Обмен железа и меди в организме биохимия. Обмен железа в теле человека

Глава 16

АНЕМИЯ И БЕРЕМЕННОСТЬ

Анемия - это состояние организма человека, характеризующееся снижением уровня гемоглобина, уменьшением количества эритроцитов, появлением их патологических форм, изменением витаминного баланса, количества микроэлементов и ферментов.

Анемия - не диагноз, а симптом, поэтому в обязательном порядке необходимо выяснять причину ее развития.

Критериями анемии у женщин, согласно данным ВОЗ, являются: концентрация гемоглобина - менее 120 г/л, а во время беременности - менее 110 г/л.

Анемия - одно из наиболее частых осложнений беременности. По данным ВОЗ, частота железодефицитной анемии у беременных в странах с различными уровнями жизни колеблется от 21 до 80 %. За последнее десятилетие в связи с ухудшением социально-экономической обстановки в России частота железодефицитной анемии значительно возросла, несмотря на низкую рождаемость. Частота анемии, по данным Минздрава РФ, за последние 10 лет увеличилась в 6,3 раза.

Анемия беременных в 90 % случаев является железодефицитной. Железодефицитная анемия - это клинико-гематологический синдром, характеризующийся нарушением синтеза гемоглобина из-за развивающегося вследствие различных физиологических и патологических процессов дефицита железа и проявляющийся симптомами анемии и сидеропении.

В развитых странах Европы и на территории России около 10 % женщин детородного возраста страдают железодефицитной анемией, у 30 % из них наблюдается скрытый дефицит железа, в некоторых регионах нашей страны (Север, Восточная Сибирь, Северный Кавказ) данный показатель достигает 50-60 %.

В конце беременности практически у всех женщин имеется скрытый дефицит железа, причем у "/з из них развивается железодефицитная анемия.

Наличие железодефицитной анемии нарушает качество жизни пациенток, снижает их работоспособность, вызывает функциональные расстройства со стороны многих органов и систем. У беременных дефицит железа увеличивает риск развития осложнений в родах, а при отсутствии своевременной и адекватной терапии ведет к возникновению дефицита железа у плода.

Обмен железа в организме

Железо относится к одним из жизненно важных для организма элементов, входит в состав гемоглобина, миоглобина, участвует в функционировании множества ферментных систем организма, процессах тканевого дыхания и других физиологических процессах.

Из поступающего в организм с пищей в количестве 15-20 мг в сутки железа всасывается в двенадцатиперстной и проксимальных отделах тощей кишки не более 2-3 мг железа (предел усвоения организмом данного элемента). Причем интенсивность этого процесса определяется потребностью в железе (при его дефиците всасывание увеличивается). Наиболее полно усваивается железо из продуктов животного происхождения (мясо), значительно хуже из пищи растительного характера. Высвобождение железа из продуктов снижается при их тепловой обработке, замораживании и длительном хранении.


Следует отметить, что всасывание железа усиливается под влиянием:

Желудочного сока;

Белков животного происхождения;

Аскорбиновой кислоты.

Аскорбиновая кислота образует комплексы железа, хорошо растворимые в кислой среде желудка, и продолжает поддерживать их растворимость даже в щелочной среде тонкой кишки.

Фосфаты, фитин, танин, оксалаты, а также различные патологические процессы в тонкой кишке нарушают и угнетают всасывание железа.

Поступившее в кровь железо соединяется с трансферрином (белок (3-глобулиновой фракции), который осуществляет транспортировку железа в различные ткани и органы, в частности в эритробласты костного мозга, где оно включается в молекулы эритроцитов (1,5-3 г) и представляет основной фонд железа в организме. В результате физиологического гемолиза из распадающихся эритроцитов происходит высвобождение железа (15-25 мг/сут), которое соединяется в крови с трансферрином и вновь используется эритробластами для синтеза гемоглобина. Следует отметить, что 75 % железа человеческого организма находится в гемоглобине.

Важное физиологическое значение имеет фонд запасов железа, представленный ферритином и гемосидерином. Железо запасов содержится в макрофагах паренхиматозных органов (печень, селезенка). Общее количество железа в запасах составляет 0,5-1,5 г.

Небольшое количество железа (около 125 мг) входит в состав миоглобина, цитохромов, ферментов (каталаза, пероксидаза), некоторых белков. Наличие запасного фонда железа обеспечивает временную компенсацию в тех ситуациях, когда потери железа превышают его поступление с пищей.

Таблица 16.1. Основные гематологические показатели во время беременности

Железо — один из жизненно важных человеческого тела, участвует в транспорте кислорода, тканевом дыхании, процессах детоксикации, деления клеток, передаче генетической информации, защите от инфекций. проводится в лаборатории.

В теле человека находится 3-4 грамма железа или 50 мг/кг у мужчины и 35 мг/кг у женщины в репродуктивном возрасте (13-50 лет).

Распределение железа

  • до 2/3 железа находится в составе эритроцитов крови и их предшественниках в красном костном мозге, переносит кислород к тканям
  • 10% в миоглобине – белке скелетных мышц
  • 15% в ферментах печени обеспечивающих обезвреживание
  • 10% в макрофагах
  • 0,1% железа связано с трансферрином в крови, т.е. находится «в пути» по кровеносным сосудам, за день это количество обновляется 5 раз

Уровень железа в сыворотке крови у взрослого 8-10 мг/л.

Виды железа

  1. функционирующее или «рабочее » — выполняет нужные организму функции, составляет 75% железа
  2. депонированное – запасное или резервное железо для пополнения рабочего пула, представлено ферритином и гемосидерином, до 25%

Формы

Биомолекула

Количество железа

Форма железа

гемоглобин

2600 мг или 65% Fe 2+

миоглобин

130 мг или 6%

трансферрин

3 мг или 0,1%

ферритин

520 мг или 13%
гемосидерин 480 мг или 12%

каталазы , пероксидазы

цитохромы

А сколько нужно?

Потребности человеческого организма в железе меняются на протяжении жизни.

Количество железа у доношенного новорожденного ребенка составляет около 75 мг/кг массы тела, большая часть его была получена плодом в третьем триместре беременности. Данные объемы быстро израсходуются на протяжении первых месяцев жизни из-за активного роста ребенка.

Только с достижением половой зрелости нормы потребления железа уравновешиваются с расходами.

Дневная потребность, мг/день

Дети

  • 0-6 месяцев – 0,27
  • 7-12 месяцев – 11
  • 1-3 года – 7
  • 4-8 лет – 10
  • 9-13 лет – 8

Мужчины

  • 14-18 лет – 11
  • 19-90 лет – 8

Женщины

  • 14-18 лет – 15
  • 19-50 лет – 18
  • 51-90 лет – 8

Беременность — 27

Кормление грудью — 10

Да, железо, безусловно нужный микроэлемент, но в то же время — токсичный.

Свободное железо Fe 2+ стимулирует образование свободных радикалов, при этом повреждает печень, сердечную мышцу, эндокринные железы (щитовидная, яичники/яичник, гипофиз). Поэтому железо всегда связано с одним из переносчиков, а его всасывание и распределение находятся под строгим контролем. У мужчин железа в теле больше чем у женщин, что вызвано не только большей мышечной массой, но и количеством эритропоэтина (подробнее читай в статье о ).

Обмен железа

Метаболизм железа направлен на регуляцию процессов его поглощения и выведения с целью поддержания оптимального баланса.

Основные органы в обмене железа:

  • кишечник
  • печень
  • красный костный мозг
  • макрофаги в ретикуло-эндотелиальной системе (РЭС) – селезенка, лимфатические узлы, костный мозг

Этапы обмена железа:

  1. всасывание
  2. транспорт
  3. использование
  4. выделение

Поступление

При рождении ребенок имеет 250 мг железа, при грудном кормлении получает его с грудным молоком, при искусственном – из молочных смесей.

