с/ε 1/2 в среде (ε - диэлектрическая проницаемость среды). В этом случае часть собственного поля частицы отстаёт от неё и формирует электромагнитные волны, распространяющиеся под углом к направлению движения частицы (смотри Вавилова - Черенкова излучение), который определяется равенством cos θ = с/vε 1/2 . За открытие и объяснение этого принципиально нового вида излучения, нашедшего широкое применение для измерения скорости заряженных частиц, И. Е. Тамму, И. М. Франку и П. А. Черенкову присуждена Нобелевская премия (1958).

Переходное излучение (предсказанное В. Л. Гинзбургом и И. М. Франком в 1946) возникает при равномерном прямолинейном движении заряженной частицы в пространстве с неоднородными диэлектрическими свойствами. Наиболее часто оно формируется при пересечении частицей границы раздела двух сред с различными диэлектрическими проницаемостями (часто именно это излучение считают переходным; смотри Переходное излучение). Собственное поле движущейся с постоянной скоростью частицы в разных средах различно, так что на границе раздела сред происходит перестройка собственного поля, приводящая к излучению. Переходное излучение не зависит от массы быстрой частицы, его интенсивность зависит не от скорости частицы, а от её энергии, что позволяет создавать на его основе уникальные точные методы регистрации частиц сверхвысоких энергий.

Дифракционное излучение возникает при пролёте заряженной частицы в вакууме вблизи поверхности вещества, когда собственное поле частицы изменяется вследствие его взаимодействия с неоднородностями поверхности. Дифракционное излучение успешно применяется для изучения поверхностных свойств вещества.

Излучение систем заряженных частиц.

Простейшая система, которая может излучать, - диполь электрический с переменным дипольным моментом - система из двух разноимённо заряженных колеблющихся частиц. При изменении поля диполя, например при колебаниях частиц, вдоль соединяющей их прямой (оси диполя) навстречу друг другу, часть поля отрывается, и формируются электромагнитные волны. Такое излучение неизотропно, его энергия в различных направлениях неодинакова: максимальна в направлении, перпендикулярном оси колебаний частиц, и отсутствует в перпендикулярном направлении, для промежуточных направлений его интенсивность пропорциональна sinθ 2 (θ - угол между направлением излучения и осью колебания частиц). Реальные излучатели, как правило, состоят из большого числа разноимённо заряженных частиц, но часто учёт их расположения и детали движения вдали от системы несущественны; в этом случае, возможно упростить истинное распределение, «стянув» одноимённые заряды к некоторым центрам распределения зарядов. Если система в целом электронейтральна, то её излучение приближённо можно считать излучением электрического диполя.

Если дипольное излучение системы отсутствует, то её можно представить как квадруполь или более сложную систему - мультиполь. При движении зарядов в ней возникает электрическое квадрупольное или мультипольное излучение. Источниками излучения могут быть также системы, которые представляют собой магнитные диполи (например, контур с током) или магнитные мультиполи. Интенсивность магнитного дипольного излучения, как правило, в (v/с) 2 раз меньше интенсивности электрического дипольного излучения и одного порядка с электрическим квадрупольным излучением.

Квантовая теория излучения. Квантовая электродинамика рассматривает процессы излучения квантовыми системами (атомами, молекулами, атомными ядрами и др.), поведение которых подчиняется законам квантовой механики; при этом свободное электромагнитное поле представляют как совокупность квантов этого поля - фотонов. Энергия фотона Е пропорциональна его частоте v (v = ω/2π), то есть Е=hv (h - постоянная Планка), а импульс р - волновому вектору k: р = hk. Излучение фотона сопровождается квантовым переходом системы из состояния с энергией E 1 в состояние с меньшей энергией Е 2 =E 1 - hv (с уровня энергии E 1 на уровень Е 2). Энергия связанной квантовой системы (например, атома) квантована, т. е. принимает лишь дискретные значения; частоты излучения такой системы тоже дискретны. Таким образом, излучение квантовой системы состоит из отдельных спектральных линий с определёнными частотами, т. е. имеет дискретный спектр. Непрерывный (сплошной) спектр излучения получается в том случае, когда одна (или обе) из последовательностей значений начальной и конечной энергий системы, в которой происходит квантовый переход, непрерывна (например, при рекомбинации свободного электрона и иона).

Квантовая электродинамика позволила вычислять интенсивности излучения различных систем, рассматривать вероятности безызлучательных переходов, процессы переноса излучения, рассчитывать так называемые радиационные поправки и другие характеристики излучения квантовых систем.

