Определение понятия "реактивность организма". Скачать медицинские учебники, лекции Реактивность организма учение о реактивности организма

Глава 4.
РЕАКТИВНОСТЬ ОРГАНИЗМА И ЕЕ РОЛЬ В ВОЗНИКНОВЕНИИ, РАЗВИТИИ И ИСХОДЕ БОЛЕЗНЕЙ

Реактивность организма - это его способность адекватно реагировать на изменяющиеся условия внешней и внутренней среды. Реактивность включает в себя весь набор доступных организму адаптивных ответов, в том числе все унаследованные нормы реакции , а также ненаследуемые программы, связанные с индивидуальным онтогенетическим опытом и сохраняемые иммунологической памятью и нейропамятью. При этом под нормой реакции подразумевается, по И.И.Шмальгаузену, доступный индивиду диапазон ответа при разных условиях среды.

Реактивность основывается на библиотеке программ организма, но не сводится к ней, так как включает не только доступный индивиду диапазон каждой реакции, но и тенденцию к выбору определенных способов и масштабов реагирования {3} . Учение о реактивности представляет собой не область генетики, а скорее функциональную фенетику организма, поскольку изучает элементарные единицы функции - реактоны (понятие, близкое фенам) и способы их комбинации и интеграции в целостном организме. Реактивность рассматривается как атрибутивное свойство живых систем, особая биологическая форма отражения, присущая всем уровням организации живого, как индивидуальная мера приспособительных возможностей целостного организма.

Реактивность - не количественное понятие, у одного индивида она не может быть вообще больше или, в целом, меньше, чем у другого. Она просто разная, как бывают разными два спектра излучения или две по-разному искривленные плоскости.

Поскольку реактивность дискретна и подобна спектру, где отдельные линии - это нормы реакции или адаптивные ответы, доступные организму, то можно говорить только о ее большей или меньшей широте или о наличии, либо отсутствии в этой библиотеке определенных программ.

Так, лихорадка - это ответ на пирогены, который существует у млекопитающих, но отсутствует в спектре реактивности рыб.

Иногда сравнивая состояния, характеризующиеся выраженными и заторможенными реакциями организма на различные стимулы (например, бодрствование и сон), говорят о повышенной и пониженной реактивности, свойственной этим состояниям, но такая терминология не является строгой. Существует также понятие о гиперергических, нормергических и гипергических формах реакций организма. Но в этом случае всегда идет речь не о реактивности в целом, а об отдельных реакциях: например, когда сравнивается иммунный ответ в норме, при аллергии и при иммунодефиците.

РЕАКТИВНОСТЬ И РЕЗИСТЕНТНОСТЬ

По Н.Н.Сиротинину (1966), реактивность организма тесно связана с его резистентностью .

Резистентность - это количественное понятие, отражающее степень, устойчивости организма к тому или иному конкретному патогенному фактору. Резистентность может быть измерена в каждом отдельном случае (например, дозой токсина, вызывающей смерть животного при отравлении).

Резистентность не может быть универсальной из-за различий в природе патогенных факторов. Правда, если патогенный фактор характеризуется широкой повсеместной встречаемостью и его действие наблюдается при многих патологических процессах, то резистентность к нему будет означать устойчивость к широкому кругу воздействий.

Например, поскольку гипоксия встречается при множестве различных болезней и сопровождает острую гибель организма всегда, независимо от причин этой гибели; стресс, как фактор, повышающий резистентность к острой гипоксии будет неспецифически адаптировать организм к крайне широкому кругу разнообразных влияний.

Платон так отразил в «Протагоре» свое понимание видовой реактивности: «Было некогда время, когда боги-то были, а смертных родов не было… Когда же вознамерились боги вывести их на свет, то приказали Прометею и Эпиметею украсить их и распределить силы, подобающие каждому роду. Эпиметей выпросил у Прометея позволения самому распределять силы...

При этом одним уделил он силу без быстроты, а более слабых украсил быстротою; одних он вооружил, других сделал по природе безоружными, но зато придумал для них какую-то иную силу во спасение. Кого из них облек он малостью, тем уделил птичий лет или подземную обитель, а кого возрастил величиною, того тем самым и спас; и так, распределяя все остальное, он всех уравнивал. Это сделал он из осторожности, чтоб не исчез ни один род ».

Гиппократ в своем учении о четырех группах, на которые можно разделить всех людей по характеру смешения жидкостей в их организме, определяющему тип их реактивности, настолько глубоко проник в суть вещей, что мы продолжаем пользоваться понятиями «сангвиник », «холерик », «меланхолик » и «флегматик » и поныне.

Птолемей Диоскорид писал о уникальном смешении жизненных соков у отдельных индивидов, а Секст Эмпирик ввел понятие об идиосинкразии - повышенной чувствительности отдельных индивидов к факторам, малопатогенным для большинства.

Основателем первой развернутой концепции о роли реактивности в патологии считается Клавдий Гален, сформулировавший «правило исходного состояния организма». Гален учил, что причинный фактор вызывает болезнь, только действуя на организм, у которого сложилось особое состояние предрасположенности.

Гераклит Эфесский около 2500 лет назад, фактически, выразил в образной форме одну из краеугольных идей учения о реактивности - концепцию гомеореза (см. также стр. 13, а, 54): «Лишь перемены постоянны… Человек подобен фонтану, все та же форма, но всегда новая вода».

Выше уже подчеркивалась роль Авиценны и его идеи «внутренней связующей причины» в создании понятия «реактивность».

В новое время Ф.Глиссон (1672) ввел понятие раздражимости , как свойства всего живого воспринимать раздражения и реагировать на них, а Дж.Браун (1780) сформулировал тезис о возбуждаемости организма в ответ на изменения среды обитания и разделил ответы на стенические, астенические и нормостенические (доктрина, известная в России как «броунизм»). По мнению шевалье Ж. -Б. Ламарка, адаптация животных протекает в режиме упражнения органов для достижения определённых целей, под контролем заданного внутреннего параметра - «стремления к совершенству» (1814).

Р.Вирхов отвел «прирожденным свойствам и предрасположениям клеток» решающую роль в предопределении последствий действия причинных факторов болезней на организм и считал, что в клетках заложены прирожденные реакции, «раздражения», в частности, нутритивное, определяющие ход патологических процессов (1852).

Клоду Бернару принадлежит приоритет в формулировке центральной для учения о реактивности концепции о «постоянстве внутренней жидкой среды» организма (1856). Он писал: «Болезнетворные причины, каково бы ни было их общее действие, влияют далеко не одинаково интенсивно на различных индивидов... одни поддаются так легко, тогда как другие энергично сопротивляются». Внутреннюю силу, детерминирующую результат внешних воздействий на организм он, вслед за античными авторами, именовал идиосинкразией. Бернар выделял групповую, в частности - расовую, а также видовую, индивидуальную идиосинкразию и ставил вопрос о том, что благодаря реактивности индивиды «сильно отличаются между собой даже в пределах здоровья» (1871). Произведя укол в дно четвертого желудочка, Бернар наблюдал в ответ на это глюкозурию и истощение запасов печеночного гликогена у собак. «Сахарный укол» он считал доказательством интегрирующей роли ЦНС в реактивности. Основой идиосинкразии, вследствие этого, Бернар полагал особенности организации нервной системы. Карл Рокитанский (1849), напротив, закреплял главную интегрирующую роль в реактивности за гуморальной регуляцией.

В дальнейшем учение о реактивности подпитывалось идеями и фактами, пришедшими из физиологии нервной и эндокринной систем, бактериологии и иммунологии. Наметилась даже конкуренция теорий, основанных на приоритете той или иной интегративном системы.

Еще в 1775 году французский врач Теофиль Бордю опубликовал недооцененный современниками трактат «О медицинском анализе крови. Исследование о хронических заболеваниях», содержащий прозрения, касающиеся нервной и гуморальной регуляции, которые далеко опередили его время. Он, в частности, писал: «Мы приходим к убеждению, что каждый орган имеет импульс, приходящий от мозга, структура которого такова, что его различные части осуществляют разные функции и управляют соответствующими нервами, так что происходящее в органах есть только результат и образ первособытий в мозге». Это можно считать первой формулировкой доктрины нервизма в учении о реактивности, хотя сама идея рефлекса сформулирована Р.Декартом ещё ранее. И.М.Сеченов (1863) в классическом труде «Рефлексы головного мозга» так описал центральную роль рефлекторных ответов в реактивности организма, включая ее высшие поведенческие формы: «Смеется ли ребенок при виде игрушки, улыбается ли Гарибальди, когда его гонят за излишнюю любовь к родине, дрожит ли девушка при первой мысли о любви, создает ли Ньютон мировые законы и пишет их на бумаге - везде окончательным фактом является мышечное движение» как итог работы рефлексов. «... Все акты сознательной и бессознательной жизни по способу происхождения суть рефлексы».

И.П.Павлов (1842-1932) создал учение о безусловных и условных рефлексах, что способствовало пониманию взаимоотношений между прирожденными и приобретенными в ходе онтогенетического опыта механизмами реактивности. На основе своего понимания механизмов высшей нервной деятельности, придавая нервной системе решающую роль в интеграции реактивности, он предложил оригинальную классификацию типов высшей нервной деятельности, ввел понятие динамического стереотипа в поведении. X.Эппингерр и Л.Гесс (1913) обозначили роль вегетативной нервной системы в реактивности и создали понятие о ваготонии и симпатикотонии .

А.А.Ухтомский ввел понятие доминанты (1923) - господствующей в данный момент в ЦНС структуры или функциональной системы, стойко определяющей особенности выбора способов и масштабов реагирования и связал эти представления с концепцией парабиоза нервных центров.

Благодаря П.Эрлиху (1901) и И.И.Мечникову (1883) дифференцировалось понятие специфической иммунологической реактивности .

Эрлих считал антитела «оторвавшимися от клетки боковыми фиксирующими цепями» то есть, по современной терминологии -рецепторами. Фактически, он подчеркивал, что иммунитет - сложная форма комплементарного отражения. Ему принадлежит одно из первых обращений к принципу комплементарности или структурного однозначного соответствия между молекулами, который пронизывает все уровни субстрата реактивности. Эрлих говорил: «Corpora non agunt nisi fixata» - то есть: тела не действуют, если не распознают.