Железо пищевых продуктов находится в в 2-х формах:

  1. гемовое (ионизированное, закисное) Fe 2+ — легко всасывается, источник — продукты животного происхождения
  2. негемовое (неионизированное, окисное) Fe 3+ — самостоятельно не всасывается, требует превращения в Fe 2+ , источник – растительные продукты

Для человека основной источник железа — гемовое железо Fe 2+ , его больше всего в красном мясе (до 2/3 потребляемого Fe). О источниках железа в продуктах питания написано .

Всасывание

На поверхности слизистой 12-ти перстной и верхней части тощей кишки у здорового человека всасывается около 10% железа пищи — 1-2 мг за сутки, это количество отвечает объему физиологических потерь (1-2 мг/сутки). При повышенной потребности, например, при кровотечениях, поглощение вырасает в 10 раз.

В зависимости от валентности всасывание железа проходит разными путями:

  1. негемовое железо Fe 3+ переходит в Fe 2 + под влиянием фермента на поверхности каймы энтероцита – дуоденального цитохромома содержащего витамин С (аскорбиновую кислоту).
  2. Fe 2+ поступает в клетку эпителия кишечника при помощи специального переносчика DMT 1

Гемм в энтероците освобождается от переносчика ферментом гемоксигеназой на свободное железо. Точные механизмы транспорта железа внутри кишечных клеток не установлены.

Внутри энтероцита железо хранится в форме ферритина или переносится в .

С базальной мембраны энтероцита, обращенной к сосудам, железо попадает в кровь при помощи феропортина и связывается со своим специфическим переносчиком – трансферрином . При выходе из клетки железо переходит в техвалентную форму Fe 3+ с помощью гефестина, а процесс контролируется белком гепсидином (читай далее).

Процесс всасывания железа контролируется, но выведение – нет!

Транспорт в крови

Одна молекула трансферрина связывает 2 молекулы трехвалентного железа.

Метаболизм железа экономен, это закрытый цикл, где максимально используется железо уже находящееся в обороте. Основой этого круговорота служат молекулы из «погибших» . Таким образом, за день рециркулируется около 20 мг железа, что в 10 раз больше поступлений.

На втором месте по значению в рециркуляции находятся макрофаги, захватывающие старые эритроциты. Внутри макрофага эритроцит распадается, а гемоксигеназа высвобождает железо из гемоглобина. Железо из макрофага после окисления церулоплазмином через феропортин попадает снова в кровь к трансферрину.

Использование клетками тела

Клетка, которой нужно железо, располагает на своей поверхности трансферриновые рецепторы, с которыми связывается трансферрин.

Рецептор-опосредованным эндоцитозом внутрь клетки попадают комплекс «трансферриновый рецептор-трансферрин-железо».

Fe 3+ высвобождается из этой связи и превращается в Fe 2 + , выходит из эндосомы через специальный транспортер-переносчика DMT 1 (тот же что и на слизистой кишечника). Трансферриновый рецептор возвращается на поверхность клетки и отщепляет свободный трансферрин в кровь.

Внутри клетки Fe 2 + или поступает в митохондрии (где фермент ферохелатаза вкладывает его в протопорфирин – так заканчивается синтез гемма для гемоглобина) или депонируется в форме ферритина – сложной молекулы из белков и железа (Fe 3+).

При железодефиците повышается количество трансферриновых рецепторов, при избытке – уменьшается.

Выведение

Потеря железа постоянна — при слущивании эпителия кишечника (выходит с калом) и с кровью (в физиологических условиях только при менструациях). За сутки 1-2 милиграмма.

Организм не способен избыток железа удалить.

Складирование

Ферритин и гемосидерин — депо-формы железа. Но, из ферритина его можно использовать повторно, из гемосидерина – нет.

Метаболизм железа и дефицит железа.

Для оценки эффективности, безопасности и удобства применения различных препаратов железа, включая Мальтофер ® , для лечения железодефицитной анемии, необходимо рассмотреть метаболизм железа в организме и факторы, вызывающие железодефицитную анемию.

1.1. Эритропоэз

Необходимое количество эритроцитов, циркулирующих в кровяном русле, поддерживается путем контроля их образования, а не продолжительности жизни. Клетки крови развиваются из стволовых клеток, расположенных в костном мозге, и дифференцирующихся в лимфоциты, тромбоциты, гранулоциты и эритроциты. Их производство контролирует механизм обратной связи, и до тех пор, пока уже образованные клетки не созреют или не выйдут из костного мозга в кровоток, новые клетки не развиваются, чтобы их заменить (Danielson и Wirkstrom, 1991). Эритропоэтин (ЭПО), вырабатываемый почками гормон, играет важную роль на этапе развития будущих эритроцитов. ЭПО, возможно, взаимодействует со специфическими рецепторами на поверхности эритроидных стволовых клеток и стимулирует их превращение в пронормобласты, самую раннюю стадию развития эритроцитов, которые могут быть обнаружены при исследовании костного мозга. На следующем этапе, ЭПО стимулирует непрерывное развитие красных кровяных клеток путем усиления синтеза гемоглобина. Образовавшиеся ретикулоциты остаются в костном мозге около трех дней перед тем, как попасть в кровяное русло, где они приблизительно через 24 часа теряют свое ядро, митохондрии, рибосомы и приобретают хорошо знакомую двояковогнутую форму эритроцитов.

Таблица 1-1

Распределение железа в организме взрослого человека. (Danielson с соавторами, 1996).

1.2. Метаболизм железа.

1.2.1. Обмен железа.

У взрослого здорового человека в среднем содержится около 3-4 г железа (40-50 мг Fe/кг массы тела). Около 60 % (2,4 г) всего железа находится в гемоглобине, а примерно 30% железа входит в состав ферритина - депо железа. Депо железа - величина непостоянная, и определяется разницей между поступившим и выделенным из организма железом. Около 9% железа находится в миоглобине, белке, переносящем кислород в мышцах. Приблизительно 1% железа входит в состав ферментов, таких как цитохромы, каталазы, пероксидазы и др. Эти данные суммированы в Табл. 1-1 и представлены на Рис. 1-1.

Метаболизм железа в организме представляет один из самых высокоорганизованных процессов, при котором практически все железо, высвобождающееся при распаде гемоглобина и других железосодержащих белков, вновь утилизируется. Поэтому, несмотря на то, что ежедневно абсорбируется и выводится лишь очень малое количество железа, его метаболизм в организме очень динамичный (Aisen, 1992; Worwood, 1982).

Рисунок 1-1

Обмен железа. Схематическая иллюстрация обмена железа в организме. ЭПО: Эритропоэтин; РЭК: Ретикулоэндотелиальные клетки. (Danielson с соавторами, 1996)

1.2.2. Всасывание железа

Способность организма выводить железо строго ограничена. Таким образом, процесс всасывания железа является основным в поддержании гомеостаза железа.

В целом, только малая часть железа, содержащегося в продуктах, абсорбируется. Количество всосавшегося железа определяется меж- и внутри индивидуальными различиями (Chapman и Hall, 1995).

Кальций подавляет абсорбцию как гемового, так и негемового железа. Наиболее вероятно, что данный эффект осуществляется на общем транспортном этапе в клетках кишечника.