Все состояния атома, кроме основного (состояния с минимальной энергией), называемые возбуждёнными, неустойчивы. Находясь в них, атом через определённое время (порядка 10 -8 с) самопроизвольно испускает фотон; такое излучение называется спонтанным или самопроизвольным. Характеристики спонтанного излучения атома - направление распространения, интенсивность, поляризация - не зависят от внешних условий. Набор длин волн излучения индивидуален для атома каждого химического элемента и представляет его атомный спектр. Основным излучением атома является дипольное излучение, которое может происходить только при квантовых переходах, разрешённых отбора правилами для электрических дипольных переходов, то есть при определённых соотношениях между характеристиками (квантовыми числами) начального и конечного состояний атома. Мультипольное излучение атома (так называемые запрещённые линии) при определённых условиях также может возникать, но вероятность переходов, при которых оно происходит, мала, и его интенсивность, как правило, невелика. Излучение атомных ядер происходит при квантовых переходах между ядерными уровнями энергии и определяется соответствующими правилами отбора.

излучение различных молекул, в которых происходят колебательные и вращательные движения составляющих их заряженных частиц, имеет сложные спектры, обладающие электронно-колебательно-вращательной структурой (смотри Молекулярные спектры).

Вероятность испускания фотона с импульсом hk и энергией hv пропорциональна (n k + 1), где n k - число точно таких же фотонов в системе до момента испускания. При n k = 0 происходит спонтанное излучение, если n k ≠ 0, появляется также вынужденное излучение. Фотон вынужденного излучения, в отличие от спонтанного, обладает таким же направлением распространения, частотой и поляризацией, что и фотон внешнего излучения; интенсивность вынужденного излучения пропорциональна числу фотонов внешнего излучения. Существование вынужденного излучения постулировал в 1916 году А. Эйнштейн, который рассчитал вероятность вынужденного излучения (смотри Эйнштейна коэффициенты). В обычных условиях вероятность (и, следовательно, интенсивность) вынужденного излучения мала, однако в квантовых генераторах (лазерах) для увеличения n k рабочее вещество (излучатель) помещают в оптические резонаторы, удерживающие фотоны внешнего излучения вблизи него. Каждый испущенный веществом фотон увеличивает n k , поэтому интенсивность излучения с данным k быстро растёт при малой интенсивности излучения фотонов со всеми другими k. В результате квантовый генератор оказывается источником вынужденного излучения с очень узкой полосой значений v и k - когерентного излучения. Поле такого излучения очень интенсивно, может стать сравнимым по величине с внутримолекулярными полями, и взаимодействие излучения квантового генератора (лазерного излучения) с веществом становится нелинейным (смотри Нелинейная оптика).

Излучение различных объектов несёт информацию об их структуре, свойствах и процессах, происходящих в них; его исследование - мощный и часто единственный (например, для космических тел) способ их изучения. Теории излучения принадлежит особая роль в формировании современной физической картины мира. В процессе построения этой теории возникли теория относительности, квантовая механика, были созданы новые источники излучения, получен ряд достижений в области радиотехники, электроники и др.

Лит.: Ахиезер А. И., Берестецкий В. Б. Квантовая электродинамика. 4-е изд. М., 1981; Ландау Л. Д., Лифшиц Е.М. Теория поля. 8-е изд. М., 2001 ; Тамм И. Е. Основы теории электричества. 11-е изд. М., 2003.

Термин «радиация» происходит от латинского слова radius и означает луч. В самом широком смысле слова радиация охватывает все существующие в природе виды излучений — радиоволны, инфракрасное излучение, видимый свет, ультрафиолет и, наконец, ионизирующее излучение. Все эти виды излучения, имея электромагнитную природу, различаются длиной волны, частотой и энергией.

Существуют также излучения, которые имеют другую природу и представляют собой потоки различных частиц, например, альфа-частиц, бета-частиц, нейтронов и т.д.

Каждый раз, когда на пути излучения возникает барьер, оно передает часть или всю свою энергию этому барьеру. И от того, насколько много энергии было передано и поглощено в организме, зависит конечный эффект облучения. Всем известны удовольствие от бронзового загара и огорчение от тяжелейших солнечных ожогов. Очевидно, что переоблучение любым видом радиации чревато неприятными последствиями.

Для здоровья человека наиболее важны ионизирующие виды излучения. Проходя через ткань, ионизирующее излучение переносит энергию и ионизирует атомы в молекулах, которые играют важную биологическую роль. Поэтому облучение любыми видами ионизирующего излучения может так или иначе влиять на здоровье. К их числу относятся:

Альфа-излучение — это тяжелые положительно заряженные частицы, состоящие из двух протонов и двух нейтронов, крепко связанных между собой. В природе альфа-частицы возникают в результате распада атомов тяжелых элементов, таких как уран, радий и торий. В воздухе альфа-излучение проходит не более пяти сантиметров и, как правило, полностью задерживается листом бумаги или внешним омертвевшим слоем кожи. Однако если вещество, испускающее альфа-частицы, попадает внутрь организма с пищей или вдыхаемым воздухом, оно облучает внутренние органы и становится потенциально опасным.

