Слияние волн. Слияние нейтронных звезд завершилось образованием черной дыры

Впервые в истории человечества астрономы зарегистрировали гравитационные волны от слияния двух нейтронных звезд. Событие в галактике NGC 4993 «почуяли» 17 августа гравитационные обсерватории LIGO/Virgo. Вслед за ними к наблюдениям подключились и другие астрономические инструменты. В итоге за событием наблюдали 70 обсерваторий, и по данным наблюдений сегодня было опубликовано как минимум 20(!) научных статей.

Слухи о том, что детекторы LIGO/Virgo наконец зарегистрировали новое событие и это не очередное слияние черных дыр, поползли по социальным сетям уже 18 августа. Заявления именно о нем ждали в конце сентября, но тогда ученые ограничились лишь об очередном гравитационно-волновом событии с участием двух черных дыр - оно произошло в 1,8 миллиарда световых лет от Земли, в его наблюдении 14 августа впервые поучаствовали не только американские детекторы, но и европейский Virgo, который «включился» в охоту за колебаниями пространства-времени за две недели до этого.

После этого коллаборация свою заслуженную Нобелевскую премию по физике - за детекцию гравитационных волн и подтверждение правоты Эйнштейна, предсказавшего их существование, - и вот теперь поведала миру об открытии, которое приберегла «на сладкое».

Что именно произошло?

Нейтронные звезды - это очень, очень маленькие и очень плотные объекты, которые возникают обычно в результате вспышек сверхновых звезд. Типичный диаметр такой звезды 10-20 км, а масса сравнима с массой Солнца (диаметр которого в 100 000 000 раз больше), так что плотность вещества нейтронной звезды в несколько раз превышает плотность атомного ядра. На сегодняшний момент нам известно несколько тысяч таких объектов, но вот двойных систем - лишь полтора-два десятка.

Килоновая (по аналогии со «сверхновой»), гравитационный эффект которой зарегистрировали LIGO/Virgo 17 августа, находится в созвездии Гидра на расстоянии 130 миллионов световых лет от Земли. Она возникла в результате слияния двух нейтронных звезд массами в диапазоне от 1,1 до 1,6 масс Солнца. О том, насколько близко к нам оказалось это событие, говорит то, что в то время, как сигнал от сливающихся двойных черных дыр обычно находился в диапазоне чувствительности детекторов LIGO в течение долей секунды, сигнал, зарегистрированный 17 августа, длился около 100 секунд.

«Это не первая зарегистрированная килоновая, - сказал в беседе с корреспондентом „Чердака“ астрофизик Сергей Попов, ведущий научный сотрудник Государственного астрономического института им. П.К. Штернберга, - но их перечислить можно было даже не по пальцам одной руки, а чуть ли не по ушам. Их было буквально одна-две».

Почти в то же время, примерно через две секунды после гравитационных волн, космический гамма-телескоп НАСА «Ферми» и Международная орбитальная обсерватория гамма-лучей (INTErnational Gamma-Ray Astrophysics Laboratory/INTEGRAL) зарегистрировали всплески гамма-лучей. В последующие дни ученые зарегистрировали электромагнитное излучение и в других диапазонах, включая рентгеновские, ультрафиолетовые, оптические, инфракрасные и радиоволны.

Получив координаты, несколько обсерваторий уже через несколько часов смогли начать поиск в области неба, где предположительно произошло событие. Новая светлая точка, напоминающая новую звезду, была обнаружена оптическими телескопами, и в итоге около 70 обсерваторий наблюдали это событие в различных диапазонах длин волн.

«Впервые, в отличие от „одиноких“ слияний черных дыр, зарегистрировано „компанейское“ событие не только гравитационными детекторами, но еще и оптическими и нейтринными телескопами. Это первый такой хоровод наблюдений вокруг одного события», - рассказал профессор физического факультета МГУ Сергей Вятчанин, который входит в группу российских ученых, участвовавших в наблюдении за явлением под руководством профессора физического факультета МГУ Валерия Митрофанова.