Железо всасывается как в виде гема (10% поглощаемого железа), так и в негемовой (9%) форме с помощью ворсинок верхней части тонкого кишечника. Сбалансированная ежедневная диета содержит около 5-10 мг железа (гемового и негемового), но всасывается лишь 1-2 мг. Гемовое железо содержится лишь в небольшой части пищевого рациона (мясные продукты). Оно очень хорошо всасывается (на 20-30%) и на его усвоение не влияют другие компоненты пищи. Большая часть пищевого железа -негемовое (оно содержится в основном в листовых овощах). Степень его усвоения определяется рядом факторов, которые могут, как мешать, так и способствовать абсорбции железа. Большая часть трехвалентного железа Fe (III) образует нерастворимые соли, например, c фитином, таннином и фосфатами, присутствующими в продуктах питания, и выводится с калом. Биодоступность трехвалентного железа из пищевых продуктов и синтетических гидроокисных комплексов железа (III) определяется скоростью высвобождения железа из них и концентрацией железосвязывающих белков, таких как трансферрин, ферритин, муцины, интегрины и мобилферрин. Количество железа, абсорбируемого организмом, строго контролируется механизмом, детали которого еще недостаточно изучены. Были выявлены различные факторы, которые влияют на усвоение железа, например уровень гемоглобина, величина запасов железа, степень эритропоэтической активности костного мозга и концентрация связанного с трансферрином железа. В тех случаях, когда синтез гемоглобина и эритроцитов повышен, например, во время беременности, у растущих детей, или после кровопотери, уровень всасывания железа возрастает (см. Рис. 1-2 Danielson с соавторами, 1996).

Рисунок 1-2


Всасывание гемового и негемового железа. Принципы всасывания гемового и негемового железа из пищи (Danielson с соавторами, 1996, модифицировано Geisser).
Гемовое железо. Всасывается как железопорфириновый комплекс с помощью специальных рецепторов. Не подвержено влиянию различных факторов в просвете кишечника
Негемовое железо. Всасывается как разновидность железа поступающего из солей железа. На процесс абсорбции в кишечнике оказывает влияние ряд факторов: концентрация солей железа, пищевые продукты, рН, лекарственные препараты. Всасывается в виде железа, образующегося из комплексов Fe (III). Находется под влиянием обмена таких железосвязывающих белков, как трансферрин, муцины, интегрины, и мобилферрин.
Оксигеназа гема , специальный фермент, стимулирует распад комплекса железа и порфирина.

1.2.3. Транспорт железа.

В клетках слизистой оболочки тонкого кишечника, во время процесса всасывания, закисное железо Fe(II) превращается в окисное железо Fe(III) для того, чтобы быть включенным в состав трансферрина и транспортироваться по всему организму. Трансферрин синтезируется печенью. Он отвечает за транспортировку не только всосавшегося в кишечнике железа, но и железа, поступающего из разрушенных эритроцитов для повторного использования. В физиологических условиях заняты не более, чем 30% железосвязывающих рецепторов трансферрина плазмы. Это определяет общую железосвязывающую способность плазмы как 100-150 мкг/100 мл (Danielson с соавторами, 1996; Chapman и Hall, 1995).

Молекулярный вес железотрансферринового комплекса слишком велик для того, чтобы выделяться почками, поэтому он остается в кровеносном русле.

1.2.4. Хранение железа.

Железо хранится в организме в виде ферритина и гемосидерина. Из этих двух белков, на долю ферритина приходится большая часть хранимого железа, которое представлено в виде гидроокиси/окиси железа, заключенной в белковую оболочку, апоферритин. Ферритин обнаруживается практически во всех клетках, обеспечивая легкодоступный резерв для синтеза железосодержащих соединений и представляя железо в растворимой, неионной и, безусловно, нетоксичной форме. Наиболее богаты ферритином предшественники эритроцитов в костном мозге, макрофаги и ретикулоэндотелиальные клетки печени. Гемосидерин рассматривают как уменьшенную форму ферритина, в которой молекулы потеряли часть белковой оболочки и сгруппировались вместе. При избытке железа, часть его, хранимая в печени в виде гемосидерина, увеличивается.

Запасы железа расходуются и возмещаются медленно и, поэтому, недоступны для экстренного синтеза гемоглобина при компенсации последствий острого кровотечения или других видов кровопотерь (Worwood, 1982).

1.2.5. Регуляция метаболизма железа.

Когда организм насыщен железом, то есть, им «заполнены» все молекулы апоферритина и трансферрина, уровень всасывания железа в желудочно-кишечном тракте уменьшается. Напротив, при сниженных запасах железа, степень его абсорбции увеличивается настолько, что поглощение становится значительно больше, чем в условиях пополненных запасов железа.

Когда почти весь апоферритин насыщается, трансферрину становится сложно высвобождать железо в тканях. В то же время и степень насыщения трансферрина увеличивается и он исчерпывает все свои резервы в связывании железа (Danielson и Wirkstrom, 1991).

1.3. Железодефицитная анемия

1.3.1. Определения

Недостаточность железа определяется как дефицит общего количества железа, обусловленный несоответствием между возросшими потребностями организма в железе и его поступлением, или его потерями, приводящими к отрицательному балансу. В общем, могут быть выделены две стадии недостатка железа (Siegenthaler, 1994):
Латентный дефицит железа: Уменьшение запасов железа: уровень железа ферритина снижен; увеличена концентрация эритроцитарного протопорфирина; насыщение трансферрина уменьшено; уровень гемоглобина в норме.
Железодефицитная анемия (клинически выраженный дефицит железа): После истощения запасов железа, синтез гемоглобина и других железосодержащих соединений, необходимых для метаболизма, ограничен: уменьшается количество ферритина; концентрация эритроцитарного протопорфирина растет; насыщение трансферрина падает; уровень гемоглобина снижается. Развивается железодефицитная анемия (клинически выраженный дефицит железа).

1.3.2. Эпидемиология

Дефицит железа остается самой частой причиной анемии в мире. Распространенность его определяется физиологическими, патологическими факторами и особенностями питания (Charlton и Bothwell, 1982; Black, 1985).

Предполагают, что в мире страдает железодефицитной анемией около 1.800.000.000 человек (ВОЗ, 1998). Согласно данным ВОЗ, дефицит железа определяется как минимум у 20-25% всех младенцев, у 43% детей в возрасте до 4 лет и 37% детей от 5 до 12 лет (ВОЗ, 1992). Даже в развитых странах эти цифры не ниже 12% - у детей до 4 лет и 7% детей в возрасте от 5 до 12 лет. Латентная форма недостатка железа, конечно, поражает не только маленьких детей, но и подростков. Проведенное в Японии исследование, показало, что латентная форма недостатка железа развивается у 71,8% школьниц уже через три года после начала менструации (Kagamimori с соавторами, 1988).

Современное питание в совокупности с пищевыми добавками, а также использование дополнительных источников железа, уменьшили общую заболеваемость и выраженность дефицита железа. Несмотря на это, обеспечение железом все еще остается проблемой у некоторых групп населения, а именно - у женщин. Из-за ежемесячных кровопотерь и вынашивания детей, у более, чем 51% женщин детородного возраста во всем мире обнаруживаются недостаточные запасы железа или их отсутствие. Без поступления железа извне, у большинства женщин во время беременности возникает дефицит железа (DeMaeyer с соавторами, 1989).

Среди населения, употребляющего пищу, содержащую железо с низкой биодоступностью или страдающего от хронических желудочно-кишечных кровопотерь, вследствие, например, глистной инвазии, и, безусловно, при сочетании обоих факторов, распространенность недостаточности железа наибольшая.

1.3.3. Этиология и патогенез

Кровопотери являются наиболее частой причиной недостаточности железа. Для детей старшего возраста, мужчин, и женщин в постменопаузе ограниченная доступность пищевого железа в редких случаях может служить единственным объяснением имеющегося дефицита железа. Поэтому, у них обязательно должны рассматриваться другие возможные причины дефицита, в особенности, кровопотери.

У женщин детородного возраста наиболее частой причиной повышенной потребности в железе является менструальная кровопотеря. Во время беременности дополнительная потребность в железе (около 1.000 мг на весь период беременности), должна восполняться во избежание развития железодефицитной анемии. Новорожденным, детям и подросткам может также недоставать поступающего с пищей и из депо железа (см. следующую подглаву).