Бета-излучение — это электроны, которые значительно меньше альфа-частиц и могут проникать вглубь тела на несколько сантиметров. От него можно защититься тонким листом металла, оконным стеклом и даже обычной одеждой. Попадая на незащищенные участки тела, бета-излучение оказывает воздействие, как правило, на верхние слои кожи. Во время аварии на Чернобыльской АЭС в 1986 году пожарные получили ожоги кожи в результате очень сильного облучения бета-частицами. Если вещество, испускающее бета-частицы, попадет в организм, оно будет облучать внутренние ткани.

Гамма-излучение — это фотоны, т.е. электромагнитная волна, несущая энергию. В воздухе оно может проходить большие расстояния, постепенно теряя энергию в результате столкновений с атомами среды. Интенсивное гамма-излучение, если от него не защититься, может повредить не только кожу, но и внутренние ткани. Плотные и тяжелые материалы, такие как железо и свинец, являются отличными барьерами на пути гамма-излучения.

Рентгеновское излучение аналогично гамма-излучению, испускаемому ядрами, но оно получается искусственно в рентгеновской трубке, которая сама по себе не радиоактивна. Поскольку рентгеновская трубка питается электричеством, то испускание рентгеновских лучей может быть включено или выключено с помощью выключателя.

Нейтронное излучение образуется в процессе деления атомного ядра и обладает высокой проникающей способностью. Нейтроны можно остановить толстым бетонным, водяным или парафиновым барьером. К счастью, в мирной жизни нигде, кроме как непосредственно вблизи ядерных реакторов, нейтронное излучение практически не существует.

В отношении рентгеновского и гамма-излучения часто употребляют определения «жёсткое» и «мягкое» . Это относительная характеристика его энергии и связанной с ней проникающей способности излучения («жёсткое» — большие энергия и проникающая способность, «мягкое» — меньшие). Ионизирующие излучения и их проникающая способность

Радиоактивность

Число нейтронов в ядре определяет, является ли данное ядро радиоактивным. Чтобы ядро находилось в стабильном состоянии, число нейтронов, как правило, должно быть несколько выше числа протонов. В стабильном ядре протоны и нейтроны так крепко связаны между собой ядерными силами, что ни одна частица не может выйти из него. Такое ядро всегда будет оставаться в уравновешенном и спокойном состоянии. Однако ситуация совсем иная, если число нейтронов нарушает равновесие. В этом случае ядро обладает избыточной энергией и просто не может удерживаться в целости. Рано или поздно оно выбросит свою избыточную энергию.

Различные ядра высвобождают свою энергию разными способами: в форме электромагнитных волн или потоков частиц. Такая энергия называется излучением. Радиоактивный распад

Процесс, в ходе которого нестабильные атомы испускают свою избыточную энергию, называется радиоактивным распадом, а сами такие атомы — радионуклидом. Легкие ядра с небольшим числом протонов и нейтронов становятся стабильными после одного распада. При распаде тяжелых ядер, например, урана, образующееся в результате этого ядро по-прежнему является нестабильным и, в свою очередь, распадается дальше, образуя новое ядро, и т.д. Цепочка ядерных превращений заканчивается образованием стабильного ядра. Такие цепочки могут образовывать радиоактивные семейства. В природе известны радиоактивные семейства урана и тория.

Представление об интенсивности распада дает понятие периода полураспада — периода, в течение которого произойдет распад половины нестабильных ядер радиоактивного вещества. Период полураспада каждого радионуклида уникален и неизменен. Один радионуклид, например, криптон-94, рождается в ядерном реакторе и очень быстро распадается. Период полураспада его меньше секунды. Другой, например, калий-40, образовался в момент рождения Вселенной и до сих пор сохранился на планете. Период полураспада его измеряется миллиардами лет.

Введение

Ионизирующее излучение, если говорить о нем в общем виде, - это различные виды микрочастиц и физических полей способных ионизировать вещество. Основными видами ионизирующего излучения является электро-магнитное излучение (рентгеновское и гамма-излучение), а также потоки заряженных частиц - альфа-частицы и бета-частицы, которые возникают при ядерном взрыве. Защита от поражающих факторов является основой гражданской обороны страны. Рассмотрим основные виды ионизирующего излучения.