В момент столкновения основная часть двух нейтронных звезд слилась в один ультраплотный объект, испускающий гамма-лучи. Первые измерения гамма-излучения в сочетании с детектированием гравитационных волн подтверждают предсказание общей теории относительности Эйнштейна, а именно, что гравитационные волны распространяются со скоростью света.

«Во всех предыдущих случаях источником гравитационных волн были сливающиеся черные дыры. Как это ни парадоксально, черные дыры - это очень простые объекты, состоящие исключительно из искривленного пространства и поэтому полностью описывающиеся хорошо известными законами общей теории относительности. В то же время структура нейтронных звезд и, в частности, уравнение состояния нейтронной материи до сих пор точно неизвестны. Поэтому изучение сигналов от сливающихся нейтронных звезд позволит получить огромное количество новой информации также и о свойствах сверхплотной материи в экстремальных условиях», - сказал профессор физического факультета МГУ Фарит Халили, который также входит в группу Митрофанова.

Каково значение этого открытия?

Во-первых, наблюдение за слиянием нейтронных звезд - еще одна наглядная демонстрация эффективности астрономических наблюдений, первопроходцами в которых стали детекторы LIGO и Virgo.

«Это рождение новой науки! Такой сегодня день, - сообщил „Чердаку“ заведующий лабораторией космического мониторинга ГАИШ МГУ и руководитель проекта МАСТЕР Владимир Липунов. - Она будет называться гравитационная астрономия. Это когда все тысячелетние методы астрономии, которые тысячи астрономов применяли многие тысячи лет, нарабатывали, станут полезными для гравитационно-волновой тематики. До сегодняшнего дня все это было чистой физикой, то есть даже фантазией с точки зрения публики, а теперь это уже реальность. Новая реальность».

«Полтора года назад, когда были открыты гравитационные волны, был открыт новый способ изучения Вселенной, изучения природы Вселенной. И этот новый способ уже за полтора года продемонстрировал свою способность давать нам важную, глубокую информацию о разных явлениях во Вселенной. Несколько десятков лет гравитационные волны только пытались детектировать, и тут раз - полтора года назад их детектировали, получили Нобелевскую премию, и теперь прошло полтора года, и действительно показано, что кроме флага, который все поднимали - ага, Эйнштейн был прав! - это действительно работающий уже сейчас, только в начале науки гравитационной астрономии, он оказывается настолько эффективным, чтобы изучать разные явления во Вселенной», - сказал корреспонденту «Чердака» астрофизик Юрий Ковалев, руководитель лаборатории фундаментальных и прикладных исследований релятивистских объектов Вселенной МФТИ, заведующий лабораторией ФИАН, руководитель научной программы проекта «Радиоастрон».

Кроме этого, в ходе наблюдений было собрано огромное количество новых данных. В частности, было зафиксировано, что в процессе слияния нейтронных звезд образуются тяжелые элементы, такие как золото, платина и уран. Это подтверждает одну из существующих теорий происхождения тяжелых элементов во Вселенной. Ранее моделирование уже демонстрировало, что одних только вспышек сверхновых для синтеза тяжелых элементов во Вселенной недостаточно, и в 1999 году группа швейцарских ученых предположила , что еще одним источником тяжелых элементов могут служить слияние нейтронных звезд. И хотя килоновые намного более редки, чем вспышки сверхновых, именно они могут генерировать большую часть тяжелых элементов.

«Представьте себе, вы никогда не находили на улице денег, и тут наконец нашли. И это сразу тысяча долларов, - говорит Сергей Попов. - Во-первых, это подтверждение того, что гравитационные волны распространяются со скоростью света, подтверждение с точностью до 10 -15 . Это очень важная штука. Во-вторых, это некоторое число чисто технических подтверждений ряда положений общей теории относительности, что очень важно для фундаментальной физики вообще. В-третьих - если вернуться к астрофизике - это подтверждение того, что короткие гамма-всплески - это слияние нейтронных звезд. А что касается тяжелых элементов, то, конечно, не то чтобы в подобное прежде никто не верил. Но не было такого шикарного комплекса данных».