И.И.Мечников (1883) открыл фагоцитоз, как важнейший компонент клеточной реактивности, что затем получило свое развитие в концепции Л.Ашоффа (1924) о ретикулоэндотелиальной системе и в современном понимании трансформировалось в представление о ключевой роли системы мононуклеарных фагоцитов в управлении наиболее важными стереотипами реактивности (лихорадка, воспаление, преиммунный и иммунный ответ). Он создал сравнительно-эволюционное направление в изучении реактивности, показав, что видовая реактивность - есть сумма филогенетических находок эволюционных предков данного вида. Сравнивая ответ на повреждение у представителей различных таксономических групп, он убедился, что тип реактивности может служить критерием систематики.

Выдающийся философский труд Мечникова «Этюды о природе человека» (1903) посвящен обоснованию и анализу его глубочайшей идеи о принципиальной, изначальной биологической дисгармонии человеческой природы, связанной с его филогенетическим происхождением. Мечников показывает, что механизмы реактивности человека внутренне противоречивы, а последствия их использования амбивалентны, что накладывает свой отпечаток на все биосоциальное развитие цивилизации.

Ученику Мечникова А.А.Богомольцу (1926) принадлежит идея о центральной роли производных мезенхимы (в том числе, иммунной системы и ее эффекторов) в реактивности.

Важным этапом в развитии иммунологического направления доктрины реактивности, стали работы Ш.Рише и Э.Портье (1902), создавших учение об анафилаксии , как форме гиперергической иммунологической реактивности. Анафилактические реакции описывались еще ранее - например, Ф.Мажанди (1838), но не выделялись из идиосинкразии.

В 1906 году австрийский педиатр К.фонПирке формулирует представление об аллергии , как измененной реактивности к веществам, возникшей в результате предыдущего контакта. Это можно считать началом представлений о патологической реактивности.

Т.Бордю в цитированной выше исторической работе 1775 года задолго до открытия гормонов, эндокринных желез и, тем более, диффузной эндокринной системы, писал: «Каждый орган служит фабрикой и Лабораторией специфического гуморального агента, который, по приготовлении и приобретении индивидуально присущих ему свойств, возвращается в кровь. Кровь обладает специфическими свойствами, приобретенными в органах, через которые она проходит. Каждый орган посылает в нее свою эманацию. Таким образом кровь несет в своем потоке экстракты всех органов, необходимые для жизни целостного организма». Бордю считал, что эти специфические вещества присутствуют в крови в количествах, «недоступных для определения химиками» того времени, но обеспечивают «благополучие целого». Насколько нам известно, это была первая развернутая догадка о существовании в организме интегративной системы, основанной на химических сигналах, предаваемых через кровоток. Только через 126 лет был выделен и химически охарактеризован первый гормон - адреналин мозгового вещества надпочечников (Дж.Тэйкэмайн, 1901). В 1902 году Э.Старлингом и У.Бейлиссом на примере секретина было введено само понятие «гормон », что способствовало конкретизации представлений об эндокринных основах реактивности. А.А.Богомолец (1908) установил, что кора надпочечников реагирует на самые различные экспериментальные воздействия накоплением «липоидного секрета». Дж.Асколи и Т.Леньяни (1912) наблюдали атрофию коры надпочечников после экспериментального разрушения гипофиза. Б.М.Аллену (1916,1920) и Ф.Э.Смиту и Дж.Б.Грезеру (1916, 1924) удалось продемонстрировать стимулирующее действие гипофиза на рост и функцию периферических эндокринных желез. Впоследствии Г.Селье (1936, 1948) описал стресс и показал его фундаментальное значение в неспецифической реактивности организма. Концепция стресса детально рассматривается ниже в специальной главе. Селье принадлежит и приоритет в формулировке принципа дискретности реактивности (см. выше о реактонах и актонах).

Важное значение имело открытие Л.Р.Перельманом (1924) пермиссивного действия гормонов , доказавшее, что эффект одного биорегулятора может изменяться в зависимости от действия других биорегуляторов, то есть от общей эндокринной «оркестровки или контекста» (см. ниже в разделе «Механизмы некробиоза»). Пермиссивность обозначает, что гормон действует не только в качестве прямого комплементарного рецептору сигнала, но и выполняет роль символа, включающего пакет плейотропных эффектов, создающих определённую сцену или контекст, для интерпретации других сигналов. На Западе к аналогичной идее в 1951-1952 гг. году пришли Д.Дж.Ингл и Ф.Л.Энгел. Ныне пермиссивные эффекты гормонов истолковываются, как проявление пострецепторных взаимодействий контролируемых ими доменов. В середине нынешнего столетия были выяснены роль гипофиза в контроле обмена веществ, в частности, его взаимоотношения с инсулиновой регуляцией (А.Усай., 1947); пути контролирующего действия гипоталамуса по отношению к гипофизу (Дж.У.Торн, Дж.У.Харрис, 1955). Затем идентифицировали сигнальные агенты этих контуров регуляции: нонапептиды нейрогипофиза (В. Дювинье) и стероидные гормоны коры надпочечников (Т.Рейхштейн, Й.фон Эйв, 1938, Э.Кендалл и соавт., 1936-1948).

Благодаря развитию радиоиммунологического определения гормонов и других биорегуляторов стало возможным прецизионное измерение масштабов и характера гуморальных реактивных ответов организма in vivo (С.Берзон, Р.Ялоу 1968). Это привело к обнаружению гипоталамических гормонов, контролирующих аденогипофиз (Р.Гиймен, Э.В.Шалли, 1977).

Справедливо подчеркивая роль различных систем в интеграции аппарата реактивности, представители разных научных школ в XX столетии остро полемизировали между собой.

В результате сложились представления, согласно которым эндокринная, нервная и иммунная системы осуществляют интеграцию механизмов реактивности организма, как целого, влияя на все иерархические подуровни субстрата реактивности (В.Пьерпаолис и соавт. 1977; Е.А.Корнева 1987)

В XX веке интегративное учение о реактивности, как концепция оперирующая понятиями связи и управления, испытало плодотворное влияние кибернетики.

Интегральная концепция реактивности унаследовала понятие гомеостаза - способности организма существовать при значительном изменении условий обитания с сохранением устойчивого динамического равновесия со средой (Л.Дж.Хендерсон, 1928; У.Кеннон, 1932). Э.С.Бауэр сформулировал принцип устойчивого динамического неравновесия, как кибернетической основы реактивности живого организма. В связи с этим, в трудах К.Уоддингтона (1957) понятие гомеостаза трансформировалось в гомеорез - поддержание постоянной тенденции предопределенного роста в открытой динамической развивающейся системе. Еще в 30-е годы М.М.Завадовский говорил о роли «плюс-минус взаимодействий» в эндокринной составляющей реактивности. После появления классического труда Н.Винера «Кибернетика» (1948), его идеи об управлении функциями путем обратной связи были вскоре применены в эндокринологии, что вылилось в концепцию тиростата Р.Хоскинза (1949), а позже позволило доказать существование обратных связей в сервосистеме гипоталамо-гипофизарного контроля периферических эндокринных желез (Г. фон Эйлер и Б.Хольмгрен, 1957).

Дальнейшее обогащение учения о реактивности связано с влиянием теории функциональных систем П.К.Анохина.

П.К.Анохин и его школа разработали (1935-1971) представления, согласно которым в осуществлении ответных реакций организма действуют подвижные функциональные системы процессов, влияющих друг на друга и обладающих разной анатомической характеристикой и физиолого-биохимическими особенностями. Их единство обусловлено заданным конечным результатом и направлено на достижение эффекта, соответствующего мотивации или поддерживающего в определенном диапазоне те или иные, более или менее жесткие константы. «Биологу, - писал Анохин, - в широкой степени безразлично, каким сочетанием структур и какой архитектурой физиологических процессов обеспечивается данная функция, лишь бы только она успешно приспосабливала животное к внешним условиям».

По Анохину: «Системой можно назвать только такой комплекс избирательно вовлеченных компонентов, у которых взаимоотношения приобретают характер взаимодействия компонентов на получение фиксированного полезного результата. Функциональная система - это такое сочетание процессов и механизмов, которое, формируясь динамически в зависимости от данной ситуации, непременно приводит к конечному приспособительному эффекту как раз, именно, в данной ситуации».

Реактивность организма существует в форме циклического образования и распада подобных функциональных систем. Каждая такая система содержит, независимо от своего элементарного анатомо-физиологического состава, следующие ролевые компоненты: афферентный синтез, акцептор действия, формирование действия, обратную афферентацию от конечного приспособительного эффекта.

Основными принципами работы таких систем являются сигнализация дефекта и непрерывная обратная афферентация от компенсаторных эффектов, санкционирующая прекращение действия при совпадении эффекта с ожидаемым; прогрессивная мобилизация компенсаторных механизмов, что предполагает включение новых функциональных систем.

Онтогенез функциональных систем идет в гетерохронном режиме, причем избирательно созревают те структуры, которые объединены единством функции.

Ряд следствий из теории функциональных систем допускает, что:

1.Любые константы организма следует оценивать, исходя из требований момента (см. о норме как оптимуме, выше в разделе Здоровье как общемедицинская категория.)

2.Тот или иной уровень функции и значения параметра могут быть достигнуты многими альтернативными путями, при разных сочетаниях компонентов функциональных систем, которые их обеспечивают.

3.Одни и те же реактоны могут включаться представителями разных таксонов в разные функциональные системы (фагоцитоз как способ питания у простейших и способ защиты у кишечнополостных).

4.Организм на разных этапах онтогенеза обладает разной жесткостью коррелятивных связей, что позволяет варьировать состав функциональной системы и обуславливает его большую (в молодости), или меньшую (в старости) пластичность, как основу для разной приспособляемости.

5. В определенных условиях организм может создавать функциональные системы, оказывающие патогенное действие, то есть достигающие определенного конечного результата слишком дорогой ценой. Идея о потенциальной патогенности функциональных систем была развита Г.Н.Крыжановским в концепцию «патологической системы» формируемой в ЦНС на основе генератора патологически усиленного возбуждения (патологической доминанты).

Теория катастроф - это универсальный метод исследования качественных переходов (скачков) в системах, разработанный в 50-70 годы XX века (Г.Уитни, Р.Том 1975). Теория катастроф некоторыми авторами трактуется как наиболее общая теория устойчивости систем.