Типы излучений

Альфа-излучение

Альфа излучение - поток положительно заряженных частиц, образованная 2 протонами и 2 нейтронами. Частица идентична ядру атома гелия-4 (4He2+). Образуется при альфа-распаде ядер. Впервые альфа-излучение открыл Э. Резерфорд. Изучая радиоактивные элементы, в частности изучая такие радиоактивные элементы как уран радий и актиний, Э. Резерфорд пришел к выводу что все радиоактивные элементы испускают альфа- и бета-лучи. И, что еще более важно, радиоактивность любого радиоактивного элемента через определенный конкретный период времени уменьшается. Источником альфа-излучения являются радиоактивные элементы. В отличие от других видов ионизирующего излучения альфа-излучение является наиболее безобидным. Оно опасно лишь при попадании в организм такого вещества (вдыхание, съедание, выпивание, втирание и т.д.), так как пробег альфа частицы, например с энергией 5 МэВ, в воздухе составляет 3,7 см, а в биологической ткани 0,05 мм. Альфа-излучение попавшего в организм радионуклида наносит поистине кошмарные разрушения, т.к. коэффициент качества альфа излучения с энергией меньше 10 МэВ равен 20 мм. а потери энергии происходят в очень тонком слое биологической ткани. Оно практически сжигает его. При поглощении альфа-частиц живыми организмами могут возникнуть мутагенные (факторы, вызывающий мутацию), канцерогенные (вещества или физический агент (излучение), способные вызвать развитие злокачественных новообразований) и другие отрицательные эффекты. Проникающая способность А.-и. невелика т.к. задерживается листом бумаги.

Бета-излучение

Бета-частица (в-частица), заряженная частица, испускаемая в результате бета-распада. Поток бета-частиц называется бета-лучи или бета-излучение.

Отрицательно заряженные бета-частицы являются электронами (в-), положительно заряженные - позитронами (в+).

Энергии бета-частиц распределены непрерывно от нуля до некоторой максимальной энергии, зависящей от распадающегося изотопа; эта максимальная энергия лежит в диапазоне от 2,5 кэВ (для рения-187) до десятков МэВ (для короткоживущих ядер, далёких от линии бета-стабильности).

Бета-лучи под действием электрического и магнитного полей отклоняются от прямолинейного направления. Скорость частиц в бета-лучах близка к скорости света.

Бета-лучи способны ионизировать газы, вызывать химические реакции, люминесценцию, действовать на фотопластинки.

Значительные дозы внешнего бета-излучения могут вызвать лучевые ожоги кожи и привести к лучевой болезни. Ещё более опасно внутреннее облучение от бета-активных радионуклидов, попавших внутрь организма. Бета-излучение имеет значительно меньшую проникающую способность, чем гамма-излучение (однако на порядок большую, чем альфа-излучение). Слой любого вещества с поверхностной плотностью порядка 1 г/см2 (например, несколько миллиметров алюминия или несколько метров воздуха) практически полностью поглощает бета-частицы с энергией около 1 МэВ.

Гамма-излучение

Гамма - излучение вид электромагнитного излучения с чрезвычайно маленькой длиной волны - < 5Ч10-3 нм и вследствие этого ярко выраженными корпускулярными и слабо выраженными волновыми свойствами. Гамма-квантами являются фотоны высокой энергии. Обычно считается, что энергии квантов гамма-излучения превышают 105 эВ, хотя резкая граница между гамма- и рентгеновским излучением не определена. На шкале электромагнитных волн гамма-излучение граничит с рентгеновским излучением, занимая диапазон более высоких частот и энергий. В области 1-100 кэВ гамма-излучение и рентгеновское излучение различаются только по источнику: если квант излучается в ядерном переходе, то его принято относить к гамма-излучению, если при взаимодействиях электронов или при переходах в атомной электронной оболочке-то к рентгеновскому излучению. Очевидно, физически кванты электромагнитного излучения с одинаковой энергией не отличаются, поэтому такое разделение условно.

Гамма-излучение испускается при переходах между возбуждёнными состояниями атомных ядер (энергии таких гамма-квантов лежат в диапазоне от ~1 кэВ до десятков МэВ), при ядерных реакциях (например, при аннигиляции электрона и позитрона, распаде нейтрального пиона и т.д.), а также при отклонении энергичных заряженных частиц в магнитных и электрических полях (см. Синхротронное излучение).

Гамма-лучи в отличие от б-лучей и в-лучей не отклоняются электрическими и магнитными полями и характеризуются большей проникающей способностью при равных энергиях и прочих равных условиях. Гамма-кванты вызывают ионизацию атомов вещества. Основные процессы, возникающие при прохождении гамма-излучения через вещество:

Фотоэффект (гамма-квант поглощается электроном атомной оболочки, передавая ему всю энергию и ионизируя атом).

Комптоновское рассеяние (гамма-квант рассеивается на электроне, передавая ему часть своей энергии).

Рождение электрон-позитронных пар (в поле ядра гамма-квант с энергией не ниже 2mec2=1,022 МэВ превращается в электрон и позитрон).

Фотоядерные процессы (при энергиях выше нескольких десятков МэВ гамма-квант способен выбивать нуклоны из ядра).