И этот комплекс данных уже в первый день позволил ученым опубликовать, по подсчетам «Чердака», как минимум 20 статей (восемь в Science , пять в Nature , две в Physical Review Letters и пять в Astrophysical Journal Letters ). По подсчетам журналистов Science , число авторов статьи, описывающей событие, примерно соответствует трети всех действующих астрономов. Ждете ли вы продолжения? Мы - да.

Коллаборация LIGO-Virgo вместе с астрономами из 70 обсерваторий объявила сегодня о наблюдении слияния двух нейтронных звезд в гравитационном и электромагнитном диапазонах: увидели гамма-всплеск, а также рентгеновское, ультрафиолетовое, видимое, инфракрасное и радио излучение.

Иллюстрация столкновения нейтронных звезд. Узкий выброс по диагонали - поток гамма-лучей. Светящееся облако вокруг звезд - источник видимого света, который наблюдали телескопы после слияния. Credit: NSF/LIGO/Sonoma State University/Aurore Simonnet

Совместное наблюдение гамма-всплеска, гравитационных волн и видимого света позволили определить не только область на небе, где произошло событие, но и галактику NGC 4993, к которой звезды принадлежали.


Определение расположения на небе разными детекторами

Что мы можем сказать о нейтронных звездах?

Астрономы наблюдали короткие всплески гамма-излучения на протяжении многих десятилетий, но не знали точно, как они возникают. Основным предположением было, что этот всплеск происходит в результате слияния нейтронных звезд, и теперь наблюдение гравитационных волн от этого события подтвердило теорию.

Когда нейтронные звезды сталкиваются, основная часть их вещества сливается в один сверхмассивных объект, излучая “огненный шар” из гамма излучения (тот самые короткий гамма-всплеск, зарегистрированный через две секунды после гравитационных волн). После этого возникает так называемая килонова , когда вещество, оставшееся после столкновения нейтронных звезд уносится от места столкновения, излучая свет. Наблюдение за спектром этого излучения позволило определить, что тяжелые элементы, такие как золото, рождаются именно в результате килоновых. Ученые наблюдали после-свечение на протяжении недель после события, собирая данные о процессах, происходивших в звездах, и это явилось первым достоверным наблюдением килоновой.

Нейтронные звезды - это сверхплотные объекты, образующиеся после взрыва сверхновой. Давление в звезде столь высоко, что отдельны атомы не могут существовать, и внутри звезды находится жидкий «суп» из нейтронов, протонов и других частиц. Чтобы описать нейтронную звезду, ученые используют уравнение состояния, связывающее давление и плотность вещества. Существует множество вариантов возможных уравнений состояний, но ученые не знают, какие из них правильные, поэтому гравитационные наблюдения могут помочь разрешить этот вопрос. На данный момент наблюденный сигнал не дает однозначного ответа, но помогают дать интересные оценки на форму звезды (которая зависит от гравитационного притяжения ко второй звезде).

Интересным открытием оказалось, что наблюдавшийся короткий гамма-всплеск является самым близким к Земле, но в то же время слишком тусклым для такого расстояния. Ученые предположили несколько возможных объяснений: возможно, луч гамма-излучения был неравномерной яркости, или мы увидели только самый его край. В любом случае возникает вопрос: ранее астрономы не предполагали, что такие тусклые всплески могут быть расположены так близко, и могли ли они тогда пропустить такие же тусклые всплески, или же неправильно интерпретировать их как более далекие? Совместные наблюдения в гравитационном и электромагнитном диапазоне могут помочь дать ответ, но на данном уровне чувствительности детекторов такие наблюдения будут достаточно редкими - в среднем 0.1-1.4 в год.

Кроме гравитационного и электромагнитного излучения, нейтронные звезды излучают потоки нейтрино в процессе слияния. Детекторы нейтрино также работали над поиском этих потоков от события, но не зафиксировали ничего. В целом, этот результат был ожидаем - как и в случае гамма-всплеска, событие слишком тусклое (или мы наблюдаем его под большим углом), чтобы детекторы могли его увидеть.