Первоначально существовала так называемая «теория особенностей» Уитни - топографическая доктрина о закономерностях, проявляющихся при проецировании трехмерных изогнутых поверхностей на плоскости.

Проекция сферической поверхности на плоскость представляет собой круг (рис.4). Все точки внутри круга имеют по 2 прообраза в виде точек сферы, спроецированных в данную точку круга. Но точки, лежащие по длине окружности имеют лишь но одному прообразу в виде точек экватора сферы. Таким образом, при переходе от любой внутренней точки круга к любой наружной точке один из прообразов исчезает. Эта особенность проекции называется «складка».

Опишем теперь проецирование на плоскость поверхности, представленной на рисунке 6 . Совокупность проекций всех ее точек выглядит как полукубическая парабола с точкой возврата в начале координат. Такая особенность проекции именуется «сборкой». В сборке всем точкам внутри заштрихованного клина соответствует по 3 прообраза изогнутой проецируемой поверхности, вне клина у каждой точки только 1 прообраз. На параболе происходит скачкообразный переход от одного состояния к другому, а в точке начала координат исчезают все 3 прообраза.

Складки и сборки устойчивы и не исчезают при малых деформациях объектов. Обратим внимание, что при изменении конфигурации проецируемой поверхности меняется и форма проекции. Подобно этому, при различной реактивности одни и те же патогенные факторы вызывают разные ответы организма.

Расширяя применимость теории особенностей, Э.Зиман (1977) применил теорию Уитни-Тома для анализа универсальной ситуации, описывающей скачки в поведении системы, имеющей помимо параметров управления некий внутренний параметр, определяемый свойствами системы (форма поверхности в топологии, реактивность организма - в медицине).

Принцип комплементарности, с которым мы столкнулись уже при рассмотрении элементарного молекулярного уровня субстрата реактивности, носит сквозной характер и присутствует на всех уровнях организации живого.

Механизмы реактивности, свойственные ее субклеточному и клеточному уровням, подробно охарактеризованы в последующих разделах. (Патология сигнализации, Патология рецепции и т.д.). В данном общем разделе хотелось бы только подчеркнуть, что молекулярные, субклеточные и клеточные механизмы реактивности несут на себе печать индивидуальности в той же мере, в какой и ее высшие интегральные проявления. Реактивность различна для тех или иных молекул, органоидов и клеток, взятых от различных индивидов и из различных тканей. Фетальный гемоглобин и гемоглобин А по-разному связывают кислород. Митохондрии скелетных мышц предпочитают в качестве энергетических субстратов активные одноуглеродные фрагменты, полученные из глюкозы, а митохондрии кардиомиоцитов - фрагменты, полученные из жирных кислот. Тканевой и кровяной тромбопластин различаются по составу и механизмам образования. Макрофаги разных тканей, например, печеночные клетки Купфера и остеокласты, несмотря на общность происхождения, выглядят по-разному и т.п.

Следующими иерархическими уровнями субстрата реактивности являются тканевой и органный .

По мере дифференцировки, клетки оставляют в активно используемом программном аппарате только часть генетически унаследованных программ, остальные архивируются. Поэтому они отвечают на раздражения реакциями, свойственными данной ткани. Примером проявления тканевых механизмов реактивности может служить местный ответ васкуляризованных тканей на повреждение - воспаление .

С развитием органогенеза можно связать начало формирования системных ответов, так как каждый орган состоит из различных тканей.

Важной составляющей тканевого и органного субстрата реактивности является структурно-функциональный элемент органа (ткани).

Несмотря на различия названий (нефрон почек, печеночная долька - в печени, двигательная единица - в мышце и т.д.) структурно-функциональные единицы органов и тканей имеют общие черты строения. По А.М.Чернуху, микроциркуляторные сосудистые единицы типичного строения служат структурной осью, вокруг которой группируются соединительно-тканные элементы стромы органа, выполняющие опорную, трофическую и защитную функцию для элементов органной паренхимы. Структурно-функциональный элемент соединительной ткани Чернух назвал «гистионом ». При любом повреждении органа в специализированные защитные функции вначале вовлекаются элементы стромы и, вполне возможно, что при небольших масштабах процесс этим и ограничивается, не вызывая существенного расстройства функций органной паренхимы. Именно этим, с точки зрения концепции А.М.Чернуха, можно объяснить наличие безжелтушных гепатитов, клиника которых представлена, в основном, симптомами стромальной защитной реакции. Значение этого оригинального подхода мы видим в том, что гистионы действительно служат первичной ареной защитно-приспособительных реакций, и такие патологические процессы, как воспаление, гиперемия, ишемия, стаз, тромбоз - развертываются именно в гистионах.

Дублирование деятельности множества структурно-функциональных единиц, составляющих орган, определяет надежность системы, даже если при гибели элементы и не могут регенерировать.

В здоровом организме, как указывают Адо и Новицкий, используется 20-25% нефронов, 12-15% паренхиматозных элементов печени и т.д.

В связи с этим, функциональные пробы, оценивающие парциальные функции почек, порой не могут выявить нарушений у больных, значительный процент почечной паренхимы которых уже поражен нефросклерозом.

На уровне систем органов создается качественно иная интеграция механизмов реактивности - вокруг технологической задачи той или иной системы, при участии взаимодействий, описанных П.К.Анохиным (см. предыдущий раздел).

В основе деятельности каждой из систем, интегрирующих механизмы реактивности, будь то нервная, эндокринная или иммунная, лежит, опять-таки, комплементарное взаимодействие регулятора с рецепторно-дискриминаторной системой. Его сквозной характер не случаен: однозначное соответствие одной молекулы другой служит формой структурного отражения. А отражение - добиологическая основа реактивности. Комплементарные взаимодействия, вероятно, возникли раньше чем клетки. По крайней мере, известные нам доклеточные формы жизни - вирусы и прионы - способны к комплементарному взаимодействию с клетками. Прионы ведут себя, как некие комплементарные белковые сигналы, способные при попадании в клетку активировать древнейшие убиквитарные генетические программы, обеспечивающие воспроизводство этих агентов.

Если жизнь началась с прионов, что вполне вероятно, это означало бы, что комплементарное взаимодействие было решающим шагом в ее появлении.

По некоторым представлениям, первыми возникли рецепторные белки, скорее всего, выполнявшие поначалу роль репрессорных регуляторов клеточных процессов. Необходимость агента, снимающего ограничение, вызвала давление отбора и закрепление мутаций, приводящих к обеспечению сродства протогормонов и рецепторов. Появились белковые биорегуляторы, разнообразие которых в дальнейшем нарастало при относительном консерватизме рецепторов. Возможно, наоборот обстояло дело для стероидных гормонов: то есть разнообразие рецепторов нарастало при эволюционной стабильности регуляторов.

Иммуноглобулины, возникшие на основе гомологичных распознающих белков, представленных у организмов, не обладающих иммунной системой, оказались в состоянии обеспечить уникальное разнообразие регуляторных сигналов. Как уже отмечалось выше, реактивность может рассматриваться как дискретный набор реактонов (функциональных фенов ). Функционирование каждой такой единицы обеспечивает индивиду преимущества в смысле воспроизводства и, в то же время имеет определенную цену. При малых интенсивностях использования того или иного

По Ф.Унгару и А.Орчи (1973), нарушение этой паракринной регуляции является основным механизмом, вызывающим некоторые формы инсулино-независимого сахарного диабета, так как в этих случаях утрачиваются гетероклеточные контактные зоны и секреция глюкагона не ингибируется инсулином и соматостатином.

При появлении у паракринных клеток отростков, паракринная секреция может осуществляться через эти отростки, образующие примитивные синаптоподобные структуры на клетках, расположенных на некотором минимальном удалении от источника сигнала. Это - специализированная паракринная секреция . Примеры подобной регуляции сохраняются в работе диффузной эндокринной системы, клетки которой - апудоциты способны осуществлять сигнализацию в специализированном паракринном режиме.

Дальнейшее развитие этого типа сигнализации привело к удлинению отростков клеток, появлению аксонов и дендритов и формированию нейромедиаторного типа сигнализации, при котором биорегулятор действует топически, в пределах синаптической щели, куда он выделяется.

Альтернативное направление развития сигнализации у животных, обладающих циркуляцией жидкостей внутренней среды, обеспечило появление эндокринной регуляции, при которой сигнал выделяется в кровь или гемолимфу и действует на удалении от места продукции, не требуя проводника. Комбинированный нейроэндокринный способ, используемый, например, для секреции вазопрессина и окситоцина, предусматривает выделение биорегулятора в кровь после аксонального транспорта через аксовазальный синапс.

Многие регуляторы и их рецепторы существуют как ауто- и паракринные у низших животных и приобретают значение эндокринных и нейромедиаторных - у высших. При этом их гены и структура остаются совсем или почти неизменными. Меняются те интегральные комбинации, типовые синергии, в составе которых используется данный биорегулятор или реактон.

Цитокины, выделяемые иммунной системой, могут оказывать аутокринные, паракринные, а при условии попадания в системный кровоток - гормоноподобные эффекты.

Между проводниковой и беспроводниковой формами интеграции существует разделение функций, но нет непреодолимой стены.

Нервная регуляция доминирует в области сбора информации об окружающем (хотя и здесь не является монополистом, вследствие сенсорной функции иммунной системы в отношении распознавания антигенных сигналов). Нервные механизмы играют важную роль в управлении движением и секрецией, в реализации быстрых стереотипных ответов на внешние стимулы. Нервная регуляция обладает пороговым характером. Это означает, что подпороговые стимулы не дают ответа, а при переходе порога реакция наступает сразу в полном или почти полном объеме. Беспроводниковая гуморальная форма регуляции доминирует при управлении обменом веществ, ростом и размножением клеток. Долговременные адаптивные реакции, в частности - трофические эффекты, немыслимы без гуморальных составляющих. Эндокринная регуляция часто следует беспороговому принципу. Это означает, что зависимость между интенсивностью сигнала и ответной гормональной реакцией охватывает большой диапазон и начинается с минимальных значений. В деятельности эндокринной системы существуют элементы стереотипии, но роль стереотипов не так велика, как в ответах, опосредованных нервной системой. Обе формы регуляции эффективно взаимодействуют. Нельзя обеспечить гомеорез такой сложной системы, как организм, не используя и пороговый «галетный переключатель», и беспороговый «потенциометр тонкой настройки». Известен расчет, который показывает, что если бы связи между гипоталамусом и нижним мозговым придатком осуществлялись только по проводниковому принципу (как на телеграфе), то толщина ножки гипофиза не позволила бы ей уместиться в черепе. Существование портальной системы, транспортирующей либерины и статины, делает аппарат коммуникации беспроводниковым (подобно радиосвязи) - и весьма компактным. Подробнее принципы коммуникации в гипоталамо-гипофизарном нейросекреторном аппарате рассматриваются ниже, в разделе, посвященном стрессу.