Гамма-кванты, как и любые другие фотоны, могут быть поляризованы.

Облучение гамма-квантами, в зависимости от дозы и продолжительности, может вызвать хроническую и острую лучевую болезнь. Стохастические эффекты облучения включают различные виды онкологических заболеваний. В то же время гамма-облучение подавляет рост раковых и других быстро делящихся клеток. Гамма-излучение является мутагенным и тератогенным фактором.

Защитой от гамма-излучения может служить слой вещества. Эффективность защиты (то есть вероятность поглощения гамма-кванта при прохождении через неё) увеличивается при увеличении толщины слоя, плотности вещества и содержания в нём тяжёлых ядер (свинца, вольфрама, обеднённого урана и пр.).

Сегодня поговорим о том, что такое излучение в физике. Расскажем о природе электронных переходов и приведем электромагнитную шкалу.

Божество и атом

Строение вещества стало предметом интереса ученых более двух тысяч лет назад. Древнегреческие философы задавались вопросами, чем воздух отличается от огня, а земля от воды, почему мрамор белый, а уголь черный. Они создавали сложные системы взаимозависимых компонентов, опровергали или поддерживали друг друга. А самые непонятные явления, например, удар молнии или восход солнца приписывали действию богов.

Однажды, долгие годы наблюдая за ступенями храма, один ученый заметил: каждая нога, встающая на камень, уносит крошечную частичку вещества. Со временем мрамор менял форму, прогибался посередине. Имя этого ученого - Левкипп, и он назвал мельчайшие частицы атомами, неделимыми. С этого начался путь к изучению того, что такое излучение в физике.

Пасха и свет

Затем настали темные времена, науку забросили. Всех, кто пытался изучать силы природы, окрестили ведьмами и колдунами. Но, как ни странно, именно религия дала толчок к дальнейшему развитию науки. Исследование о том, что такое излучение в физике, началось с астрономии.

Время празднования Пасхи вычислялось в те времена каждый раз по-разному. Сложная система взаимоотношений между днем весеннего равноденствия, 26-дневным лунным циклом и 7-дневной неделей не позволяла составлять таблицы дат для празднования Пасхи более чем на пару лет. Но церкви надо было все планировать заранее. Поэтому Папа Римский Лев X заказал составление более точных таблиц. Это потребовало тщательно наблюдения за движением Луны, звезд и Солнца. И в конце концов Николай Коперник понял: Земля не плоская и не центр вселенной. Планета - шар, который вращается вокруг Солнца. А Луна - сфера на орбите Земли. Конечно, можно спросить: «Какое отношение все это имеет к тому, что такое излучение в физике?» Сейчас раскроем.

Овал и луч

Позже Кеплер дополнил систему Коперника, установив, что планеты движутся по овальным орбитам, и движение это неравномерное. Но именно тот первый шаг привил человечеству интерес к астрономии. А там недалеко было и до вопросов: «Что такое звезда?», «Почему люди видят ее лучи?» и «Чем одно светило отличается от другого?». Но сначала придется перейти от огромных объектов к самым маленьким. И затем подойдем к излучению, понятию в физике.

Атом и изюм

В конце девятнадцатого века накопилось достаточно знаний о малейших химических единицах вещества - атомах. Было известно, что они электронейтральны, но содержат как положительно, так и отрицательно заряженные элементы.

Предположений выдвигалось множество: и что положительные заряды распределены в отрицательном поле, как изюм в булке, и что атом - это капля из разнородно заряженных жидких частей. Но все прояснил опыт Резерфорда. Он доказал, что в центре атома находится положительное тяжелое ядро, а вокруг него располагаются легкие отрицательные электроны. И конфигурация оболочек для каждого атома своя. Тут-то и кроются особенности излучения в физике электронных переходов.

Бор и орбита

Когда ученые выяснили, что легкие отрицательные части атома - это электроны, встал другой вопрос - почему они не падают на ядро. Ведь, согласно теории Максвелла, любой движущийся заряд излучает, следовательно, теряет энергию. Но атомы существовали столько же, сколько вселенная, и не собирались аннигилировать. На выручку пришел Бор. Он постулировал, что электроны находятся на некоторых стационарных орбитах вокруг атомного ядра, и находиться могут только на них. Переход электрона между орбитами осуществляется рывком с поглощением или испусканием энергии. Этой энергией может быть, например, квант света. По сути, мы сейчас изложили определение излучения в физике элементарных частиц.

Водород и фотография

Изначально технология фотографии была придумана как коммерческий проект. Люди хотели остаться в веках, но заказать портрет у художника было не каждому по карману. А фотографии были дешевыми и не требовали таких больших вложений. Потом искусство стекла и нитрата серебра поставило себе на службу военное дело. А затем и наука стала пользоваться преимуществами светочувствительных материалов.