Нарушение всасывания железа бывает одной из причин его недостатка. У некоторых больных, нарушенная абсорбция железа в кишечнике может маскироваться общими синдромами, такими как стеаторрея, спру, целиакия или диффузный энтерит. Атрофический гастрит и сопутствующая ахлоргидрия также могут уменьшать всасывание железа. Недостаточность железа часто возникает после операций на желудок и гастроэнтеростомии. Плохой абсорбции железа могут способствовать как снижение продукции соляной кислоты, так и уменьшение времени, необходимого для всасывания железа. Менструирующие женщины, имеющие повышенную потребность в железе, могут употреблять продукты с очень низким содержанием железа и/или содержащие ингибиторы всасывания железа, такие как кальций, фитины, таннины или фосфаты. Больные с пептической язвой, склонные к желудочно-кишечным кровопотерям, могут принимать антациды, которые уменьшают всасывание железа с пищей.

Количество железа, содержащееся в пище, также имеет большое значение. Именно этот фактор объясняет высокую частоту железодефицитной анемии в развивающихся странах. Различия между гемовым и негемовым железом являются решающими для понимания особенностей их биодоступности. Гемовое железо легко усваивается, приблизительно на 30%. Его абсорбция мало зависит от состава пищи, в то время как негемовое железо хорошо всасывается лишь при определенных условиях. Если в пище отсутствуют компоненты, способствующие всасыванию железа (например, аскорбиновая кислота), усваивается менее чем 7% железа, содержащегося в таких овощах, как рис, кукуруза, фасоль, соя, пшеница. Следует отметить, что некоторые вещества, присутствующие в рыбе и мясе, увеличивают биодоступность негемового железа. Таким образом, мясо одновременно является и источником гемового железа и усиливает всасывание негемового железа (Charlton и Bothwell, 1982).

1.4. Латентный дефицит железа и умственные нарушения

Эпидемиология, этиология и патогенез описаны в предыдущих главах.

Такие симптомы как слабость, упадок сил, рассеянное внимание, пониженная работоспособность, трудности с подбором правильных слов и забывчивость, часто ассоциируются с анемией. Принято объяснять эти клинические проявления исключительно сниженной способностью эритроцитов переносить кислород.

В этой главе кратко показано, что железо само по себе оказывает влияние на мозг и, следовательно, на умственные процессы. Поэтому такие симптомы могут встречаться и у лиц, имеющих лишь дефицит железа при отсутствии анемии (латентный дефицит железа).

1.4.1. Влияние содержания железа на функции головного мозга

В исследовании, включавшем 69 студентов - правшей, Tucker с соавторами (1984) исследовали уровень сывороточного железа и ферритина, а также активность головного мозга, как в покое, так и в состоянии напряжения, пытаясь выявить возможные корреляции между гематологическими параметрами и активностью мозга, а также умственными способностями. Полученные результаты были неожиданными. От уровня железа в организме зависели и активность левого полушария, и умственные способности. Было установлено, что, чем ниже уровень ферритина, тем слабее активность не только левого полушария, но и затылочной доли обоих полушарий.

Это означает, что, если уровень ферритина сыворотки низкий, доминантное полушарие в целом, и зоны центров оптической памяти обоих полушарий, менее активны. А поскольку эти центры, а также область визуальной речи и область сенсорной речи левого полушария являются основными в функции памяти, становится очевидным, что состояние дефицита железа может привести к ослаблению памяти.

Одновременно результаты этого исследования показали корреляцию между уровнем железа и познавательной активностью. В частности, беглость речи (измеряемая способностью человека придумывать слова, начинающиеся и заканчивающиеся определенными буквами) была снижена при уменьшенных запасах железа. Это не удивительно, так как области речи доминантного полушария менее активны, при низком уровне железа.

Суммируя приведенные результаты, можно сказать, что и активность мозга, и познавательные способности зависят от уровня железа в организме. (Tucker с соавторами, 1984).

В этой связи, встает вопрос о том, какой механизм лежит в основе латерализации активности мозга. Ранее предполагалось, что типичные симптомы недостатка железа, такие как слабость, плохая концентрация внимания и т.д., обусловлены только низким уровнем гемоглобина. Однако, маловероятно, чтобы низкий уровень гемоглобина смог уменьшить активность только определенных областей мозга.

Это исследование, также как и ряд других (Oski с соавторами, 1983; Lozoff с соавторами, 1991), показали, что познавательные способности были снижены у больных с латентным дефицитом железа.

Существует два различных пути влияния дефицита железа на функциональную активность мозга.

  • во-первых, железо играет важную роль в допаминергических системах
  • во-вторых, уровень железа оказывает влияние на миелинизацию нервных волокон.
  • Как показал Youdim с соавторами (1989), обмен железа в головном мозге находится на очень низком уровне, а способность мозга запасать железо значительно менее выражена, чем у печени. Однако, в отличие от печени, головной мозг в большей степени удерживает железо и препятствует истощению его запасов. Уменьшение запасов железа, вызванное его нехваткой, происходит быстрее в печени, чем в головном мозге. С другой стороны, после восполнения запасов железа, его уровень возрастает намного быстрее в печени, чем в мозге, и, кроме того, уровень железа в печени также выше, чем в мозге.

    Рисунок 1-3


    Познавательная активность головного мозга и уровень железа. Переработано из материалов Tucker с соавторами (1984)

    Единственным объяснением более медленного изменения уровня железа в головном мозге является то, что процесс, благодаря которому железо проходит гематоэнцефалический барьер (ГЭБ), отличается от процессов всасывания железа в кишечнике и хранения его в печени. ГЭБ пропускает дополнительное количество железа только в том случае, когда имеется дефицит железа.

    Физиология нервных синапсов:

    В результате генерации электрического импульса происходит высвобождение допамина. Допамин связывается как постсинаптически, т.е. последующей нервной клеткой, так и пресинаптически, т.е. данной клеткой. Если он был захвачен последующей нервной клеткой, то он фиксируется допамин-2-рецептором (Д2-рецептор) и стимулирует нервную клетку. Таким образом, импульс переходит с одной клетки на другую. Если допамин захватывается выделившей его клеткой, он связывается с допамин-1-рецептором и посылает обратный сигнал, который прекращает дальнейший синтез допамина. В случае недостатка железа, количество или чувствительность Д2-рецепторов снижается (Youdim с соавторами, 1989). В результате, стимулирующий эффект допамина на следующую клетку уменьшается, и количество проходящих импульсов сокращается.

    Было описано три возможных железо-зависимых механизма, которые могут привести к уменьшению количества и чувствительности допамин-2-рецепторов (Yehuda и Youdim, 1989):
    1. Железо может входить в состав участка допаминового рецептора, к которому прикрепляются нейротрансмиттеры.
    2. Железо является компонентом двойного мембранно-липидного слоя, в который включены рецепторы.
    3. Железо вовлечено в синтез допамин-2-рецепторов.

    Рисунок 1-4


    Допаминовые рецепторы. В условиях дефицита железа, количество или чувствительность Д2-рецепторов снижается. (Youdim с соавторами, 1989).

    Влияние Д2-рецепторов на процесс обучения:

    Области мозга, в которых, как известно, концентрация железа наиболее высокая, также имеют самую густую сеть нейронов, специфически реагирующих на опиатные пептиды (энкефалины, эндорфины и т.д.). За последние несколько лет стало очевидным, что эндогенные опиатные пептиды вовлечены в процессы памяти и обучения, так как введение таких пептидов вызывает амнезию и забывчивость (Pablo, 1983 и 1985).

    Yehuda с соавторами (1988) показал, что у крыс с недостатком железа имеется очевидное увеличение опиатных пептидов. Лежащий в основе этого механизм изучен недостаточно полно, тем не менее, считается, что допамин является ингибитором опиатов. Другими словами, оказалось, что опиаты уменьшают способность к обучению, а допамин является ингибитором опиатов. Чем меньше Д2-рецепторов, тем менее выражен эффект допамина, что влечет за собой увеличение содержания опиатов (см. Рис. 1-5).