Долгое время осознанию единства иммуно-нейроэндокринной регуляции мешал «органный принцип» в эндокринологии, согласно которому бытовало упрощенное представление о гормональной регуляции, как уделе отдельных специализированных органов - «желез внутренней секреции» (Й.Мюллер, 1844). Учение о реактивности обогатилось пониманием того факта, что в организме нет монополии на химическую сигнализацию, когда была открыта дисперсная (диффузная) эндокринная система. Обобщая представления о гормонах желудочно-кишечного тракта, эту концепцию впервые создал Ф.Фейртер (1938). В 1975 г. после открытия диффузных эндокринных клеток в ЦНС, островках Лангерганса, сердце, бронхах, почках, эндокринных железах и других органах А.Дж.Э. Пирс создает концепцию APUD-системы и вводит понятие «апудоциты» (от английского «amine precursor uptake and decarboxylation »), полагая, что пептидо- и аминопродуцирующие клетки имеют паранейрональное происхождение и расселяются по организму из эктодермы нервного гребня. Позже разнообразие обнаруживаемых диффузных эндокриноцитов возросло и А. Эндрю доказала их смешанное происхождение, не только из нервного гребня, но и из эндодермы и мезодермы (1981). Концепция диффузной эндокринной системы подорвала классический принцип «одна клетка - один гормон», так как апудоциты оказались способны вырабатывать разные пептиды и даже амины и пептиды в пределах одной клетки.

По современным данным, деятельность трех интегративных систем тесно взаимосвязана. Установлено, что иммунная система, через посредство цитокинов и специфических аутоантител, может направленно регулировать функции нервной и эндокринной систем, и, наоборот - сами клетки иммунной системы регулируются гормонами и нейромедиаторами. Обнаружено, что тимус совмещает центральную роль в иммуногенезе и важные эндокринные функции, например, продукцию цинксодержащего гормона тимулина. (Дж.Миллер. 1961, Ж.-Ф.Бах 1989).

Открыто явление нейросекреции, когда одни и те же клетки являются и продуцентами гормонов и элементами нервных центров. Обнаружены нейромедиаторные функции ряда гормонов (пептидергическая система по Дж.М.Поляку и С.Р.Блуму, 1977). Мозг не без оснований называют крупнейшей эндокринной железой, источником нейрогормонов эндтериновой системы.

Даже в коре больших полушарий имеются клетки диффузной эндокринной системы, вырабатывающие нейропептидные гормоны, например, соматостатин. Я.Гавранкова и соавторы в 1978 г. сообщили о продукции головным мозгом инсулина.

Открыта структурно-функциональная схожесть ряда гормонов с цитокинами, интерферонами и/или антителами. Установлено, что гормоны, нейротрансмиттеры и их рецепторы включаются вместе с антителами и антигенными рецепторами лимфоцитов в единую сеть идиотип-антиидиотипических взаимодействий, в которой сигналы нейроэндокринной природы могут копироваться в виде своих иммунологических образов. (Н.Ерне, Дж.Линдеманн, 1974-1984;).

Синаптообразование в центральной нервной системе и кооперация клеток в иммунном ответе требуют участия белков, являющихся продуктами одного и того же гена, причем ряд функциональных белков нейронов и лимфоцитов антигенно идентичны (М.Норкросс 1984).

Лимфоцитам присущи нейроэндокринные функции, в частности, способность выделять некоторые гипофизарные гормоны и их иммунологические копии. Иммунная система рассматривается как сенсорная, обеспечивающая чувство антигенности и обладающая памятью на иммунологические образы. (Дж.Блэлок 1985). Ее продукты (аутоантитела и цитокины) влияют на гипоталамус и другие отделы ЦНС, вызывая изменения нейроэндокринного статуса, поведения и психики.

Исходя из этих и подобных данных, сформулирована концепция, по которой иммунная, нервная и эндокринная системы поддерживают в организме информационное равновесие, при необходимости компенсируя и модулируя сигнальные воздействия друг друга. Стремясь отразить этот принцип, мы и поместили на обложку этой книги весы, имеющий три чаши: при изменении положения одной из чаш, две другие тоже приходят в движение, стремясь скомпенсировать произошедшие изменения.

Сформировались представления о том, что у животных имеется коммуникативно-регуляторный интегративный аппарат (КРИА), деятельность которого осуществляется двумя способами - проводниковым (при электрической передаче сигнала) и гуморальным (на основе транспорта биорегуляторов через биологические жидкости организма). Нервные клетки используют оба способа, а мезенхимальные и эпителиальные - последний.

Таким образом, в КРИА включается не только нервная и эндокринная системы (Л.Г.Лейбсон 1984), но и иммунная (X. Беседовский 1989). Нарушения иммуннонейроэндокринных взаимодействий - одно из самых быстро развивающихся направлений в современной патофизиологии (см. последующие разделы) {7} . Все это позволило А.Уайту и Р.Левину (1982) заключить, что «интеграция функций в организме в конечном итоге имеет химическую (гуморальную) природу». Правда, существует наряду с этим и точка зрения В.П.Казначеева (1993), придающего ключевое значение в межклеточной интеграции физическим, в частности, оптическим сигналам, однако, эти представления еще не подкреплены достаточно экспериментами и клиническими фактами.

ВИДЫ РЕАКТИВНОСТИ

Выделяют видовую , групповую и индивидуальную реактивность.

Видовая или биологическая реактивность это совокупность защитно-приспособительных реакций, присущих животным данного вида и обнаруживаемых под влиянием обычных, адекватных раздражителей.

Так как эволюционное формирование новых видов является результатом отбора механизмов реактивности, повышающих резистентность к условиям обитания, то видовая реактивность рассматривается, как наиболее общая, первичная.

Примерами видовой реактивности служат наследственный иммунитет (так, рогатый скот абсолютно устойчив к сифилису), таксисы простейших, тропизмы и настии у растений, инстинкты у насекомых, сезонные миграции птиц, зимняя спячка у грызунов, лихорадка у теплокровных, централизация кровообращения в ответ на травму у млекопитающих и гемодилюция в аналогичных условиях у земноводных и т.д. Выше мы уже приводили точку зрения Платона, считавшего, что мерой соотнесения различных приспособлений мифический герой Эпиметей избрал их влияние на выживаемость видов, на скорость их размножения («чтоб не исчез ни один род»). Отметим, что разнообразие видовой реактивности дает возможность организмам сосуществовать. Дж.Б.С.Холдейн назвал это «принципом сооптимальности». В биоценозе замена тех или иных видов, реактивность которых «пригнана» друг к другу, приводит к нарушению оптимальности реактивных механизмов других видов. Биоценоз устойчив как система вследствие взаимной комплементарности механизмов видовой реактивности отдельных видов. Это дает основания ставить вопрос о надвидовой, биоценотической реактивности .

Видовая реактивность существует в форме общей основы варьирующих индивидуальных реактивностей . У существ, обладающих половым размножением, критерием принадлежности данной индивидуальной реактивности к конкретной видовой служит наличие в ее спектре реакции оплодотворения в ответ на воздействие гаметы противоположного пола.

Индивидуальная реактивность зависит, прежде всего, от наследственности. Однако, реактивность - не синоним наследственности, поскольку оперирует не генами, а реактонами, а реактон, как уже отмечалось выше - своего рода функциональный фен.

Более подробно вопрос о роли наследственности в патологии обсужден ниже в специальной главе («Дефекты клеточных программ как основа патологических процессов»).

ВЛИЯНИЕ ПОЛА НА РЕАКТИВНОСТЬ

Так как пол - наследственный признак, то половая детерминация реактивности может рассматриваться как производная от ее наследственной обусловленности.

Половая зависимость реактивности проявляется во многих феноменах. Например, самки у теплокровных более устойчивы к кровопотере, механической травме, а самцы - к ряду токсинов. У человека множество болезней (аутоиммунная патология, железодефицитные анемии, холецистит и панкреатит) поражает женщин намного чаще, чем мужчин. Особенно впечатляет тот факт, что частота тироидита Хашимото у пациенток в 25-50 раз выше, а офтальмопатической формы болезни фон Базедова - в 9 раз выше, чем у пациентов (С.Ахмед и соавт, 1985). Другие, не менее многочисленные недуги (подагра, язвенная болезнь двенадцатиперстной кишки, атеросклероз, истинная полицитемия) наблюдаются значительно чаще у представителей сильного пола.

Согласно Н.П.Бочкову и В.И.Иванову (1982), влияние пола на реактивность приводит к тому, что у мужчин реакции отличаются большим индивидуальным разнообразием и более широким диапазоном изменчивости (правило повышенной фенотипической дисперсии у мужчин ). В то же время, женская реактивность, при более узкой норме реакции, обеспечивает большую жизнестойкость по отношению к множеству естественных экзогенных факторов. В связи с этим, клиника основных соматических и инфекционных болезней у женщин характеризуется меньшим разбросом симптомов и большим процентом типичных форм, а у мужчин - большим полиморфизмом, наличием как стертых, бессимптомных, так и крайне тяжелых случаев одной и той же болезни. Как результат, общая смертность мужчин во всех возрастах выше женской.

Известный демограф Б.Ц.Урланис отразил этот факт в сакраментальной фразе, ставшей заглавием его знаменитой в 60-е годы аналитической статьи: «Берегите мужчин!».