В первую очередь фотографировать стали спектры. Уже давно было известно, что горячий водород испускает конкретные линии. Расстояние между ними подчинялось определенному закону. Но вот спектр гелия был более сложным: он содержал тот же набор линий, что и водород, и еще один. Вторая серия уже не подчинялась закону, выведенному для первой серии. Тут на помощь пришла теория Бора.

Выяснилось, что электрон в атоме водорода один, и он может переходить из всех высших возбужденных орбит на одну нижнюю. Это и была первая серия линий. Более тяжелые атомы устроены сложнее.

Линза, решетка, спектр

Таким образом было положено начало применению излучения в физике. Спектральный анализ - один из самых мощных и надежных способов определения состава, количества и структуры вещества.

  1. Электронный эмиссионный спектр расскажет, что содержится в объекте и каков процент того или иного компонента. Этот способ используют абсолютно все области науки: от биологии и медицины до квантовой физики.
  2. Спектр поглощения расскажет, какие ионы и на каких позициях присутствуют в решетке твердого тела.
  3. Вращательный спектр продемонстрирует, насколько далеко находятся молекулы внутри атома, сколько и каких связей присутствует у каждого элемента.

А уж диапазонов применения электромагнитного излучения и не счесть:

  • радиоволны исследуют структуру очень далеких объектов и недра планет;
  • тепловое излучение расскажет об энергии процессов;
  • видимый свет подскажет, в каких направлениях лежат самые яркие звезды;
  • ультрафиолетовые лучи дадут понять, что происходят высокоэнергетические взаимодействия;
  • рентгеновский спектр сам по себе позволяет людям изучать структуру вещества (в том числе и человеческого тела), а наличие этих лучей в космических объектах известят ученых, что в фокусе телескопа нейтронная звезда, вспышка сверхновой или черная дыра.

Абсолютно черное тело

Но есть особый раздел, который изучает, что такое тепловое излучение в физике. В отличие от атомного, тепловое испускание света имеет непрерывный спектр. И наилучшим модельным объектом для расчетов является абсолютно черное тело. Это такой объект, который «ловит» весь попадающий на него свет, но не выпускает обратно. Как ни странно, абсолютно черное тело излучает, и максимум длины волны будет зависеть от температуры модели. В классической физике тепловое излучение порождало парадокс Выходило, что любая нагретая вещь должна была излучать все больше и больше энергии, пока в ультрафиолетовом диапазоне ее энергия не разрушила бы вселенную.

Разрешить парадокс смог Макс Планк. В формулу излучения он ввел новую величину, квант. Не придавая ей особенного физического смысла, он открыл целый мир. Сейчас квантование величин - основа современной науки. Ученые поняли, что поля и явления состоят из неделимых элементов, квантов. Это привело к более глубоким исследованиям материи. Например, современный мир принадлежит полупроводникам. Раньше все было просто: металл проводит ток, остальные вещества - диэлектрики. А вещества типа кремния и германия (как раз полупроводники) ведут себя непонятно по отношению к электричеству. Чтобы научиться управлять их свойствами, потребовалось создать целую теорию и рассчитать все возможности p-n переходов.

Ранее люди, чтобы объяснить то, что они не понимают, придумывали различные фантастические вещи - мифы, богов, религию, волшебных существ. И хотя в эти суеверия всё ещё верит большое количество людей, сейчас нам известно, что у всего есть своё объяснение. Одной из наиболее интересных, таинственных и удивительных тем является излучение. Что оно собой представляет? Какие его виды существуют? Что такое излучение в физике? Как оно поглощается? Можно ли защититься от излучения?

Общая информация

Итак, выделяют следующие виды излучений: волновое движение среды, корпускулярное и электромагнитное. Наибольшее внимание будет уделено последнему. Относительно волнового движения среды можно сказать, что оно возникает как результат механического движения определённого объекта, что вызывает последовательное разрежение или сжатие среды. В качестве примера можно привести инфразвук или ультразвук. Корпускулярное излучение - это поток атомных частиц, таких как электроны, позитроны, протоны, нейтроны, альфа, что сопровождается естественным и искусственным распадом ядер. Об этих двух пока и поговорим.

Влияние

Рассмотрим солнечное излучение. Это мощный оздоровительный и профилактический фактор. Совокупность сопутствующих физиологических и биохимических реакций, что протекают при участии света, назвали фотобиологическими процессами. Они берут участие в синтезе биологически важных соединений, служат для получения информации и ориентации в пространстве (зрение), а также могут вызывать вредные последствия, как то появление вредных мутаций, разрушение витаминов, ферментов, белков.