    Рисунок 1-5


    Способность к обучению. Переработано из материалов Yehuda с соавторами (1988)

    Влияние железа на миелинизацию:

    Yu с соавторами показали в исследовании на крысятах (1986), что недостаток железа у самки во время беременности и лактации, приводит к снижению миелинизации нервных клеток у крысят по сравнению с потомством крыс, имевших достаточное содержание железа. Очевидно, что если миелиновые оболочки дефектны, то импульсы не могут проходить должным образом, и, в результате, нормальная работа нервных клеток нарушается. Вследствие этого могут развиваться психические нарушения, часто необратимые (см. главу 4.1.2.).

    Рисунок 1-6


    Нейрон и синапс. При нарушении целостности миелиновой оболочки нарушается процесс прохождения импульсов и функции нервной клетки. В результате возникают психические отклонения, которые могут быть необратимы.

    Преимущественное развитие мозга человека происходит в перинатальном периоде и в первые годы жизни. Поэтому очень важно избежать дефицита железа именно в это время.

    Как уже упоминалось ранее, скрытый недостаток железа встречается не только в детском возрасте, но также может развиваться у подростков и молодых женщин. Исследование, проведенное в Японии, показало, что 71,8% школьниц страдают от скрытого недостатка железа уже через три года после начала менструации (Kagamimori с соавторами, 1988).

    1.4.2. Симптомы скрытого недостатка железа:

  • слабость, утомление
  • беспокойство, недостаточная концентрация внимания
  • утренние головные боли
  • депрессивная дисфория, психологическая лабильность
  • снижение работоспособности
  • пониженный аппетит
  • повышенная предрасположенность к инфекциям
  • трудность в подборе слов (беглость речи), забывчивость
  • 1.5. Диагностика

    1.5.1. Методы оценки содержания железа

    Такие признаки и симптомы анемии, как бледность кожи и конъюнктивы, слабость, одышка или сниженный аппетит, не являются специфичными и выявляются с трудом. Кроме того, на клиническую диагностику анемии влияют множество факторов, например, толщина кожи и степень ее пигментации. Поэтому, указанные симптомы не могут считаться надежными до тех пор, пока анемия не станет очень тяжелой. Таким образом, для диагностики латентного дефицита железа следует использовать лабораторные тесты (см. Рис. 1-7). Поскольку латентный дефицит железа не упоминается на Рис. 1-7, пожалуйста, посмотрите в главе 1.3.1. показатели, рекомендуемые для изучения начальной стадии анемии, а также ее выраженности.

    Рисунок 1-7


    Стадии развития железодефицитной анемии. Схема, иллюстрирующая различные уровни железа в условиях его избытка и недостатка. (Danielson с соавторами, 1996).

    Наиболее информативные тесты для диагностики анемии включают оценку общего объема всех эритроцитов (гематокрит) или концентрацию гемоглобина в циркулирующей крови. Оба измерения могут проводиться как в капиллярной крови, получаемой после прокола кожи, так и венозной крови, забираемой путем венепункции (DeMaeyer с соавторами, 1989).

    Механизмом, регулирующим обмен железа в организме человека, является всасывание железа в желудочно-кишечном тракте. Выделение его из организма кишечником, с кожей, потом с мочой, являющееся пассивным процессом, лимитировано. В последние 30 лет большое количество исследований в нашей стране и за рубежом посвящено изучению различных этапов всасывания железа. Однако этот механизм и особая роль слизистой оболочки кишечника в регуляции запасов железа и его превращений неизвестно.

    При среднем поступлении с пищей 10-20 мг железа в сутки у здорового человека не более 1-2 мг всасывается в желудочно-кишечный тракт. Наиболее интенсивно этот процесс происходит в двенадцатиперстной кишке и начальных отделах тощей кишки. Желудок играет лишь незначительную роль в усвоении: из него поступает в организм не более 1-2% от общего количества поступающего в желудочно-кишечный тракт. Соотношение в пище продуктов животного и растительного происхождения, веществ, усиливающих и тормозящих усвоение, состояние эпителия желудочно-кишечного тракта - всё это оказывает влияние на величину усвоения железа.

    Этапы обмена железа в организме

    Процесс усвоения железа состоит из ряда последовательных этапов:

    1) начальный захват железа щеточной каймой клеток слизистой оболочки кишечника.

    2) внутриклеточный транспорт, образование запасов железа в клетке.

    3) освобождение железа из слизистой оболочки кишечника в кровь.

    В экспериментальных исследованиях выяснилось, что клетки эпителия слизистой оболочки кишечника чрезвычайно быстро забирают железо из его полости. А ультразвуковые исследования показали, что первый этап обеспечивает достаточную концентрацию железа на поверхности слизистой оболочки клеток для последующего его усвоения организмом. При этом железо концентрируется щёточной кайме, превращения происходят на мембране микроворсинок.

    Второй этап - это поступление железа в богатую рибосомами цитоплазму и межклеточное пространство. И, наконец, третий этап - перенос железа в кровеносные сосуды.

    Комплекс трансферрин-железо, образовавшийся в результате захвата железа из клетки слизистой оболочкой кишечника, поступает главным образом в костный мозг, небольшая его часть - в запасный фонд, преимущественно в печень, и ещё меньшее количество железа забирается тканями для образования миоглобина, некоторых ферментов тканевого дыхания и нестойких комплексов железа с аминокислотами и белками.

    Костный мозг, печень и тонкий кишечник являются тремя основными органами обмена железа. Клетки костного мозга, так же как и клетки эпителия слизистой оболочки кишечника, имеют повышенную способность захватывать железо из насыщенного трансферрина. Таким образом ненасыщенный трансферрин лучше связывает, а насыщенный - лучше отдаёт железо.

    Основным источником плазменного железа являются его поступления из внутренних органов, таких как печень, селезёнка, костный мозг, где происходит разрушение гемоглобина эритроцитов. Небольшое количество железа поступает в плазму из запасного фонда и при взятии его из пищи в желудочно-кишечном тракте. Преобладающим циклом в обмене железа в организме человека является образование и разрушение гемоглобина эритроцитов, что составляет 25 мг железа в сутки. Фермент сыворотки крови, вероятно, осуществляет транспортировку железа к клеткам печени, однако его роль в общем обмене железа в организме человека представляется минимальной.

    Обмен железа между транспортным и тканевым его фондами изучен недостаточно, так как пути и движения железа из тканей в плазму крови и наоборот изучены мало. Расчётные данные, однако, свидетельствуют о том, что величина плазменно-тканевого обмена железа составляет приблизительно 6 мг в сутки.

    Темы

    13.1. Синтез гема и его регуляция

    13.2. Обмен железа

    13.3. Катаболизм гема

    Цели изучения Уметь:

    1. Описать диагностические признаки порфирий, железодефицитной анемии, гемохроматоза, желтух разной этиологии, используя знания о молекулярных механизмах нарушений метаболизма гема и железа.

    2. Интерпретировать уровни биохимических показателей продуктов катаболизма гема в биологических жидкостях для диагностики различных типов желтух.

    Знать:

    1. Роль железа в метаболизме, пути его поступления, транспорта, депонирования, реутилизации и потерь в организме.

    2. Основные этапы синтеза и катаболизма гема.

    3. Значение определения концентрации билирубина в биологических жидкостях для диагностики желтух разной этиологии.

    ТЕМА 13.1. СИНТЕЗ ГЕМА И ЕГО РЕГУЛЯЦИЯ

    1. Гем является простетической группой гемоглобина, миоглобина, цитохромов, каталазы, пероксидазы.

