Магнитно резонансная спектроскопия. Новые направления в нейрорентгенологии

Уникальность МР спектроскопии головного мозга – возможность изучать метаболизм здоровых и патологических клеток. Основа функционирования метода – регистрация спектра от ядер атомов водорода (протонов), входящих в состав разных химических соединений.

МР спектроскопия головного мозга – что это такое

Для изучения биохимического обмена мозговой ткани анализируются спектральные частоты соединений, концентрация и соотношение которых изменяется при патологических состояниях.

При оценке, сколько стоит мр спектроскопия головного мозга и где сделать в СПб и Москве, следует учитывать задачи исследования, влияющие на выбор режима анализа спектрального ряда:

  1. Лактата;
  2. Глутамина (глутамата);
  3. Ацетиласпартата;
  4. Креатинина;
  5. Холина;
  6. Липидных комплексов;
  7. Миоинозитола.

Уникальное преимущество исследования при сравнении с другими МРТ аналогами – выявление патологического метаболизма в мозговой ткани до появления клинических симптомов болезни.

В зависимости от целей выделяют 2 вида МР-спектроскопии:

  1. Внутренних органов;
  2. Биологических жидкостей.

Первая разновидность назначается для анализа метаболизма белого вещества, вторая – для оценки состава спинномозговой жидкости.

Современное технологическое новшество – мультиядерная спектроскопия – выявляет концентрацию углерода, фосфора, некоторых других химических элементов одновременно от нескольких отделов мозга на основе спектрального графика. Подход позволяет сравнивать метаболизм противоположных центров, периферических участков опухоли.

Клинические цели МР-спектроскопии

Самое частое применение протонной спектроскопии – оценка особенностей новообразований мозга, дифференциальная диагностика разных типов опухолей. Обследование не выявляет гистологический тип образования, но достоверно верифицирует рак. Измененный метаболизм злокачественных клеток характеризуется уменьшением соотношения между ацетиласпартатом и креатинином, увеличением холина, лактата.

Эффективное использование МР спектроскопии головного мозга при эпилепсии обусловлено выявлением специфичных для заболевания метаболических расстройств. Определение биохимического спектра протонов используется для диагностики рассеянного склероза.

Часто применяется протонная спектроскопия в онкологической практике после оперативного вмешательства для ранней диагностики рецидива образования, метастазов, определения участков гибели белого вещества.

Еще одна цель назначения МР-H-спектроскопии – отличие вторичных и первичных патологических очагов, разграничение воспалительных и демиелинизирующих (протекающих с разрушением оболочек нервов) процессов.

При некоторых инфекционных заболеваниях метод выявляет внутримозговые абсцессы (ограниченные гнойные полости), характеризующиеся увеличением лактата, липидных комплексов, некоторых аминокислот (лейцин, валин), сукцината и ацетата.

Распространенные показания для МР-спектроскопии головного мозга:

  • Микроишемические нарушения без выраженной клиники;
  • Эпилептические расстройства;
  • Демиелинизирующие заболевания (рассеянный склероз, энцефаломиелит);
  • Воспалительные внутримозговые процессы;
  • Мелкие и крупные образования;
  • Нейродегенеративные состояния.

В заключение отметим, что изучение метаболических изменений мозга путем регистрации спектрального ряда протонов разных химических соединений – основа раннего выявления опухолей, диагностики заболеваний.


МР-трактография на сегодняшний день является одним из новейших методов, которая позволяет дать возможность целостной диагностики и определить направление проводящих каналов головного мозга. Применение данного метода диагностики позволяет оценить характер распространения новообразования (опухоли). Также данный метод применяется как диагностика после инсульта, для определения степени повреждения нервных волокон.

В отличии МРТ и КТ, трактография в данный момент находится на стадии исследования и доработки. Однако на данный момент существует еще более усовершенствованная трактография на 257 проекций против стандартных 51.

Нейровизуализация головного мозга включает в себя ряд диагностических методов, которые позволяют визуализировать мозговую структуру, функции и биохимические показатели мозга.

На сегодня разделяют 2 глобальные категории:

  • Структурная , которая позволяет описать саму структура мозга и непосредственно диагноз внутричерепных заболеваний, например опухоль и черепно-мозговая травма.
  • Функциональная нейровизуализация, которая используется для диагностики метаболических расстройства на начальной стадии их развития, например Болезнь Альцгеймера, а также широко применяется в неврологии и когнитивных расстройствах.