Об электромагнитном излучении

В дальнейшем статья будет посвящена исключительно нему. Что такое излучение в физике делает, как влияет на нас? ЭМИ представляет собой электромагнитные волны, что испускаются заряженными молекулами, атомами, частицами. В качестве крупных источников могут выступать антенны или другие излучающие системы. Длина волны излучения (частота колебания) вместе с источников оказывает решающее значение. Так, в зависимости от этих параметров выделяют гамма, рентгеновское, оптическое излучение. Последнее делится на целый ряд других подвидов. Так, это инфракрасное, ультрафиолетовое, радиоизлучение, а также свет. Диапазон находится в пределах до 10 -13 . Гамма-излучение генерируют возбуждённые атомные ядра. Рентгеновские лучи можно получить при торможении ускоренных электронов, а также при их переходе не свободные уровни. Радиоволны оставляют свой след во время движения по проводникам излучающих систем (например, антенн) переменных электрических токов.

Об ультрафиолетовом излучении

В биологическом отношении наиболее активными являются УФ-лучи. При попадании на кожу они могут вызывать местные изменения тканевых и клеточных белков. Кроме этого, фиксируется воздействие на рецепторы кожи. Оно рефлекторным путём влияет на целый организм. Поскольку это неспецифический стимулятор физиологических функций, то он оказывает благоприятное влияние на иммунную систему организма, а также на минеральный, белковый, углеводный и жировой обмен. Всё это проявляется в виде общеоздоровительного, тонизирующего и профилактического действия солнечного излучения. Следует упомянуть и об отдельных специфических свойствах, что есть у определённого диапазона волн. Так, влияние излучений на человека при длине от 320 до 400 нанометров способствует эритемно-загарному действию. При диапазоне от 275 до 320 нм фиксируются слабо бактерицидный и антирахитический эффекты. А вот ультрафиолетовое излучение от 180 до 275 нм повреждает биологическую ткань. Поэтому, следует соблюдать осторожность. Длительное прямое солнечное излучение даже в безопасном спектре может привести к выраженной эритеме с отеками кожного покрова и существенному ухудшению состояния здоровья. Вплоть до повышения вероятности развития рака кожи.

Реакция на солнечный свет

В первую очередь следует упомянуть инфракрасное излучение. На организм оно оказывает тепловое воздействие, что зависит от степени поглощения лучей кожей. Для характеристики его влияния используется слово «ожог». Видимый спектр влияет на зрительный анализатор и функциональное состояние центральной нервной системы. А посредством ЦНС и на все системы и органы человека. Следует отметить, что на нас оказывает влияние не только степень освещенности, но и цветовая гамма солнечного света, то есть, весь спектр излучения. Так, от длины волны зависит цветоощущение и оказывается влияние на нашу эмоциональную деятельность, а также функционирование различных систем организма.

Красный цвет возбуждает психику, усиливает эмоции и дарит ощущение тепла. Но он быстро утомляет, способствует напряжению мускулатуры, учащению дыхания и повышению артериального давления. Оранжевый цвет вызывает ощущение благополучия и веселья, желтый поднимает настроение и стимулирует нервную систему и зрение. Зелёный успокаивает, полезен во время бессонницы, при переутомлении, повышает общий тонус организма. Фиолетовый цвет оказывает расслабляющее влияние на психику. Голубой успокаивает нервную систему и поддерживает мышцы в тонусе.

Небольшое отступление

Почему рассматривая, что такое излучение в физике, мы говорим в большей степени про ЭМИ? Дело в том, что именно его в большинстве случаев и подразумевают, когда обращаются к теме. То же корпускулярное излучение и волновое движение среды является на порядок менее масштабным и известным. Очень часто, когда говорят про виды излучений, то подразумевают исключительно те, на которые делится ЭМИ, что в корне не верно. Ведь говоря о том, что такое излучение в физике, следует уделять внимание всем аспектам. Но одновременно делается упор именно на наиболее важных моментах.

Об источниках излучения

Продолжаем рассматривать электромагнитное излучение. Мы знаем, что оно собой представляет волны, что возникают при возмущении электрического или магнитного поля. Этот процесс современной физикой трактуется с точки зрения теории корпускулярно-волнового дуализма. Так признаётся, что минимальная порция ЭМИ - это квант. Но вместе с этим считается, что у него есть и частотно-волновые свойства, от которых зависят основные характеристики. Для улучшения возможностей классификации источников выделяют разные спектры излучения частот ЭМИ. Так это:

  1. Жесткое излучение (ионизированное);
  2. Оптическое (видимое глазом);
  3. Тепловое (оно же инфракрасное);
  4. Радиочастотное.

Часть из них уже была рассмотрена. Каждый спектр излучения обладает своими уникальными характеристиками.

Природа источников

Зависимо от своего происхождения, электромагнитные волны могут возникать в двух случаях:

  1. Когда наблюдается возмущение искусственного происхождения.
  2. Регистрация излучения, идущего от естественного источника.