    2. Гем синтезируется во всех клетках, но наиболее активно синтез идет в печени и костном мозге. Эти ткани нуждаются в больших количествах гема, необходимого для образования гемоглобина и цитохромов. Субстратами синтеза гема являются глицин, сукцинил-КоА и Fe 2 +. В матриксе митохондрий из глицина и сукцинил-КоА под действием пиридоксальзависимого фермента 5-аминолевулинатсинтазы образуется 5-аминолевулиновая кислота, которая поступает в цитоплазму. В цитоплазме фермент 5 -аминолевулинатдегидратаза катализирует реакцию конденсации двух молекул 5-аминолевулиновой кислоты с образованием порфобилиногена. Далее из четырех молекул порфобилиногена последовательно образуются промежуточные метаболиты - порфириногены, последний из которых поступает в митохондрии и превращается в протопорфирин ГХ. Фермент феррохелатаза завершает образование гема, присоединяя Fe 2 + к протопорфирину IX (рис. 13.1).

    Рис. 13.1. Синтез гема.

    В митохондриях клеток пиридоксальзависимый фермент 5-аминолевулинатсинтаза катализирует первую реакцию синтеза гема. Затем 5-аминолевулиновая кислота поступает в цитоплазму, где 5-аминолевулинатдегидратаза катализирует превращение двух молекул 5-аминолевулината в порфобилиноген, имеющий циклическое строение. В результате последовательных реакций в цитоплазме образуется протопорфирин IX. Он поступает в митохондрии и под действием фермента феррохелатазы соединяется с Fe+ 2 с образованием гема

    3. Две первые реакции синтеза гема катализируют ферменты, аллостерическим ингибитором которых является гем. Вместе с тем гем является индуктором синтеза α- и β-цепей гемоглобина. В ретикулоцитах Fe 2 + индуцирует синтез 5-аминолевулинатсинтазы (рис. 13.2). Стероидные гормоны и некоторые лекарства (барбитураты, диклофенак, сульфаниламиды, эстрогены, прогестины) являются индукторами синтеза 5-аминолевулинатсинтазы.

    4. В результате генетических дефектов или нарушений регуляции ферментов, участвующих в биосинтезе гема, развиваются порфирии. Первичные порфирии обусловлены генетическими дефектами в структуре генов,

    Рис. 13.2. Регуляция синтеза гема и гемоглобина.

    Гем по принципу отрицательной обратной связи ингибирует 5-аминолевулинатсин- тазу и 5-аминолевулинатдегидратазу, а также является индуктором трансляции α- и β-цепей гемоглобина. Ионы Fe 2 + индуцируют синтез 5-аминолевулинатсинтазы

    кодирующих ферменты синтеза гема, вторичные - связаны с нарушениями регуляции реакций синтеза гема. Порфирии может вызвать прием лекарственных препаратов, являющихся индукторами синтеза 5-аминолевулинат- синтазы. Эти заболевания сопровождаются накоплением в клетках промежуточных метаболитов синтеза гема порфириногенов, которые оказывают токсическое действие на нервную систему и вызывают нейропсихические симптомы. Порфириногены на свету превращаются в порфирины, которые при взаимодействии с кислородом образуют активные радикалы, повреждающие клетки кожи.

    ТЕМА 13.2. ОБМЕН ЖЕЛЕЗА

    Железо входит в состав гемсодержащих белков, а также металлофлавопротеинов, железосерных белков, трансферрина, ферритина.

    1. Источником железа при биосинтезе белков, содержащих железо, являются пищевые продукты. Обычно всасывается не более 10% железа пищи. Железо, освобождающееся при постоянном распаде эритроцитов в клетках печени и селезенки, может повторно использоваться для синтеза железосодержащих белков.

    Кислая среда желудка и присутствие в пище аскорбиновой кислоты, восстанавливающей Fe 3 +, способствуют освобождению железа из солей органических кислот пищи (рис. 13.3).

    2. Поступление железа из энтероцитов в кровь зависит от скорости синтеза в них белка апоферритина. Апоферритин улавливает железо в клетках слизистой кишечника и превращается в ферритин, который остается

    Рис. 13.3. Обмен железа.

    Железо поступает с пищей, транспортируется кровью в форме трансферрина, запасается в виде ферритина и используется для синтеза цитохромов, железосодержащих ферментов, гемоглобина и миоглобина.

    Организм теряет железо с мочой, калом, потом и при кровотечениях.

    Гемосидерин аккумулирует избыток железа

    в энтероцитах. Это снижает поступление железа в кровь из клеток кишечника. Когда потребности в железе невелики, скорость синтеза апоферритина повышается. Слущивание клеток слизистой оболочки кишечника освобождает организм от излишков железа. При недостатке железа в организме апоферритин в энтероцитах почти не синтезируется.

    Фермент крови ферроксидаза (церулоплазмин) окисляет железо, оно связывается с гликопротеином крови трансферрином и транспортируется кровью (рис. 13.4).

    3. Трансферрин взаимодействует со специфическими рецепторами и поступает в клетки. Количество рецепторов трансферрина зависит от содержания железа в клетках и регулируется на уровне транскрипции гена белкарецептора. При снижении содержания железа в клетках скорость синтеза рецепторов повышается, и наоборот.

    Рис. 13.4. Поступление экзогенного железа в ткани.

    В полости кишечника Fe 3 + высвобождается из белков и солей органических кислот пищи. Усвоение Fe 3 + улучшает аскорбиновая кислота, восстанавливающая его до Fe+ 2 . Поступление Fe 2 + из слизистой оболочки кишечника в кровь сопровождается окислением железа медьсодержащим ферментом плазмы крови ферроксидазой. Избыток поступившего в клетки слизистой оболочки кишечника железа соединяется с белком апоферритином, который окисляет железо и превращается в ферритин. В крови Fe 3 + транспортирует белок плазмы крови трансферрин. В тканях Fe 2 + используется для синтеза железосодержащих белков или депонируется в составе ферритина.

    4. Белок ферритин играет роль депо железа в клетках печени, селезенки, костного мозга. Избыток железа аккумулируется в печени и других тканях в составе гранул гемосидерина. Если количество железа в клетках превышает объем ферритинового депо, то оно откладывается в белковой части молекулы ферритина. Таким образом ферритин превращается в гемосидерин, который плохо растворим в воде и может содержать до 37% железа. Накопление гранул гемосидерина в ретикулоэндотелиоцитах печени и селезенки может привести к повреждению органа - гемохроматозу.

    При недостаточном поступлении или нарушении утилизации железа развивается железодефицитная анемия.

    ТЕМА 13.3. КАТАБОЛИЗМ ГЕМА

    1. Распад гема происходит в эндоплазматическом ретикулуме клеток эндотелиальной системы селезенки, костного мозга и печени при участии ферментов гемоксигеназной системы (рис. 13.5). В результате ряда превращений образуется непрямой (не дающий прямую реакцию с диазореактивом, так как связан с белком альбумином) - неконъюгированный билирубин. Билирубин плохо растворим в воде и транспортируется кровью в печень в комплексе с альбумином.

    Рис. 13.5. Катаболизм гема

    2. Билирубин поступает в гепатоциты по механизму облегченной диффузии с помощью белков-переносчиков лигандина и протеина Z. В печени билирубин конъюгирует с глюкуроновой кислотой под действием ферментов эндоплазматического ретикулума УДФ-глюкуронилтрансферазы I, катализирующей образование билирубинмоноглюкуронида и УДФ-глюкуронилтрансферазы II, образующей билирубиндиглюкуронид. В результате реакций конъюгации образуется прямой или конъюгированный, билирубин (рис. 13.6).

    Рис. 13.6. Образование билирубинмоноглюкуронида и билирубиндиглюкуронида (прямого билирубина) в гепатоцитах

    Синтез УДФ-глюкуронилтрансфераз индуцируют некоторые лекарственные препараты, например, фенобарбитал.