Скорость гравитационных волн

Так как гравитационные волны и световой сигнал произошли от одного источника с очень большой вероятностью (5.3 sigma), и первый световой сигнал пришел через 1.7 секунд после гравитационного, мы можем ограничить скорость распространения гравитационных волн с очень большой точностью. Предполагая, что свет и гравитационные волны излучались одновременно, а задержка между сигналами произошла из-за того, что гравитация быстрее, можно получить верхнюю оценку. Нижнюю оценку можно получить из моделей слияния нейтронных звезд: предположить, что свет был испущен через 10 секунд после гравитационных волн (в этот момент уже все процессы точно должны были завершиться) и нагнал гравитационные волны к моменту достижения Земли. Как результат, скорость гравитации равна скорости света с огромной точностью

Для нижней оценки можно использовать и большую задержку между излучением, и даже предположить, что сначала был испущен световой сигнал, что понизит точность пропорционально. Но даже в этом случае оценка получается чрезвычайно точной.

Используя те же знания о задержке между сигналами можно значительно повысить точность оценок на лоренц-инвариантность (разности между поведением гравитации и света при преобразовании Лоренца) и принцип эквивалентности .

Ученые измерили постоянную Хаббла и другим образом - по наблюдению параметров реликтового излучения на телескопе Планк , и получили другое значение постоянной Хаббла, не согласующееся с измерениями SHoES. Это различие слишком велико, чтобы быть статистическим, но пока не известны причины расхождений оценок. Поэтому необходимо независимое измерение.


Распределение вероятности для постоянной Хаббла с использованием гравитационных волн (синий). Пунктиром обозначены интервалы 1σ и 2σ (68.3% и 95.4%). Для сравнения показаны интервалы 1σ и 2σ для предыдущих оценок: Планк (зеленый) и SHoES (оранжевый), которые не сходятся друг с другом.

Гравитационные волны в данном случае играют роль стандартных свечей (и называются стандартными сиренами). Наблюдая амплитуду сигнала на Земле и моделируя его амплитуду в источнике, можно оценить, насколько она уменьшилась, и узнать тем самым расстояние до источника - независимо от любых предположений на постоянную Хаббла или предыдущие измерения. Наблюдение светового сигнала позволило определить галактику, где располагалась пара нейтронных звезд, а скорость удаления этой галактики была хорошо известна по предыдущим измерениям. Отношение между скоростью и расстоянием и является постоянной Хаббла. Важно, что такая оценка совершенно независима от предыдущих оценок или космической шкалы расстояний.

Одного измерения оказалось недостаточно, чтобы разрешить загадку различия в оценках Планка и SHoES, но в целом оценка уже хорошо соответствует известным значениям. Учитывая, что предыдущие оценки основываются на статистике, собранной на протяжении многих лет, это очень значительный результат.

Немного о LIGO и глитчах



Верхняя панель показывает глитч в данных LIGO-Livingston, и также явно демонстрирует наличие чирпа. Нижняя панель показывает безразмерную амплитуду колебаний, ”strain" (величина, которой мы описываем величину сигнала в LIGO и Virgo) в момент глитча. Это короткий
(длится всего около 1/4 секунды), но очень сильный сигнал. Подавление уменьшает глитч до уровня оранжевой кривой, которая показывает уровень фонового шума, всегда присутствующего в детекторах LIGO.

Только один из детекторов LIGO увидел сигнал в автоматическом режиме, поскольку на детекторе в Ливингстоне в момент события произошел «глитч». Этим термином называют всплеск шума, похожий на хлопок статики в радиоприемнике. Хотя гравитационно волновой сигнал был очевидно заметен человеческому глазу, автоматика отсекает подобные данные. Поэтому понадобилась очистка сигнала от глитча, прежде чем данные могли быть использованы детектором. Глитчи появляются в детекторах все время - примерно раз в несколько часов. Ученые классифицируют их по форме и длительности и используют эти знания для улучшения детекторов. Вы можете помочь им в этом в проекте GravitySpy , где пользователи ищут и классифицируют глитчи в данных LIGO, чтобы помочь ученым.