В некоторых случаях удается проследить, в качестве причин половых различий реактивности и заболеваемости, противоположное действие андрогенов и эстрогенов (в частности, андрогены усиливают, а эстрогены ограничивают функцию супрессии лимфоцитов, в связи с чем такое аутоиммунное заболевание, как системная красная волчанка поражает женщин в 13 раз чаще, нежели мужчин, а среди представителей сильного пола наиболее предрасположенными к ней оказываются носители синдрома Клайнфельтера , имеющие лишнюю Х-хромосому (Р.Дж.Лахита, 1984). Поданным Н.Талала и соавторов (1985), влияние половых гормонов на Т-лимфоциты обусловливает повышенный антибактериальный иммунитет и менее строгое ограничение аутореактивных иммунных реакций у женщин, по сравнению с мужчинами. Под влиянием мужских и женских половых гормонов противоположно изменяется продукция липопротеидов высокой плотности, что отражается на относительном риске развития атеросклероза. Иногда мы сталкиваемся с полигенными заболеваниями, имеющими один из генов в половых хромосомах (подагра). Часть различий в спектре заболеваемости связана с наследственными болезнями, сцепленными с полом или ограниченными полом (см. ниже в разделе: «Дефекты клеточных программ, как основа патологических процессов»). Определенные различия объясняются влиянием циклических изменений в организме женщин (так, менструальный цикл отражается на обмене железа, и с этим связана у женщин более высокая частота анемий). Безусловно, для объяснения половых различий реактивности имеют значение особенности обмена веществ, характерные для мужского и женского организма. Например, тело женщин содержит существенно меньший процент воды, чем у мужчин. Активность алкогольдегидрогеназы у мужчин выше. Интересно, что у мужчин гинекоморфия и гипоандрогенизм - прогностически неблагоприятные признаки при развитии алкоголизма и связаны с пониженной резистентностью к спиртному (И.А.Корнетов и соавт., 1986).

Нельзя сбрасывать со счетов традиционные различия в социально-экологической и профессиональной роли полов в популяциях, которые могли обусловить различия в направлении отбора реактивных программ. В.А.Геодакян считает, что реактивность мужчин, берущих на себя бремя первого контакта с экологически новыми для популяции факторами, ориентирована на форсирование нагрузок, активные оборонительные реакции при стрессах и имеет акцент на резистентности к антропогенным влияниям. Реактивность женщин рассчитана на оптимальность и доведение до совершенства стереотипных консервативных механизмов адаптации, на пассивные оборонительные реакции при стрессах и обеспечивает акцент на адаптации к традиционным природным воздействиям. Б.А.Никитюк, обсуждая данные о корреляции психометрических признаков у женщин преимущественно, с биологическими, а у мужчин - с социальными влияниями, отмечает, что большее биологическое совершенство женского организма придает большую значимость биологическому компоненту их жизнедеятельности. «В то же время, мужчины, не обладая столь совершенными защитными биологическими механизмами, находятся в большей зависимости от социальных условий».

В.А.Геодакяну даже удалось показать в экспериментах над золотыми рыбками и продемонстрировать на материале многолетней статистики ЗАГСов, что стресс, будь то социально-экономические потрясения в человечес-ских популяциях или экспериментальные воздействия на популяцию аквариумных рыб, увеличивает частоту рождения самцов.

Основатель учения о психоанализе З.Фрейд (1921) подчеркивал, что в его концепции «значение противоположности мужского и женского сводится к противоположности между активным и пассивным» и увязывал это с существованием биполярных, взаимно комплементарных тенденций в сексуально-поведенеских реакциях: например, садизма и мазохизма. Одно из направлений в учении о половой детерминации реактивности восходит к представлениям русского философа В.С.Соловьева об андрогине , то есть бисексуальной природе человека, или, по крайней мере, андрогинном направлении его биосоциальной эволюции и совершенствования.

Фрейд в связи с этой теорией замечает: «… в каждом человеке имеются мужские и женские элементы, только, в соответствии с принадлежностью к тому или другому полу, одни несоизмеримо более развиты чем другие, поскольку дело касается гетеросексуальных лиц».

В своей знаменитой (и единственной!) книге «Пол и характер», увидевшей свет незадолго до самоубийства автора, О.Вейнингер (1903) сформулировал принцип комплементарности половой структуры личности. Согласно его представлениям, у каждого индивида имеются элементы реактивности обоих полов, но в различных соотношениях, которые можно условно оценить в долях единицы. Вейнингер считал взаимную симпатию индивидов основанной на стремлении к дополнению этих комплементарных составляющих до целого. Он, в частности, рассматривал исторические примеры, например, взаимоотношения Ф.Шопена и Ж.Санд и трактовал их как доказательство своей теории.

История медицины знает более 400 зарегистрированных случаев истинного гермафродитизма у человека, с наличием гонад и гамет обоего пола. Й-В.Гёте описал даже андрогина - отца двоих детей. Известно, что как андрогены, так и эстрогены продуцируются у индивидов обоего пола, и происходит даже конверсия первых во вторые, особенно в плаценте и ЦНС. Современная молекулярная генетика установила, что главный ген, ответственный за продукцию спермы - DAZ - присутствует в третьей хромосоме, как у мужчин, так и у женщин. Установлено, что приблизительно до сорокового дня кинематогенеза каждый из нас представляет собой истинного «андрогена», поскольку гонады всех эмбрионов до этого срока развиваются идентично. Дальнейшая дивергенция зависит от механизмов, описываемых ниже и основывающихся у млекопитающих на наличии определенного набора гоносом.

Для оценки хромосомного пола применяется цитогенетическое исследование на наличие полового хроматина . Половой хроматин или тельце Л.Барр - это материал генетически инактивированной Х-хромосомы, в норме присутствующей только в соматических клетках женщин, которые диплоидны и располагают кариотипом 46ХХ. Тельце Барр окрашивается в коричневый или темно-красный цвет орсеином в клетках щёчного эпителия, а в гранулоцитах выглядит как небольшой дополнительный сегмент ядра - барабанная палочка. Число Х-хромосом у индивида равно числу телец Барр плюс единица. Так, при синдроме «трипло-Х » клетки пациентки имеют два тельца Барр. Определение полового хроматина применяется для верификации хромосомного пола, диагностики хромосомных аберраций по половым хромосомам, а также в нейроонкологии - для прогноза пролиферативной активности некоторых опухолей. Дело в том, что тельце Барр, даже в женских соматических клетках, наблюдается не универсально, а в определенном проценте интерфазных ядер (наиболее часто - в клетках с самым консервативным геномом и хорошо выраженным гетерохроматином, например, в нейронах кошек - в 45% случаев). Поэтому, считается, что частота обнаружения телец Барр в клетках опухолей стоит в обратной зависимости от активности их генома и ростовых потенций. Само название «половой хроматин» - одна из иллюстраций тезиса о несовершенстве традиционного медицинского языка - ведь он никогда не обнаруживается именно в гаплоидных половых клетках! Невозможность визуализации тельца Барр в каждой женской соматической клетке породила необходимость более надёжных экспресс-тестов по определению хромосомного пола. В последнее время предложено иммунологическое определение мужского антигена, (см. с. 68).

Таким образом, ряд биологических и социальных факторов привлекался медиками, психологами и философами для объяснения половых особенностей реактивности.

И все же, во многих случаях все вышеприведенные объяснения полового дуализма реактивности кажутся недостаточными. Например, основной обмен в расчете на килограмм веса у мальчиков (150 ккал/кг) и девочек (136 ккал/кг) в первый день жизни уже отличается, хотя вышеназванные биологические и социопсихологические факторы в этот момент онтогенеза таких различий обеспечить, казалось бы, не могут.

Хромосомная генетика пола углубила наши представления о дуализме реактивности.

Большое значение для понимания половых различий реактивности имеют представления о гемизиготности самцов млекопитающих по гоносомам и об ограничении выбора генетических программ у самцов, по сравнению с самками, имеющими две гомологичных Х-хромосомы. Из-за последнего обстоятельства женские соматические клетки обладают функциональной гетерозиготностью и мозаицизмом по половым хромосомам. На 5-6 день эмбрионального развития плацентарных млекопитающих, сначала в клетках трофоэктодермы, а затем - и в других частях зародыша, осуществляется инактивация одной из каждых двух гомологичных хромосом, включая одну из двух Х-хромосом у зародышей женского пола. Механизм этого процесса связан с метилированием ДНК инактивируемой хромосомы. Специальный участок Xq27. 3 на Х-хромосоме, так называемый CpG-островок, содержит множественные цитозин-гуаниновые повторы, которые в геноме эукариот могут метилироваться. Они полностью метилированы в тельце Барр и не метилированы (активны) в мужской единственной Х-хромосоме, а также в активной женской. Интересно, что у сумчатых инактивируются, преимущественно, Х-хромосомы отцовского происхождения. У млекопитающих преимущественная инактивация отцовской Х-хромосомы отмечена лишь в самом начале эмбриогенеза в трофоэктодерме, что объясняют наличием на Х-хромосоме спермального происхождения короткоживущего отцовского маркера, впоследствии утрачиваемого (Г.Р.Мартин, 1982). Случайный характер инактивации в дальнейшем предоставляет женским плодам высших млекопитающих дополнительные возможности в смысле выбора и разнообразия генетических адаптационных программ. Это явление известно, как эффект Мэри Лайон и обсуждается также далее. Яркой иллюстрацией значения гемизиготности нормальных мужских соматических клеток служит генетика тяжелого наследственного заболевания - врожденной умственной отсталости, сцепленной с ломкостью Х-хромосом (синдром Мартина-Белла ). Это заболевание проявляется, даже при наличии патологического гена, передаваемого через материнскую Х-хромосому, только у тех индивидов, у которых CpG-островок (в единственной Х-хромосоме мужчин или в активной Х-хромосоме женщин) метилирован. Это приводит к отсутствию белка FMR-1, в норме вовлеченного в транспорт матричных РНК в мозгу, тестикулах и скелете. Болеют оба пола. Но пенетрантность и частота выше у носителей единственной Х-хромосомы, а дочери нормальных мужчин-носителей дефектного аллеля остаются здоровыми за счет эффекта Мэри Лайон (П.Чандрасома, К.Тэйлор; 1998).