    3. По механизму активного транспорта прямой билирубин в составе желчи поступает в двенадцатиперстную кишку. В кишечнике ферментами микрофлоры он гидролизуется с образованием билирубина и глюкуроновой кислоты. Билирубин в результате нескольких реакций восстановления превращается в бесцветные тетрапирролы - уробилиногены. В результате окисления они превращаются в уробилин, который выводится из организма, являясь пигментом кала уробилином (стеркобилином) (200-300 мг/сут). Небольшая часть уробилиногенов всасывается в кишечнике, с кровью воротной вены транспортируется в печень, оттуда поступает в кровь, затем в почки и, окисляясь в пигмент желтого цвета уробилин, удаляется с мочой(3-4 мг/ сут).

    4. Концентрация общего билирубина в крови здорового человека составляет 1,7-17 мкмоль/л (0,1-1 мг/дл). Повышение концентрации билирубина в крови - гипербилирубинемия - может быть обусловлено увеличением образования билирубина, превышающим способность гепатоцитов его конъюгировать и экскретировать в кишечник, закупоркой желчевыводящих протоков, генетическими дефектами ферментов и белков, участвующих в метаболизме билирубина в печени. Когда концентрация билирубина в крови превышает норму более чем в 2,5 раза, он поступает в ткани, окрашивая их в желтый цвет. Пожелтение склер глаз, кожи и слизистых оболочек из-за отложения в них билирубина называют желтухой.

    5. При дифференциальной диагностике желтух в крови определяют концентрацию прямого, непрямого и общего билирубина, в моче - содержание прямого билирубина и уробилина, в кале - содержание уробилина (стеркобилина). В зависимости от механизма возникновения различают несколько типов желтух.

    Гемолитическая (надпеченочная) желтуха является следствием ускоренного гемолиза эритроцитов при генетических дефектах глюкозо- 6-фосфат дегидрогеназы, пируваткиназы или белков плазматической мембраны эритроцитов, отравлении сильными окислителями, переливании несовместимых групп крови. При этом увеличивается по сравнению с нормой поступление билирубина в кровь и образование непрямого билирубина. Уровень непрямого билирубина в крови возрастает в 2-3 раза по сравнению с нормой, так как потенциальная способность гепатоцитов инактивировать билирубин ограничена. В моче и кале повышено содержание уробилина и стеркобилина, соответственно.

    Механическая (подпеченочная) желтуха является результатом нарушения секреции желчи, вызванным закупоркой желчных протоков камнями или послеоперационными рубцами. В крови повышается концентрация непрямого и прямого билирубина, который поступает в мочу, придавая ей коричневый цвет. В моче и кале отсутствуют уробилин и стеркобилин, поэтому кал больных ахолический (бесцветный).

    Печеночно-клеточная (печеночная) желтуха сопровождает разные формы гепатита. В этом случае снижается способность гепатоцитов захватывать билирубин из крови и экскретировать его в кишечник, поэтому в крови повышается концентрация прямого и непрямого билирубина, а в моче и кале снижается содержание конечных продуктов распада гема. Поскольку концентрация прямого билирубина в крови превышает почечный порог, то он фильтруется в мочу, окрашивая ее в коричневый цвет. Из-за снижения содержания стеркобилина кал больных светлый.

    Желтуха новорожденных - это «физиологическая» желтуха. Она обусловлена большим по сравнению взрослым организмом количеством эритроцитов в расчете на массу тела. После рождения ребенка эритроциты разрушаются, так как HbF замещается HbA. Кроме того, у новорожденных может наблюдаться запаздывание «включения» гена глюкуронилтрансферазы, недостачная способность гепатоцитов улавливать билирубин из крови и экскретировать прямой билирубин в желчь. Неконъюгированный билирубин проходит через гематоэнцефалический барьер и, являясь разобщителем окислительного фосфорилирования, снижает синтез АТФ в клетках головного мозга и вызывает пирогенное действие. Дегенеративные изменения нервных клеток приводят к билирубиновой энцефалопатии. Новорожденным назначают барбитураты для индукции синтеза глюкуронилтрансферазы. Кроме того, для снижения уровня неконъюгированного билирубина используют фототерапию новорожденных сине-зеленым светом с длиной волны 620 нм. В результате такого облучения билирубин окисляется и превращается в гидрофильные фотоизомеры, которые поступают в почки и выводятся из организма с мочой.

    Наследственные желтухи обусловлены генетическими дефектами белков, участвующих в метаболизме билирубина в печени. Например, синдром Жильбера связан с генетическими дефектами белков, захватывающих билирубин из крови, синдром Дубина-Джонса - с дефектом белков, участвующих в экскреции прямого билирубина в кишечник, а при синдроме Криглера-Найяра нарушена первичная структура глюкуронилтрансферазы.

    ЗАДАНИЯ ДЛЯ ВНЕАУДИТОРНОЙ РАБОТЫ

    1. Составьте схему синтеза гема, указав регуляторные ферменты и их аллостерические ингибиторы.

    2. Рассчитайте количество молекул глицина, необходимое для синтеза молекулы гема, и число атомов азота аминогрупп глицина, включающихся в состав пиррольных колец гема.

    3. Объясните, почему при наследственных дефектах ферментов синтеза гема кожа больных обладает повышенной чувствительностью к солнечному облучению, а моча приобретает красный цвет. Накопление каких промежуточных продуктов синтеза гема вызывает эти симптомы? Как называются болезни, обусловленные генетическими дефектами ферментов синтеза гема?

    4. Укажите причину возникновения порфирий у некоторых новорожденных при лечении сульфаниламидами.

    5. Используя схему метаболизма железа (рис. 13.7), укажите обозначенные цифрами:

    1 - условия среды и витамин, способствующие освобождению железа из

    солей органических кислот, содержащихся в пище;

    2 - белок, регулирующий поступление железа из энтероцитов в капил-

    ляры крови;

    3 - белок, связывающий избыток железа в энтероцитах;

    4 - фермент, окисляющий железо в крови и облегчающий включение

    железа в апотрансферрин;

    5 - белок, транспортирующий железо в крови;

    6, 7 - белки, которые аккумулируют и депонируют железо в тканях; основные железосодержащие белки:

    8 - костного мозга;

    10-других тканей;

    11-основной гемсодержащий белок эритроцитов.

    6. Перенесите в тетрадь и заполните таблицу 13.1. Таблица 13.1. Анемии и их характеристики

    Рис. 13.7. Поступление, транпорт и использование железа в организме

    7. В схеме превращения билирубиндиглюкуронида в кишечнике (рис. 13.8) укажите вещества А, Б, В, Г.

    Рис. 13.8. Превращения билирубиндиглюкуронида в кишечнике

    Таблица 13.2. Дифференциальная диагностика различных видов наследственных желтух

    Синдром

    Причины возникновения

    Биохимические показатели обмена билирубина

    Кровь

    Моча

    Общий билирубин

    Билирубин непрямой

    Билирубин прямой

    Билирубин прямой

    Уробилин

    Стеркобилин

    Синдром Жильбера

    Нарушен захват гепатоцитами билирубина из крови

    Криглера-

    Дефект глюкуронилтранс- феразы

    Синдром Ротора и Дубина- Джонсана

    Нарушено выделение билирубина в желчь

    ЗАДАНИЯ ДЛЯ САМОКОНТРОЛЯ

    1. Выберите правильные ответы. Синтез гема:

    A. Происходит в эритроцитах

    Б. Снижается при авитаминозе В 6

    B. Регулируется гемом и гемоглобином

    Г. Тормозится при дефиците железа в организме Д. Локализован в митохондриях

    2. Выберите правильный ответ. Феррохелатаза:

    A. Активируется аскорбиновой кислотой Б. Содержит кофермент биотин

    B. Присоединяет железо к порфобилиногену Г. Является аллостерическим ферментом

    Д. Присоединяет железо к протопорфирину

    3. Выберите правильные ответы.