Вопросы без ответов



Известные нам черные дыры, нейтронные звезды и их слияния. Есть область средних масс, о существовании компактных объектов с которыми мы ничего не знаем. Credit: LIGO-Virgo/Northwestern/Frank Elavsky

Мы зарегистрировали гравитационные волны от двух компактных объектов, и наблюдение электромагнитного излучения говорит о том, что один из них был нейтронной звездой. Но второй мог быть и черной дырой малой массы, и хотя ранее таких черных дыр никто не видел, теоретически они могут существовать. Из наблюдения GW170817 нельзя определить точно, было ли это столкновение двух нейтронных звезд, хотя это и более вероятно.

Второй любопытный момент: а чем стал этот объект после слияния? Он мог стать либо сверхмассивной нейтронной звездой (самой массивной из известных) или самой легкой из известных черных дыр. К сожалению, данных наблюдения недостаточно, чтобы ответить на этот вопрос.

Заключение

Наблюдение слияния нейтронных звезд в о всех диапазонах - потрясающе богатое на физику событие. Количество данных, полученных учеными только за эти два месяца позволило подготовить несколько десятков публикаций, и гораздо больше будет, когда данные станут общедоступными. Физика нейтронных звезд гораздо богаче и интереснее физики черных дыр - мы можем напрямую проверять физику сверхплотного состояния вещества, а также квантовую механику в условиях сильных гравитационных полей. Эта уникальная возможность может помочь нам наконец найти связь между общей теорией относительности и квантовой физикой, которая до сих пор ускользала от нас.

Это открытие еще раз показывает, насколько в современной физике важна совместная работа многих коллабораций из тысяч людей.

Reddit AMA

Традиционно на Reddit ученые из LIGO отвечают на вопросы пользователей, очень рекомендую!
Происходит это будет с 18 часов по Москве 17 и 18 октября. Ссылка на событие будет ко времени начала.
  • общая теория относительности
  • телескоп хаббл
  • телескоп планк
  • Добавить метки

    Результаты наблюдений могут в будущем пролить свет на загадку строения нейтронных звезд и образование тяжелых элементов во Вселенной

    Художественное изображение гравитационных волн, порожденных слиянием двух нейтронных звезд

    Изображение: R. Hurt/Caltech-JPL

    Москва. 16 октября. сайт - Ученые впервые в истории зафиксировали гравитационные волны от слияния двух нейтронных звезд - сверхплотных объектов массой с наше Солнце и размером с Москву, сообщает сайт N+1.

    Возникшие затем гамма-всплеск и вспышку килоновой наблюдали около 70 наземных и космических обсерваторий - они смогли увидеть предсказанный теоретиками процесс синтеза тяжелых элементов, в том числе золота и платины, и подтвердить правоту гипотез о природе загадочных коротких гамма-всплесков, сообщают пресс-служба коллаборации LIGO/Virgo, Европейской Южной обсерватории и обсерватории Лос-Кумбрес. Результаты наблюдений могут пролить свет на загадку строения нейтронных звезд и образование тяжелых элементов во Вселенной.

    Гравитационные волны - волны колебаний геометрии пространства-времени, существование которых было предсказано общей теорией относительности. Впервые об их достоверном обнаружении коллаборация LIGO сообщила в феврале 2016 года - спустя 100 лет после предсказаний Эйнштейна.

    Как сообщается, утром 17 августа 2017 года (в 8:41 по времени Восточного побережья США, когда в Москве было 15:41) автоматические системы на одном из двух детекторов гравитационно-волновой обсерватории LIGO зарегистрировали приход гравитационной волны из космоса. Сигнал получил обозначение GW170817, это был уже пятый случай фиксации гравитационных волн с 2015 года, с момента, когда они были впервые зарегистрированы. Всего за три дня до этого обсерватория LIGO впервые "услышала" гравитационную волну вместе с европейским проектом Virgo.