Пол у предков млекопитающих, например, пресмыкающихся, определяется под влиянием внешних экологических факторов и не является жестко детерминированным хромосомным набором. У человека развитие мужского пола предопределено наличием Y-хромосомы. В присутствии любого количества Х-хромосом (например, при синдроме Клайнфельтера с кариотипом 47XXY), одной Y-хромосомы достаточно для формирования организма по мужскому типу. По оценкам Д. Пейджа (1997), Υ -хромосома появилась не более 250 миллионов лет назад у предков млекопитающих, знаменуя новый механизм определения пола. Ген SRY, находящийся в этой хромосоме, срабатывает на 6-7 неделе эмбрионального развития, запуская в действие ряд генов, локализованных в других хромосомах и обеспечивающих программу синтеза тестостерона у плода. Белковые продукты, синтез которых запускается этим геном, и представляют собой «мужские антигены», используемые в иммунологическом тестировании истинного пола.

Фетальный тестостерон направляет развитие зародыша по мужскому варианту Продукция тестостерона и антимюллерова ингибирующего пептида в гонадах плода предопределяет на втором-третьем месяцах внутриутробного развития формирование внутренних половых органов по мужскому типу. Метаболит андрогенов 5а-дигидротес-гостерон, неконверсируемый в эстрогены, контролирует маскулинный тип формирования наружных гениталий на 3-4 месяце фетогенеза (соматический пол). Часть тестостерона у плода метаболизируется в эстрогены. При наличии Y-хромосомы и высокой продукции тестостерона обеспечивается высокое содержание эстрогенных метаболитов, подавляющее формирование обратной связи между продукцией лютеинизирующего гормона (ЛГ) и эстрогенов в развивающемся мозге. Это ведет к установлению мужского, нециклического типа гипоталамо-гипофизарной регуляции половых функций и обеспечивает на 4-6 месяце фетогенеза мужской тип дифференцировки головного мозга, что лежит в основе ней-ропсихической маскулинизации в последующей жизни. Созревание центров секреции гонадотропинов идет под контролем эстрогенов, полученных из тестостерона, а центров, определяющих половое влечение - под совместным контролем андрогенов и их ароматических эстрогенных производных. Центры, ответственные за поддержание поведения, соответствующего избранной половой роли, у мужчин организуются под влиянием только андрогенов. Организация трех этих мозговых центров идет последовательно и частично перекрывается. Циклический тип секреции гонадотропинов мозга и высокая чувствительность механизма обратной связи между концентрацией эстрогенов и продукцией ЛГ обнаружены у гомосексуальных мужчин, но отсутствуют у гетеро- и бисексуалов (Г. Дернер и соавт., 1987). В отсутствие гена SRY. даже если кариотип не 46ХХ, а 45ХО (синдром Шерешевского-Тернера), все вышеописанные события не происходят и формируется соматический и психический женский пол. Асинхрония этих процессов и их зависимость от таких метаболических факторов, как ароматизация половых стероидов и их рецепция тканями, создают почву для множества рассогласований и нарушений соответствия хромосомного, гонадного, нейроэндокринного, психического и соматического иола. Так, при синдроме Морриса - тестикулярной феминизации вследствие наследственного дефекта тканевых рецепторов андрогенов, соматический пол формируется по женскому типу, несмотря на наличие Y-хромосомы. Вместе с тем, ароматизация значительных количеств неиспользованных тканями андрогенов в эстрогены способствует, согласно цитированным выше исследованиям Дёрнера и соавторов, маскулинизации головного мозга и формированию психических и нейроэндокринных черт мужского пола. В результате носители синдрома Морриса, будучи по хромосомному полу мужчинами, имеют паспортный пол женский и интерпретируются социумом как женщины, тем более, что у них из-за дефекта рецепции андрогенов невозможно формирование отчетливого мужского ролевого поведения. Вместе с тем, особенности фетальной организации мозга делают поведение носителей (носительниц?) данного синдрома своеобразным: как правило, это сильные целеустремленные личности, в наше время многие из них, за счет воли и хороших физических данных, в частности, высокого роста, добиваются успеха в большом спорте. Исследования спортивных медиков из ГДР позволили определить, что в составе женских олимпийских сборных команд частота данного синдрома почти на 3 порядка превышает среднепопуляционную, которая оценивается примерно как 1/20000-1/64000 мужчин. В истории тенниса и легкой атлетики известны даже случаи медицинской переквалификации спортсменок мирового уровня в спортсменов-носителей синдрома Морриса. В. П. Эфроимсон в одной из своих монографий сожалел о невозможности ретроспективного генетического определения пола Жанны д’Арк, полагая, что известные нам об этой замечательной исторической личности сведения не позволяют исключить диагноз «синдром Морриса». Существуют и другие аномалии формирования пола, связанные с дефектами андрогенных рецепторов (неполная тестикулярная феминизация, синдром Рейфенштейна и т.д.).

Не только наличие дополнительного выбора по Х-хромосоме у самок, но и некоторые уникальные генетические особенности Y-хромосомы самцов предопределяют в ряде случаев «пониженную витальность» пола, самонадеянно назвавшего себя «сильным».

Д.Пейдж назвал Y-хромосому компромиссом эволюции. Возможно, именно парадокс необходимости и уязвимости этой хромосомы наиболее ярко воплощает одну из основных идей учения о реактивности - мысль о несовершенстве ее механизмов.

Дело в том, что из-за гемизиготности Y-хромосома не участвует в кроссинговере. Не рекомбинируясь с гомологичной хромосомой, она устраняется из сферы действия важного эволюционного механизма, способствующего устранению дефектных генов в ряду поколений. А вот для Х-хромосомы действие этого, по выражению Пейджа, «источника юности и средства внутрихромосомной приборки» сохраняется в тех поколениях, когда она пребывает в женских клетках. В силу этого, за те миллионы лет, что прошли с момента перехода к хромосомному определению пола, Y-xpoмосома стала прибежищем множества мутантных генов. Один из них, результат амплифицирующей мутации гена DAZ, ген DAZL появился и «встал на якорь» в результате невозможности кроссинговера в Y-хромосоме у предков приматов примерно 20-40 миллионов лет назад. Ген DAZL обеспечивает сперматогенез, и именно из-за его амплификации в Υ-хромосоме приматов данный отряд млекопитающих характеризуется высокой эффективностью этого процесса (Т. Радецки, 1997). Вместе с тем, специфика Y-хромосомы приводит к тому, что находящиеся в ней гены часто мутируют, в частности, подвергаются делециям, не имея гомологичной пары. Наиболее распространенной причиной мужского бесплодия у приматов является делеция гена DAZL. К счастью, такая мутация мгновенно устраняется отбором, так как ее носители не имеют естественного потомства. Тем не менее, случаи делеции DAZL весьма часто возникают в каждом последующем поколении заново (1/8000 мальчиков). Если мутантный ген Y-хромосомы не детален и не приводит к бесплодию, то он наследуется голандрически - от отца всем сыновьям. Первопроходцы Дикого Запада наблюдали в индейских племенах голандрическую передачу особенностей оволосения на лице - от вождя всем сыновьям. Наличие особого жёсткого пучка волос на скуле аборигенами трактовалось как бесспорный знак принадлежности к властвующей династии. Есть сведения о голандричес-ком наследовании некоторых форм ихтиоза. Отсутствие кроссинговера создает для Y-хромосомы мужчин уникальную ситуацию.

По образному выражению Д.Пейджа: «Y-хромосома подобна намывному пляжу, песок которого постоянно уносится и восполняется. В ней существует постоянный приток и отток генов, и она постоянно переустраивается».

Таким образом, основы полового диморфизма реактивности связаны с закономерностями хромосомного определения пола.

Некоторые другие аспекты половой детерминации реактивности изложены ниже в разделе «Основы конституционологии».

ВЛИЯНИЕ ВОЗРАСТА НА РЕАКТИВНОСТЬ

Онтогенез - процесс временного развертывания генетических программ, поэтому тот факт, что индивиды разного возраста обладают различной реактивностью, является производным от наследственной детерминации реактивности. Возрастные аспекты учения о реактивности составляют общепатологическую то основу педиатрии и гериатрии.

Возрастное формирование реактивности было подробно рассмотрено в специальном пособии Н.Т.Шутовой и Е.Д.Черниковой «Патофизиология развивающегося организма »(1974).

Для целей данной главы достаточно будет подчеркнуть, что реактивность индивидов различных возрастов неодинакова, прежде всего из-за асинхронии в экспрессии и репрессии различных генетических программ. В связи с этим, индивид в определенном возрасте может иметь более высокую резистентность по отношению к одним факторам и меньшую устойчивость - по отношению к другим. Новорожденные у человека, как и ранние онтогенетические формы беспозвоночных и позвоночных животных, более устойчивы к острой гипоксии, чем взрослые (Н.Н.Сиротинин, 1934, 1963) из-за наличия в их клетках изоэнзимов фосфофруктокиназы, нечувствительных к ацидотическому ингибированию и из-за продукции фетального гемоглобина. В то же время, их устойчивость к гноеродной инфекции сильно понижена, из-за неспособности обеспечить эффективную барьерную функцию воспаления.

Порог болевой чувствительности у новорожденных, по сравнению со взрослыми, повышен, зато устойчивость к гипертермии и переохлаждению снижена.

А.Ф.Тур (1955) в связи с этим отмечал: «Ребенок не есть взрослый в миниатюре. Реактивность эмбриона, плода, новорожденного, вообще говоря, не больше и не меньше, чем у взрослого. Она просто иная ».

В ходе онтогенеза включаются новые программные ответы, обогащающие реактивность. По Б. Г. Ананьеву, «Как в филогенезе, так и в онтогенезе реактивность усложняется, происходит увеличение диапазона между верхним и нижним порогами реактивности клетки, ткани, органа, системы, организма; причиной тому является возрастание лабильности регуляторных систем» (1969). Чем ближе к началу онтогенеза, тем меньше выбор программ реагирования, доступных индивиду. В позднем фетогенезе ответ на разные возбудители отличается настолько, что дифференциальный диагноз различных внутриутробных инфекций не представляет труда. Однако, в эмбриогенезе «способность болеть», зависящая от имеющихся в оперативном использовании реактонов, гораздо меньше. В полном соответствии с принципом Добберштейна, цитированным выше (стр. 21), это приводит к тому, что на более ранних этапах онтогенеза организм «чаще умирает» в ответ на различные патогены. Беременность чаще прерывается на ранних сроках, чем на поздних. Количество ранних выкидышей превосходит количество поздних. Бластула гибнет чаще, чем эмбрион, а зигота чаще бластулы. Другим проявлением этого на ранних стадиях онтогенеза является меньшая широта спектра доступных организму реакций. Эмбрион дает гораздо менее дифференцированные ответы на различные патогены, чем плод (гибель или пороки развития органов), а бластула ограничена в выборе ответных реакций еще более существенно (гибель, мозаичные хромосомные расстройства, нарушения симметрии, двойниковые уродства). Нельзя дать реактивный ответ, если его программа еще не разархивиро-вана. Вследствие этого самые разные причинные факторы, повреждая организм эмбриона, дают недифференцированную картину пороков развития, характер которых определяется не столько природой патогена, сколько тем. какие именно генетические программы реализовались в момент его действия. Выше уже описывался пример синдрома Грегга (стр. 46).