ОФЭКТ головного мозга является диагностическим методом ядерной медицины, которая позволяет специалиста с точность увидеть функции организма, с помощью трехмерных графических изображений. ОФЭКТ наиболее часто применяется для выявления новообразований и исследования сердечно-сосудистой системы.

Однако все же онкология является главной направленностью данного метода диагностики. ОФЭКТ обладает точностью для , а также для определения его стадии прогрессирования.

  • Наиболее часто применяется для определения:
  • Рака молочной и предстательной железы;
  • Рака кости первичного характера;
  • Нейроэндокринных опухолей;
  • Аденом околощитовидной железы;
  • Новообразования в мозге и ;
  • Рака печени;

Метод формирует особые 3D изображения, что дает удобную объемную модель диагностируемого органа. Возможность проведения двух сканов в ходе исследования, ОФЭКТ позволяет предоставить картинку высочайшего качества. Поэтому оно играет важнейшую роль визуализированной диагностики воспалений, эмболии легких, инсульта и многих других.

ОФЭКТ обладает всеми преимуществами и является одним из ключевых методов современной диагностики, на сегодняшний день. Главная разница между однофотонной эмиссионной томографией и КТ, это то что ОФЭКТ способна первым распознать какой-либо патологический процесс происходящий в мозге, с помощью радиоактивных молекул и атомов. КТ же обладает только рентгенологическим способом диагностики.

Однако оба исследования дополняют друг друга. Диагностики проводятся последовательно, а затем объединяются вместе в одном аппарате.

Магнитно резонансная венография головного мозга применятся для венозной визуализации и строения венозной системы, а также для определения скорости тока крови и тромбоза вен. В некоторых случаях для уточнения строения венозной системы проводится с использованием контрастного вещества.

Видео

Протонная магнитно-резонансная спектроскопия (ПМРС) – один из наиболее молодых и быстро развивающихся методов лучевого исследования головного мозга, позволяющих определять содержание основных метаболитов (холин, N-ацетиласпартат, креатин, глютамат/глутамин, лактат) в интересующих участках органа и их соотношение.

История и этимология

МРС впервые использовали при исследовании эритроцитов в 1973 году Мун и Ричардс, а в 1974 году при помощи МРС Хаулт исследовал бедренную мышцу мыши.

Пики .

Лактат: резонирует на 1,3 ppm

Липиды: резонирует на 1,3 ppm

Аланин: резонирует на уровне 1,48 ppm

N-ацетиласпартат (NАА): резонирует на 2.0 ppm

Глутамин/глутамат: резонанс на 2.2-2.4 ppm

ГАМК: резонирует на 2.2-2.4 ppm

2-гидроксиглутарат: резонирует на уровне 2,25 ppm

Цитрат резонирует 2,6 ppm

Креатин: резонирует на 3.0 ppm

Холин: резонирует на 3.2 ppm

Мио-инозитол: резонанс на 3.5 ppm

ppm — pars per million

Как лучше запомнить?

Вспомнить шоколадку с названием My ChoCrNaaLa

My: Myo-inositol 3.5 — Мио-инозитол

Cho: Choline 3.2 — Холин

Cr: Creatine 3.0 — Креатин

Naa: Naa 2.0 — N-ацетиласпарта

L: Lactate 1.3 — Лактат

Патология

Глиома

МРС помогает предсказать степень дифференцировки. Чем выше степень дифференцировки, тем ниже пик N-ацетиласпартата и креатина, но выше пики холина, лактата и липидов.

Не-глиальные опухоли

Незначительные изменения пика NAA.

Лучевая терапия

Дифференциация изменений головного мозга на фоне лучевой терапии от опухоли всегда проблематична, но при рецидиве опухоли пик холина чаще повышен в то время, как после лучевой терапии пик NAA, холина и креатина будет низким.

Ишемия и инфаркт

Пик лактата будет повышаться, как только клетки головного мозга переходят на анаэробный метаболизм. Пик липидов и всех остальных пиков будет снижаться.

Инфекция

Пик NAA отсутствует при всех патологических процессах, разрушающих ткань головного мозга. При абсцессе пик лактата, аланина, ацетата повышен. Пик холина низкий или отсутствует при токсоплазмозе, а при лимфоме повышен, данный показатель используют для отличия одного патологического процесса от другого.

Заболевания белого вещества мозга (лейкодистрофии)

Прогрессирующая мультифокальная лейкоэнцефалопатия повышение Мио-инозитол. Болезнь Канавана повышение NAA.