Что можно сказать о первых? Искусственные источники чаще всего представляют собой побочное явление, что возникает вследствие работы различных электрических приборов и механизмов. Излучение естественного происхождения генерирует магнитное поле Земли, электропроцессы в атмосфере планеты, ядерный синтез в недрах солнца. От уровня мощности источника зависит степень напряженности электромагнитного поля. Условно, излучение, что регистрируется, разделяют на низкоуровневое и высокоуровневое. В качестве первых можно привести:

  1. Практически все устройства, оборудованные ЭЛТ дисплеем (как, пример, компьютер).
  2. Различная бытовая техника, начиная от климатических систем и заканчивая утюгами;
  3. Инженерные системы, что обеспечивают подачу электроэнергии к разным объектам. В качестве примера можно привести кабель электропередач, розетки, электросчетчики.

Высокоуровневым электромагнитным излучением обладают:

  1. Линии электропередачи.
  2. Весь электротранспорт и его инфраструктура.
  3. Радио- и телевышки, а также станции мобильной и передвижной связи.
  4. Лифты и иное подъемное оборудование, где применяются электромеханические силовые установки.
  5. Приборы преобразования напряжения в сети (волны, исходящие от распределяющей подстанции или трансформатора).

Отдельно выделяют специальное оборудование, что используется в медицине и испускает жесткое излучение. В качестве примера можно привести МРТ, рентгеновские аппараты и тому подобное.

Влияние электромагнитного излучения на человека

В ходе многочисленных исследований ученые пришли к печальному выводу - длительное влияние ЭМИ способствует настоящему взрыву болезней. При этом многие нарушение происходят на генетическом уровне. Поэтому актуальной является защита от электромагнитного излучения. Это происходит из-за того, что ЭМИ обладает высоким уровнем биологической активности. При этом результат влияния зависит от:

  1. Характера излучения.
  2. Продолжительности и интенсивности влияния.

Специфические моменты влияния

Всё зависит от локализации. Поглощение излучения может быть местным или общим. В качестве примера второго случая можно привести эффект, что оказывают линии электропередачи. В качестве примера местного воздействия можно привести электромагнитные волны, что испускают электронные часы или мобильный телефон. Следует упомянуть и о термальном воздействии. За счет вибрации молекул энергия поля преобразуется в тепло. По этому принципу работают СВЧ излучатели, что используются для нагревания различных веществ. Следует отметить, что при влиянии на человека, термальный эффект всегда является негативным, и даже пагубным. Следует отметить, что мы постоянно облучаемся. На производстве, дома, перемещаясь по городу. Со временем негативный эффект только усиливается. Поэтому, все актуальнее становится защита от электромагнитного излучения.

Как же можно обезопасить себя?

Первоначально необходимо знать, с чем приходится иметь дело. В этом поможет специальный прибор для измерения излучения. Он позволит оценить ситуацию с безопасностью. На производстве для защиты используются поглощающие экраны. Но, увы, на использование в домашних условиях они не рассчитаны. В качестве начала можно соблюдать три рекомендации:

  1. Следует пребывать на безопасном расстоянии от устройств. Для ЛЭП, теле- и радиовышек это как минимум 25 метров. С ЭЛТ мониторами и телевизорами достаточно тридцати сантиметров. Электронные часы должны быть не ближе 5 см. А радио и сотовые телефоны не рекомендуется подносить ближе, чем на 2,5 сантиметра. Подобрать место можно с помощью специального прибора - флюксметра. Допустимая доза излучения, фиксируемая ним, не должна превышать 0,2мкТл.
  2. Старайтесь сократить время, когда приходится облучаться.
  3. Всегда следует выключать неиспользуемые электроприборы. Ведь даже будучи неактивными, они продолжают испускать ЭМИ.

О тихом убийце

И завершим статью важной, хотя и довольно слабо известной в широких кругах темой - радиационным излучением. На протяжении всей своей жизни, развития и существования, человек облучался естественным природным фоном. Естественное радиационное излучение может быть условно поделено на внешнее и внутреннее облучение. К первому относятся космическое излучение, солнечная радиация, влияние земной коры и воздуха. Даже строительные материалы, из которых создаются дома и сооружения, генерируют определённый фон.

Радиационное излучение обладает значительной проникающей силой, поэтому остановить его проблематично. Так, чтобы полностью изолировать лучи, необходимо укрыться за стеной из свинца, толщиной в 80 сантиметров. Внутреннее облучение возникает в тех случаях, когда естественные радиоактивные вещества попадают внутрь организма вместе с продуктами питания, воздухом, водой. В земных недрах можно найти радон, торон, уран, торий, рубидий, радий. Все они поглощаются растениями, могут быть в воде - и при употреблении пищевых продуктов попадают в наш организм.