Углубляясь к началу онтогенеза, мы видим и другое явление: насыщенность единичною отрезка времени генетическими событиями и динамика реактивности тем больше, чем более ранний период онтогенеза рассматривается.

Терапевт может пренебречь даже возрастной разницей в 5 лет между пациентами 25 и 30 лет с одним и тем же диагнозом. Но ход болезни, безусловно, будет различным у детей 6 и 11 лет. На первом году значение имеют уже месяцы - скажем, диета восьмимесячного ребенка неприемлема для четырехмесячного. В течение первого месяца внеутробной жизни, как и у плода, важны недели: желтуха, продолжающаяся неделю, может еще рассматриваться как физиологическая, но если она затягивается более чем на 10 дней - весьма вероятен ее патологический генез.

У эмбриона счет пойдет уже на дни: один и тот же фактор вызывает пороки развития разных органов, поражая эмбриона в разные моменты органогенеза.

Наконец, для бластулы и, особенно, зиготы несколько часов вмещают в себя больше фундаментальных для реактивности событий, чем гораздо более длительные отрезки последующей жизни. Примером может служить перераспределение органоидов в цитоплазме оплодотворенной яйцеклетки в первые 24 часа после оплодотворения: образование зернистого серпа и других презумптивных зачатков, определяющих все последующее развитие мезодермы и других зародышевых листков (А.Г.Кнорре 1959).

Таким образом, кажущаяся зависимость реактивности от времени есть, по сути, ее зависимость от генов.

Рассматривая возрастную зависимость реактивности, мы сталкиваемся, возможно, с ярчайшим из проявлений несовершенства и погрешимости наших адаптивных механизмов. Концентрированное выражение несовершенной природы человека - то, что он смертен и подвержен старению . Природа старения столь тесно связана с фундаментальным несовершенством человеческой реактивности, что нуждается в отдельном рассмотрении.

С точки зрения учения о реактивности, старение - это тенденция к нарастанию несовершенства и снижению эффективности реагирования. Оно сопровождается ограничением лабильности регуляторных систем с увеличением жесткости внутренних связей и сокращением способности к их коррелятивной перестройке. Эразм Дарвин придавал большое значение такому возрастному изменению реактивности, которое он назвал «привыканием к жизни». «При частом повторении удивление, несоответствие или новизна исчезают… Поэтому нервная сила ощущения и воли исключается из цепи жизненных процессов: они становятся гораздо слабее, в конце концов, исчезая совершенно» (1803). В.Н.Никитин определяет основную тенденцию онтогенеза, как нарастание жесткой структурированности системы, в конечном итоге становящееся чрезмерным и ограничивающее в старости свободу реагирования (1963).

Нельзя согласиться с точкой зрения основоположника марксизма, обреченно утверждавшего, что «Жить - значит умирать» (Ф. Энгельс). Ведь до определенной фазы онтогенеза в органах и тканях не отмечается накопления старческих изменений, а механизмы реактивности обогащаются и совершенствуются. Преобладающей тенденция старения становится не с первого дня жизни, а примерно в четвертом ее десятилетии.

Рассматривая механизмы старения на уровне отдельных клеток, нельзя не отметить, что некоторые биохимические и иммунологические процессы не без основания считаются молекулярными эквивалентами их «биологических часов».

Это, прежде всего:

1. Экспрессия антигена стареющих клеток , нетканеспецифического маркера финальной стадии жизни обратимо и необратимо пост-митотических короткоживущих клеток (например, клеток крови).

2. Полиадениловые хвосты долгоживущих информационных РНК , метаболизация которых определяет срок их экспрессии.

3. Онтогенетическое сокращение длины хромосомных теломер в делящихся клетках организма, определяющее срок прекращения пролиферации митотических клеток (К.Харли, К.Грейдер 1991).

Значительно менее ясны механизмы старения на уровне необратимо постмитотических долгоживущих клеток (миокард, мозг), А ведь они могут быть решающими для старения целостного организма, этиология и патогенез которого не вполне ясны, хотя процессы клеточного старения могут вносить в системное старение определенный вклад.

Существующие теории старения можно разделить на две большие группы.

Первая точка зрения трактует старение, как изнашивание . Она восходит к концепции А.Вейсмана (1881) о непрерывности зародышевой плазмы и служебности функций сомы, обеспечивающей выживание половых клеток до момента размножения. По выражению Т.Кирквуда (1982), пессимистически оценивающего средний запас прочности тела в 40 лет, это «теория сомы одноразового использования». Вейсман сформулировал свое понимание проблемы старения следующим образом: «Конечной причиной, определяющей продолжительность жизни, является изнашивание, которому подвергаются особи в течение их существования. Смерть казалась мне целесообразной, так как изношенные особи для вида не имеют цены и даже вредны, отнимая место у лучших». По теории Вейсмана, старение эволюционно выработалось при переходе от бессмертных одноклеточных к многоклеточным, на основании сформулированного им механизма «ретрогрессивной эволюции», подобно тому, как приспособления, лишенные адаптивной ценности (скажем, зрение у подземных животных), регрессируют в рудименты. По Вейсману, природа не пошла по пути совершенствования реактивности до точки достижения индивидуального бессмертия, потому что создать «одноразовый футляр» для бессмертных клеток зародышевой линии оказалось эволюционно дешевле. Поэтому «сома» несовершенна и изнашивается, что приводит к падению репродуктивного потенциала клеток (по другой авторской версии, этот потенциал первично эволюционно ограничен). Концепция Вейсмана. возможно, один из наиболее общих ответов на вопрос, почему реактивность организма не дала ему абсолютно совершенных приспособлений. Такое совершенство излишне для выполнения репродуктивного долга, которое Вейсман и считал целью выживания.

Р.Гертвиг развил эту теорию и постулировал, что живая система изнашивается, подобно машине, но, будучи, сама для себя, механиком, она не в силах остановиться для текущего ремонта и стареет, так как «принуждена функционировать безостановочно» (1914). Современная версия этой концепции задается целью определить конкретные механизмы изнашивания. Было предложено несколько гипотез, выдвигающих тот или иной механизм на роль главного изнашивающего фактора.

В 1908 году М.Рубнер попытался установить связь между продолжительностью жизни видов и удельной интенсивностью их энергетического метаболизма, но, хотя и оказалось, что у многих видов с высокой величиной основного обмена продолжительность жизни меньше, прямой и универсальной зависимости выявлено не было. Позже Р.Перл (1928) интерпретировал рубнеровский подход, как концепцию «скорости проживания », имея в виду, что какой-то лимитирующий механизм ограничивает абсолютную величину энергии, используемой индивидом за всю его жизнь. Интерес к этой теории затем ослаб, и, как оказалось впоследствии - напрасно.

И.И.Мечников (1900) создал теорию, трактующую изнашивание организма, как результат аутоинтоксикации кишечными ядами. «Причина смерти - самоотравление организма... Чем длиннее толстые кишки - тем жизнь короче», - афористично выразился нобелевский лауреат.

Главными токсикантами Мечников считал ароматические амины, образуемые кишечными бактериями. Эксперименты ученого показали ускорение старческих изменений у животных, которым вводили индол и крезол. Ключевым механизмом возрастной деградации в теории Мечникова выступает не только угнетение жизнедеятельности «благородных дифференцированных клеточных элементов» под влиянием кишечных ядов, но и аутоагрессия макрофагов, разрушающих ткани. Современники противопоставляли взгляды Рубнера и Мечникова, и осталось незамеченным, что между этими теориями есть важная общность: рубнеровский уровень энергетического метаболизма зависит от потребления кислорода , а при деятельности макрофагов и при нейтрализации аминов, о которых писал Мечников, выделяются активные кислородные радикалы.

А.Пиктэ (1916) предположил, что основой изнашивания является прогрессирующая циклизация алифатических соединений в организме, препятствующая их растворимости и метаболизму.

О.Люмьер (1921) объяснял изнашивание при старении флоккуляцией долгоживущих коллоидов организма. В.Ружичка (1922) модифицировал обе эти концепции и ввел представление о «протоплазматическом гистерезисе », то есть постепенном уплотнении, дегидратации, коагуляции и снижении в ходе старения растворимости цитоплазматических белков.

А.А.Богомолец развернул подобные представления в теорию возрастной коллоидоклазии (1940), под которой понимал флоккуляцию белков организма без их адекватного аутолиза.

Молекулярные механизмы «старения коллоидов» и других признаков износа стали выясняться во второй половине XX века. Исторический шаг был совершен Динхэмом А.Хэрменом (1954), предположившим, что изнашивание макромолекул организма вызывается свободными (активными) кислородными радикалами (АКР, смотри также раздел «Механизмы свободно-радикального некробиоза »). Согласно его теории старения, изнашивание и гибель клеток при онтогенетической инволюции, в основном, зависит от происходящего с возрастом сдвига в редокс-состоянии организма и усиления эффектов АКР («Старение есть аутоокисление »).

Усиление генерации и длительности существования АКР и ослабление антиоксидантных систем клеток действительно отмечено при старении и особенно выражено при прогериях - болезнях, сопровождаемых преждевременной сенилизацией. Прогерия 1 типа - синдром Гетчинсона-Джилфорда - поражает младенцев. Это аутосомно-рецессивное наследственное заболевание, сопровождаемое ускоренными старческими изменениями кожи, подкожно-жировой клетчатки, алопецией, глаукомой, атеросклерозом и эмфиземой. Отмечается пангипопитуитаризм. Синдром Вернера - аутосомно-рециссивное заболевание c относительно поздним проявлением (15-25 лет), когда на фоне аналогичных общих внешних признаков старения развиваются инсулинонезависимый сахарный диабет, катаракта и мезенхимальные опухоли.