Печеночная лейкоэнцефалопатия

При печеночной лейкоэнцефалопатии снижение пика миоинозитола и в меньшей степени холина. Глутамин увеличивается.

Митохондриальные заболевания.

Синдром Лея: повышение пика холина, снижение NAA и реже повышение пика лактата.

Примеры

РИС. 1.

Астроцитома низкой степени злокачественности в левой лобной доле. Зона повышенного по Т2 ВИ сигнала без чётких контуров в левой лобной доле. 2D мультивоксельная МР-спектроскопия. В спектре патологического участка определяется высокий пик холина, снижение пика N-ацетиласпартата и наличие пика лактата. На цветной карте отра- жается распределение соотношения Cho/NAA. В патологической зоне отмечается повышение индекса Cho/NAА выше 1.0 (красный цвет).

РИС. 2.

Глиобластома. 2D мультивоксельная МР-спектроскопия.

А. Цветная карта распределения соотношения Cho/NAA. Отмечается повышение индекса Cho/NAA выше 1.80 в зоне опухоли (красный цвет). Метаболические изменения распространяются далеко за пределы патологической зоны. Б. Цветная карта распределения NAA. Отмечается сни- жение содержания NAA выше в зоне опухоли (синий цвет).

РИС. 3.

Астроцитома низкой степени злокачественности.

А. 2D мультивоксельная МР-спектроскопия, карта распределения соотношения Cho/Cr. Отмечается повышение индекса Cho/Cr в зоне опухоли выше 1.0. Б. Т2 взвешенные изображения. В левой теменной доле зона повышенного МР-сигнала без чётких контуров. В. Отсутствие контрастного усиления на Т1 ВИ. Г. ADC карта. Д. Диффузионно-взвешенные изображения.

РИС. 4.

Солитарный метастаз.

Объёмное образование с распадом в центре, солидный компонент интенсивно накапливает контрастное вещество. В спектре опухоли определяется повышение пика холина, отсутствие пика N-ацетиласпартата, невысокий пик лактата. На 2D мультивоксельной карте распределения холина отмечаются высокие интегральные показатели этого метаболита.

РИС. 5.

Состояние после перенесенной длительной комы.

Диффузное снижение N-ацетиласпартата с обеих сторон.

РИС. 6.

Эписиндром неопухолевой этиологии. Фокальная кортикальная дисплазия. А, Б, В, Г. Протонная МР-спектроскопия. Карты распределения Cho/Cr, Cho, NAA, Lac. Отмечается снижение N-ацетиласпартата при нормальных показателях Cho/Cr, Cho, Lac.

Д, Е, Ж. Повышение МР-сигнала по Т2 ВИ от медиальных отделов правой височной кости. З, И. Метаболические изменения с обеих сторон.

РИС. 7.

Состояние после удаления астроцитомы . Признаки продолженного роста. А. Т2 взвешенные изображения. Б. Т2 FLAIR. В. Протонная МР-спектроскопия. Карта распределения NAA. Снижение содержания N-ацетиласпартата. Г. Карта распределения Cho/NAA. Повышение индекса Cho/NAA. Д. Карта распределения Cho/Cr. Повышение индекса Cho/Cr. Е. Протонная МР спектроскопия. Увеличение пика холина, сни- жение пика N-ацетиласпартата. Ж. Т2 ВИ корональная проекция. З. Т1 ВИ сагиттальная проекция.

РИС. 8.

Состояние после удаления астроцитомы правой височной доли. А. Т2 взвешенные изменения. Кзади от послеоперационной кисты име- ется подозрительный на рецидив участок. Б. Протонная МР-спектроскопия. Снижение пиков холина, креатина и N-ацетиласпартата. В, Г, Д, Е. Карты распределения метаболитов: Cho, NAA, Cho/Cr Lac соответственно. Снижение содержания Cho, NAA. Lac и индекс Cho/Cr в пределах нормы.

Для справки:

PPM — это pars per million, т.е. миллионная доля от резонансной частоты данного ядра (например для водорода в поле с магнитной индукцией в 1,5 Тл размерность 1 ppm будет равна 63.87 Герц, при 3 тесла уже 127,74 Гц. За 0 ppm принята частота тетраметилсилана, что пришло из аналитической химии.