    Однако в этот раз уже через две секунды после гравитационного события космический телескоп Fermi зафиксировал вспышку гамма-излучения на южном небе. Почти в этот же момент вспышку увидела европейско-российская космическая обсерватория INTEGRAL.

    Автоматические системы анализа данных обсерватории LIGO пришли к выводу, что случайное совпадение этих двух событий крайне маловероятно. В ходе поиска дополнительной информации было обнаружено, что гравитационную волну увидел и второй детектор LIGO, а также европейская гравитационная обсерватория Virgo. Астрономы всего мира были подняты "по тревоге" - охоту на источник гравитационных волн и гамма-всплеска начали множество обсерваторий, в том числе Европейская Южная обсерватория и космический телескоп Hubble.

    Задача была непростой - комбинированные данные LIGO/Virgo, Fermi и INTEGRAL позволили очертить область площадью в 35 квадратных градусов - это примерная площадь нескольких сотен лунных дисков. Только через 11 часов небольшой телескоп Swope с метровым зеркалом, находящейся в Чили, сделал первый снимок предполагаемого источника - он выглядел как очень яркая звезда рядом с эллиптической галактикой NGC 4993 в созвездии Гидры. В течение последующих пяти дней яркость источника упала в 20 раз, а цвет постепенно смещался от синего к красному. Все это время за объектом наблюдали множество телескопов в диапазонах от рентгеновского до инфракрасного, пока в сентябре галактика не оказалась слишком близко к Солнцу, и стала недоступна для наблюдений.

    Ученые пришли к выводу, что источник вспышки находился в галактике NGC 4993 на расстоянии около 130 миллионов световых лет от Земли. Это невероятно близко, до сих пор гравитационные волны приходили к нам с расстояний в миллиарды световых лет. Благодаря этой близости мы и смогли их услышать. Источником волны было слияние двух объектов с массами в диапазоне от 1,1 до 1,6 масс Солнца - это могли быть только нейтронные звезды.

    Локализация источника гравитационных волн в галактике NGC 4993

    Сам всплеск "звучал" очень долго - около 100 секунд, давали всплески длительностью в доли секунды. Пара нейтронных звезд вращалась вокруг общего центра масс, постепенно теряя энергию в виде гравитационных волн и сближаясь. Когда расстояние между ними сократилось до 300 км, гравитационные волны стали достаточно мощными, чтобы попасть в зону чувствительности гравитационных детекторов LIGO/Virgo. Нейтронные звезды успели совершить 1,5 тысячи оборотов вокруг друг друга. В момент слияния двух нейтронных звезд в один компактный объект (нейтронную звезду или черную дыру) происходит мощная вспышка гамма-излучения.

    Такие гамма-вспышки астрономы называют короткими гамма-всплесками, гамма-телескопы фиксируют их примерно раз в неделю. Короткий гамма-всплеск от слияния нейтронных звезд, о котором сообщается, длился 1,7 секунды.

    Если природа длинных гамма-всплесков более понятна (их источники - вспышки сверхновых), то единства мнений насчет источников коротких всплесков не было. Существовала гипотеза, что их порождают слияния нейтронных звезд.

    Теперь ученые смогли впервые подтвердить эту гипотезу, поскольку благодаря гравитационным волнам мы знаем массу слившихся компонентов, что доказывает что это именно нейтронные звезды.

    "Десятилетия мы подозревали, что короткие гамма-всплески порождают слияния нейтронных звезд. Теперь, благодаря данным LIGO и Virgo об этом событии у нас есть ответ. Гравитационные волны говорят нам, что слившиеся объекты имели массы, соответствующие нейтронным звездам, а гамма-вспышка говорит, что эти объекты вряд ли могли быть черными дырами, поскольку столкновение черных дыр не должно порождать излучение", - говорит Джули МакЭнери, сотрудник проекта Fermi Центра космических полетов НАСА имени Годдарда.