    A. Суточная потребность в железе - 10-20 мг

    Б. Причина макроцитарной анемии - дефицит железа в организме

    B. После распада гема железо используется повторно

    Г. Основная часть железа в организме содержится в геме

    Д. Большая часть железа в организме находится в ферритине

    4. Выберите правильные ответы. Железо в организме:

    A. Необходимо для синтеза гемопротеинов Б. Депонируется в ферритине

    B. Транспортируется церулоплазмином

    Г. Избыток аккумулируется гемосидерином Д. Транспортируется гемоглобином

    5. Выберите правильные ответы. Железодефицитные анемии могут возникнуть при:

    A. Систематических кровопотерях

    Б. Повышении свертываемости крови

    B. Снижении синтеза трансферрина Г. Беременности

    Д. Недостатке железа в пище

    6. Выберите правильные ответы. Причинами гемохроматоза могут быть:

    A. Недостаточность синтеза ферритина Б. Интенсивная лактация

    B. Частые переливания крови

    Г. Повышение всасывания железа в кишечнике Д. Снижение свертываемости крови

    7. Установите правильную последовательность событий. При катаболизме гема:

    A. Гемоксигеназная система эндоплазматического ретикулума превращает гемоглобин в биливердин

    Б. Билирубин соединяется с альбумином

    B. Биливердинредуктаза восстанавливает биливердин в билирубин Г. В гепатоцитах образуется конъюгированный билирубин

    Д. Непрямой билирубин транспортируется кровью в печень

    8. Выберите правильные ответы. Глюкуронилтрансфераза:

    A. Катализирует реакцию конъюгации

    Б. Индуцируется фенобарбиталом и этанолом

    B. Участвует в образовании прямого билирубина Г. Содержится в гепатоцитах

    Д. Необходима для обезвреживания прямого билирубина

    9. Установите соответствие.

    A. Непрямой билирубин

    Б. Билирубиндиглюкуронид

    B. Уробилиноген Г. Биливердин Д. Уробилин

    1. Концентрация в крови повышается при гемолитической желтухе

    2. В составе желчи секретируется в кишечник

    3. В норме содержится в моче

    10. Выберите правильные ответы. При паренхиматозной желтухе:

    A. Увеличивается концентрация прямого билирубина в крови Б. В моче присутствует билирубин

    B. В кале увеличено содержание стеркобилина

    Г. Повышается уровень непрямого билирубина в крови Д. Кал ахолический (обесцвечен)

    ЭТАЛОНЫ ОТВЕТОВ К «ЗАДАНИЯМ ДЛЯ САМОКОНТРОЛЯ»

    1. Б, В, Г

    3. В, Г

    4. А, Б, Г

    5. А, В, Г, Д

    6. В, Г

    7. А→В→Б→Д→Г

    8. А, Б, В, Г

    9. 1-А, 2-Б, 3-Д

    10. А, Б, Г

    ОСНОВНЫЕ ТЕРМИНЫ И ПОНЯТИЯ

    2. Порфирии

    3. Ферритин

    4. Ферроксидаза (церулоплазмин)

    5. Трансферрин

    6. Железодефицитная анемия

    7. Гемохроматоз

    8. Биливердин

    9. Билирубин (прямой и непрямой)

    10. Уробилиногены

    11. Уробилин

    12. Стеркобилин

    13. Желтухи: гемолитическая (надпеченочная), печеночно-клеточная (печеночная), механическая (подпеченочная), новорожденных, наследственные.

    ЗАДАНИЯ ДЛЯ АУДИТОРНОЙ РАБОТЫ

    Решите задачи

    1. Молодая девушка обратилась к дерматологу по поводу красноты, отечности и зуда, появившихся на открытых участках кожи после загородной прогулки в солнечный день. Врач выяснил, что пациентка принимала лекарство

    бисептол (препарат, содержащий сульфаниламид) в связи с обострением хронического бронхита. В крови больной обнаружены 5-аминолевулинат и порфобилиноген, моча окрашена в красный цвет. Объясните причину фотодерматоза у этой пациентки и установите заболевание, которым она страдает. Для этого:

    а) напишите две первые реакции метаболического пути, в котором обнаруженные в крови пациентки вещества являются промежуточными продуктами;

    б) назовите фермент, синтез которого индуцируют сульфаниламиды, укажите механизм его регуляции;

    в) объясните молекулярные механизмы возникновения симптомов заболевания.

    2. Больному, страдающему железодефицитной анемией, врач назначил лекарственный препарат ферро-фольгамма, содержащий аскорбиновую кислоту, сульфат железа, фолиевую кислоту и витамин В 12 Обоснуйте рекомендацию врача, описав роль каждого компонета препарата в метаболизме железа, синтезе гема и гемоглобина.

    3. Врожденная атрансферринемия (болезнь Хелмейера) сопровождается нарушением включения железа в синтез гема. Объясните причину железодефицитного состояния, обусловленного недостаточностью трансферрина. Для этого:

    а) опишите этапы поступления экзогенного железа в клетки;

    б) укажите роль трансферрина в метаболизме железа.

    4. В инфекционное отделение больницы поступил пациент с жалобами на слабость, повышенную температуру - 38,5 °С и с выраженной желтушной окраской кожи и слизистых оболочек. Концентрации прямого и непрямого билирубина в крови пациента повышены. В моче присутствует прямой билирубин, содержание уробилина в моче и стеркобилина в кале снижено. Каким типом желтухи страдает пациент? Для ответа на вопрос:

    а) представьте схему образования непрямого билирубина;

    б) напишите схему реакций конъюгации билирубина;

    в) перечислите свойства прямого и непрямого билирубина, объясните причины токсичности неконъюгированного (непрямого) билирубина;

    г) укажите, активность каких органоспецифичных ферментов гепатоцитов определяют в крови для диагностики патологий печени, и опишите основные принципы, лежащие в основе энзимодиагностики.

    5. Двум новорожденным, у которых была обнаружена желтуха, врач рекомендовал фототерапию. У одного ребенка состояние улучшилось и симптомы желтухи исчезли. Второму ребенку облучение сине-зеленым светом не помогло, поэтому ему назначили фенобарбитал. Однако такое лечение оказалось неэффективным, и у ребенка появились симптомы энцефалопатии. Обоснуйте рекомендации врача и объясните результаты лечения. Для этого:

    а) объясните возможные причины возникновения «физиологической» желтухи новорожденных;

    б) укажите, как изменяется концентрация билирубина в крови, стеркобилина и уробилина соответственно в кале и моче больных детей;

    в) объясните механизмы лечебного действия фототерапии и фенобарбитала и напишите схему реакции, на скорость которой влияет фенобарбитал;

    г) перечислите возможные причины желтухи у второго новорожденного.

    6. У больного с генетическим дефектом белка плазматической мембраны эритроцитов появилась желтушность склер, слизистых оболочек и кожи. В крови пациента повышена концентрация непрямого билирубина, кал интенсивно окрашен, в моче билирубин отсутствует. Какой диагноз можно поставить этому пациенту? Для ответа на вопрос:

    а) укажите концентрацию общего билирубина в крови в норме;

    б) опишите этапы катаболизма гема;

    в) объясните причину повышения непрямого билирубина в крови пациента.

    7. При определении концентрации прямого и непрямого билирубина в крови трех больных с желтушностью склер, слизистых оболочек и кожи были получены результаты, представленные в табл. 13.3.

    Таблица 13.3. Содержание прямого и непрямого билирубина в крови мкмоль/л

    Установив соответствие, определите, каким типом желтухи страдает каждый из обследованных пациентов:

    а) гемолитическая желтуха, вызваннная генетическим дефектом белка плазматической мембраны эритроцитов;

    б) паренхиматозная желтуха, развившаяся при вирусном гепатите;

    в) обтурационная желтуха, вызванная обострением желчнокаменной болезни.