Источник

  • Radiopaedia
  • ПРИМЕНЕНИЕ ПРОТОННОЙ МАГНИТНО-РЕЗОНАНСНОЙ СПЕКТРОСКОПИИ В ЦЕРЕБРАЛЬНОЙ НЕЙРООНКОЛОГИИ — И.А. Лобанов1, И.А. Медяник2, А.П. Фраерман2, Б.Е. Шахов3, Л.Я. Кравец2, Д.Н. Никитин2,

Магнитно-резонансная спектроскопия (MP-спектроскопия) позволяет неинвазивно получить информацию о метаболизме мозга. Протонная 1H-МР-спектроскопия основана на «химическом сдвиге» - изменении резонансной частоты протонов, входящих в состав различных химических соединений. Этот термин ввел N. Ramsey в 1951 г., чтобы обозначить различия между частотами отдельных спектральных пиков. Единица измерения «химического сдвига» - миллионная доля (ррт). Приводим основные метаболиты и соответствующие им значения химического сдвига, пики которых определяются in vivo в протонном МР-спектре:

  • NAA - N-ацетиласпартат (2,0 ррт);
  • Cho - холин (3,2 ррт);
  • Сr - креатин (3,03 и 3,94 ррт);
  • ml - миоинозитол (3,56 ррт);
  • Glx - глутамат и глутамин (2,1-2,5 ррт);
  • Lac - лактат (1,32 ррт);
  • Lip - липидный комплекс (0,8-1,2 ррт).

В настоящее время в протонной MP-спектроскопии используют два основных метода - одновоксельную и мультивоксельную (Chemical shift imaging) MP-спектроскопию - единовременное определение спектров от нескольких участков головного мозга. В практику сейчас стала также входить мультиядерная MP-спектроскопия на основе МР-сигнала ядер фосфора, углерода и некоторых других соединений.

При одновоксельной 1H-МР-спектроскопии для анализа выбирают только один участок (воксел) мозга. Анализируя состав частот в регистрируемом от этого воксела спектра, получают распределение определенных метаболитов по шкале химического сдвига (ррт). Соотношение между пиками метаболитов в спектре, уменьшение или увеличение высоты отдельных пиков спектра позволяют неинвазивно оценивать биохимические процессы, происходящие в тканях.

При мультивоксельной MP-спектроскопии получают MP-спектры для нескольких вокселов сразу, и можно сравнить спектры отдельных участков в зоне исследования. Обработка данных мультивоксельной MP-спектроскопии даёт возможность построить параметрическую карту среза, на которой концентрация определённого метаболита отмечена цветом, и визуализировать распределение метаболитов в срезе, т.е. получить изображение, взвешенное по химическому сдвигу.

Клиническое применение МР-спектроскопии. MP-спектроскопию в настоящее время довольно широко используют для оценки различных объёмных образований головного мозга. Данные MP-спектроскопии не позволяют с уверенностью предсказать гистологический тип новообразования, тем не менее большинство исследователей сходятся во мнении, что опухолевые процессы в целом характеризуются низким соотношением NAA/Cr, увеличением соотношения Cho/Cr и, в некоторых случаях, появлением пика лактата. В большинстве МР-исследований протонную спектроскопию применяли в дифференциальной диагностике астроцитом, эпендимом и примитивных нейроэпителиальных опухолей, предположительно определяя тип опухолевой ткани.

В клинической практике важно использовать MP-спектроскопию в послеоперационном периоде для диагностики продолженного роста новообразования, рецидива опухоли либо лучевого некроза. В сложных случаях 1Н-МР-спектроскопия становится полезным дополнительным методом в дифференциальной диагностике наряду с получением перфузионно-взвешенных изображений. В спектре лучевого некроза характерный признак - наличие так называемого мёртвого пика, широкого лактат-липидного комплекса в диапазоне 0,5-1,8 ррт на фоне полной редукции пиков остальных метаболитов.

Следующий аспект использования МР-спектроскопии - разграничение впервые выявленных первичных и вторичных поражений, дифференцировка их с инфекционными и демиелинизующими процессами. Наиболее показательны результаты диагностики абсцессов головного мозга на основе применения диффузионно-взвешенных изображений. В спектре абсцесса на фоне отсутствия пиков основных метаболитов отмечено появление пика липид-лактатного комплекса и пиков, специфичных для содержимого абсцесса, таких как ацетат и сукцинат (продукты анаэробного гликолиза бактерий), аминокислоты валин и лейцин (результат протеолиза).

В литературе также очень широко исследуют информативность МР-спектроскопии при эпилепсии, при оценке метаболических нарушений и дегенеративных поражений белого вещества головного мозга у детей, при черепно-мозговой травме, ишемии мозга и других заболеваниях.