    Источник золота и платины

    Кроме того, астрономы впервые получили однозначное подтверждение существования килоновых (или "макроновых") вспышек, которые примерно в 1 тыс. раз мощнее вспышек обычных новых. Теоретики предсказывали, что килоновые могут возникать при слиянии нейтронных звезд или нейтронной звезды и черной дыры.

    При этом запускается процесс синтеза тяжелых элементов, основанный на захвате ядрами нейтронов (r-процесс), в результате которого во Вселенной появились многие из тяжелых элементов, таких как золото, платина или уран.

    По подсчетам ученых, при одном взрыве килоновой может возникнуть огромное количество золота - до десяти масс Луны. До сих пор лишь единожды наблюдалось событие, которое могло быть взрывом килоновой.

    Теперь же астрономы смогли впервые наблюдать не только рождение килоновой, но и продукты ее "работы". Спектры, полученные при помощи телескопов Hubble и VLT (Very Large Telescope), показали наличие цезия, теллура, золота, платины и других тяжелых элементов, образованных при слиянии нейтронных звезд.

    Через 11 часов после столкновения температура килоновой составляла 8 тыс. градусов, а скорость ее расширения достигла около 100 тыс. километров в секунду, отмечает N+1 со ссылкой на данные Государственного астрономического института имени Штернберга (ГАИШ).

    В ESO сообщили, что наблюдение практически идеально совпало с прогнозом поведения двух нейтронных звезд при слиянии.

    "Пока данные, которые мы получили, великолепно согласуются с теорией. Это триумф теоретиков, подтверждение абсолютной реальности событий, зарегистрированных обсерваториями LIGO и VIrgo, и замечательное достижение ESO, которой удалось получить такие наблюдения килоновой", - говорит Стефано Ковино, первый автор одной из статей в Nature Astronomy.

    Так столкновение нейтронных звезд увидели астрономы

    У ученых пока нет ответа на вопрос о том, что осталось после слияния нейтронных звезд - это может быть как черная дыра, так и новая нейтронная звезда, кроме того, не вполне ясно, почему гамма-всплеск оказался относительно слабым.

    Гравитационные волны, возникшие во время слияния двух нейтронных звезд. Событие получило обозначение GW170817. Последовавшие за слиянием гамма-всплеск и вспышку килоновой наблюдали около 70 наземных и космических обсерваторий, начиная от ESO и заканчивая Hubble. В режиме реального времени астрономы увидели предсказанный теоретиками процесс синтеза тяжелых элементов, в том числе золота и платины, и подтвердить правоту гипотез о природе загадочных коротких гамма-всплесков. Также было установлено примерно место слияния нейтронных звезд. Оно находится в галактике NGC 4993, удаленной от нас на 130 млн св. л.


    В то время, как большинство ученых сосредоточило свои дальнейшие усилии на изучении непосредственных продуктов слияния, группа американских астрофизиков попыталась ответить на вопрос, какой объект образовался в результате космического ДТП. Для этого они воспользовались помощью телескопа Chandra. Проанализировав данные о рентгеновском излучении GW170817, исследователи пришли к выводу , что они соответствуют черной дыре звездной массы.

    Также на днях в журнале Nature были опубликованы результаты другого исследования , посвященного GW170817. Ученые пытались найти ответ на вопрос, чем были вызваны некоторые странности вспышки. Скажем, большая часть исследователей предполагала, что слияние нейтронных звезд должны приводить к формированию миниатюрных гамма-вспышек — но этого не наблюдалось.

    Данные радиотелескопов указали на причину этой и других аномалий. Остаток нейтронных звезд окружает плотный кокон из раскаленного газа, с которым столкнулись пучки плазмы, выброшенные во время слияния этих объектов. Это столкновение «взболтало» газ, разогнало его до примерно 30-50% скорости света, заставив светиться. Существование горячего газового кокона хорошо объясняет многие особенности слияния. Например, в какой последовательности будут наблюдаться последствия вспышки в разных диапазонах электромагнитного спектра, а также то, что этот объект будет становиться все более ярким в радиоволнах.