Систематическое применение пищевых антиоксидантов в эксперименте продлевало жизнь подопытных млекопитающих. Выше уже упоминалось, что некоторые данные теорий старения, предложенных Рубнером, Перлом и Мечниковым, могут быть объяснены с позиций образования АКР. Гормон тироксин, при высоком содержании которого замедляется процесс старения некоторых тканей, издавна считался некоторыми авторами эндокринных теорий старения важным геропротек-тором (А.Лоранд, 1911). В настоящее время показано, что он является феноловым антиоксидантом. Пигмент старения - липофусцин, откладывающийся в стареющих тканях, образуется при участии процессов перекисного окисления липидов. Гемосидерин, накопление которого в старости характерно для макрофагов, также образуется при участии железозависимых аутоокислительных процессов. Свободно - радикальные реакции играют важную роль в патогенезе гериатрических заболеваний, в частности - атеросклероза, так как в присутствии липоперекисей ухудшается дренажная функция липопротеидов высокой плотности и увеличивается содержание холестерина в атерогенных липопротеидах. АКР способны обеспечить флоккуляцию и понижение дисперсности белковых коллоидов цитоплазмы, циклизацию некоторых липидных компонентов мембран при образовании липоперекисей. Предложенная в 1958 году гипотеза Й.Бъёркстена связывала старение с образованием поперечных сшивок в долгоживущих белковых молекулах (в частности, волокнистых белках). Показано, что и в этом явлении велика роль именно АКР, хотя значительный вклад могут обеспечивать процессы неферментативного гликирования белков, вызванного эпизодами гипергликемии. По мнению Э.Церами (1987) гликирование делает основное топливо организма также и ведущим фактором возрастного изнашивания, в частности, в сосудистой стенке, хрусталике, легких, сердце и почках. Особенно ускоряется этот процесс при диабете. Б.Л.Стрелер считал причиной возрастного изнашивания микрозалпы энергии, высвобождаемые при метаболизме и повреждающие биополимеры (1959). В настоящее время эту точку зрения также можно увязать с микровыбросами свободных радикалов, сопровождающими некоторые этапы метаболизма. Ш.Надь называл причиной старения накопление дефектов биологических мембран (1978), что также вполне увязывается с теорией старения как аутоокисления, так как АКР вызывают образование липоперекисей, весьма типичных для повреждения мембран агентов. Теория катастрофического накопления ошибок транскрипции и трансляции при старении постулирует эпигенетические дефекты в структуре и работе управляющих этими процессами ферментов (Ж.А.Медведев, 1965). Эта теория тоже совместима с окислительной концепцией, так как показано, что АКР способны вызывать кумулируемые повреждения структуры и функции ферментов (И.Штадтман, Д.Карни, 1991).

Онтогенетические аспекты резистентности клеток к АКР вообще своеобразны и отличаются от возрастной динамики устойчивости к острой гипоксии. Некоторые данные, в частности, повышенная чувствительность недоношенных детей к токсическому действию высоких концентраций кислорода, позволяют предположить, что, в противоположность антигипоксической резистентности, которая у детей раннего возраста выше, чем у взрослых, устойчивость к действию АКР в раннем онтогенезе, наоборот, минимальна.

Вероятно, это связано с отсутствием достаточных антиоксидантных резервов. Так, активность глютатионредуктазы в эритроцитах новорожденных меньше, чем у взрослых.

В старости ресурсы антиоксидантной системы организма (подробнее о ней см. ниже) вновь снижаются.

Наиболее ярким свидетельством этого стало обнаружение возрастного уменьшения активности супероксиддисмутазы. Имеются свидетельства о повышенной активности супероксиддисмутазы в клетках долгоживущих видов животных (Р.Кетлер, 1983).

М.Р.Роуз и соавторы (1991) вывели чистую линию дрозофил-долгожительниц, у которых оказалась резко повышена активность супероксиддисмутазы, увеличена способность к использованию жирных кислот и запасанию гликогена. Т. Э. Джонсон (1988) вызвал у червя Caenorhabditis elegans индуцированную мутацию, повышающую продолжительность жизни. Мутантный ген age-1, как оказалось, кодировал ингибитор антиоксидантных ферментов супероксиддисмутазы и каталазы, которые значительно активизировались у червей-долгожителей. Таким образом, имеются все основания отводить теории Хэрмена интегрирующую роль в исследовании механизмов старения.

В полном соответствии с классическими теориями коллоидоклазии, доказано (И.Штадтман, Д.Карни, 1991), что с течением времени в ферментативных белках организма нарастает количество карбонильных групп, являющихся результатом окисления. Это приводит к инактивации и замедлению метаболизма окисленных белков, что отражается на функции органов. При этом функциональные изменения, например, в мозге грызунов, могут быть временно обращены путем введения антиоксидантов (фенилбутилнитрона, ди-бунола и т.п.). Правда, не все факты легко интегрируются с позиций данной теории. Остается, например, непонятным, почему при синдроме Дауна , когда количество генетического материала 21 хромосомы, кодирующей цитоплазматическую Cu/Zn-зависимую форму супероксиддисмутазы, увеличено, продолжительность жизни, наоборот, понижена. Возможно, дело в компенсаторном снижении активности митохондриальной Мn-зависимой супероксиддисмутазы, кодируемой в 6-й хромосоме (П.Сине и соавт. 1975).

Наблюдения о наследуемом характере предрасположенности к долгожительству и о существовании наследственных синдромов с ускорением старения (таких, как описанные выше прогерии, а также синдромы Дауна и Шерешевского-Тернера), культуральное бессмертие малигнизированных и иных гетероплоидных клеток, несущих соматические мутации - все это заставляло медиков подозревать, что процесс старения контролируется или даже индуцируется генетически. Зоологи, обнаружив запрограммированную гибель после нереста у тихоокеанского лосося и ряда других видов, размножающихся лишь однажды, тоже пришли к подобной идее и первым был опять-таки фрейбургский профессор зоологии Август Вейсман, указывавший, что Lepidoptera потеряли способность к продолжению жизни после размножения из-за действия того же «ретрогрессивного» эволюционного механизма, который сделал их взрослые особи безротыми.

Сложившаяся на этой основе альтернативная теория старения может быть охарактеризована, как теория генетически запрограммированной инволюции . Еще в конце 19-го века Е.Пфлюгер говорил о «декременте творческой силы зародыша, восстанавливаемой только оплодотворением» (1890), а русский физиолог И.Р.Тарханов высказал мысль, что «причиной естественной смерти служит не изнашивание самих клеток, а прогрессирующее ограничение способности клеток к созиданию и размножению». Причиной утраты пролиферативного потенциала он прозорливо считал изменения ядерного вещества (1891). А.Вейсман в 1891 году, вопреки существовавшему тогда среди цитологов мнению, предсказал, что пролиферативный потенциал изолированных соматических клеток должен быть конечным. Поначалу опыты А.Карреля (1912), казалось бы, опровергали это.

Но экспериментальное подтверждение теория конечности пролиферативных потенций клеток получила после классических опытов Л.Хейфлика и П.Мурхеда (1961), продемонстрировавших, что нормальные диплоидные фибробласты раннего эмбриона человека способны в культуре клеток удваиваться ограниченное число раз - примерно около 50. После этого пролиферативный потенциал клеток утрачивается и наступает их гибель без видимых причин. Пересадка ядра старой клетки в цитоплазму молодой терминирует ее пролиферацию, как и пересадка «молодого» ядра в «старую» цитоплазму - то есть, имеет, по-видимому, значение и геном, и плазмон. Клетки, взятые от индивидов с наследственными болезнями, сопровождаемыми ускорением старения, в культуре делятся меньшее количество раз, чем нормальные.

По мнению Дж.Камписи (1993), гены, контролирующие старение могут локализоваться в 1-й и 4-й хромосомах. На роль подобного контролера претендует один из немедленных генов предраннего ответа с-fos (см. также стр. 148), выключение которого лишает клетку ее пролиферативного потенциала. Еще в 1932 году Дж.П.Биддер выдвинул предположение, что у высших животных должны существовать генетические механизмы, ограничивающие рост после достижения половой зрелости. Он считал инволюцию при старении результатом продолжающейся работы этих механизмов на фоне исчерпывающейся пролиферативной активности клеток. В настоящее время концепция геронтогенов разрабатывается очень активно. Считается, что геронтогены могли сохраниться в эволюции в силу сцепления с полезными аллелями или из-за антагонистической плейотропии (Дж.Уильяме, 1950, П.Медавар, 1952) когда один и тот же ген обуславливает ранние селективные преимущества, но вызывает вред при экспрессии в позднем возрасте. Такие гены при урежении частоты случайной гибели особей будут безо всякого адаптивного смысла, автоматически накапливаться в популяциях большего среднего возраста и делать функционирование клеток все хуже. Таковы, например, гены, контролирующие выработку половых гормонов, интенсивная работа которых, безусловно, биологически выгодна в репродуктивный период, но может способствовать развитию опухолей гормонозависимого характера. По выражению Медавара, старение - побочный результат снижения с возрастом корригирующей силы естественного отбора, своего рода «дальнозоркость природы».

Конечно, прекращение или ослабление пролиферации клеток еще не равнозначно сенильным изменениям в организме, тем более, что нейроны и кардиомиоциты, от которых так зависит жизнь организма, как раз в постнатальном онтогенезе не делятся. Более того, фибробласты, взятые от умирающих престарелых индивидов в культуре еще сохраняли способность дать несколько поколений клеток (Мартин, 1970), то есть, как и предсказывал Вейсман, со смертью сомы как целого, индивидуальный пролиферативный потенциал клеток еще не полностью исчерпывается. Тем не менее, у дрожжей открыт ген LAG1, ответственный за продление жизни и анало-гичный некоторым человеческим генам (М.Язвински, 1993).

Л.Сцилларду (1959) принадлежит идея, что старение может быть вызвано накоплением соматических мутаций в организме, наследующая старым взглядам немецких авторов о решающей роли естественной радиации в старении (X.Цваардемакер, А.Кунце 1927, 1933).

Интегративная окислительная теория старения признает роль соматических мутаций и трактует их, как следствие действия АКР на ДНК. С этой токи зрения, гены, контролирующие функции антиокислительной системы, могут быть решающими в определении продолжительности жизни.

Теоретически, наиболее уязвимой для АКР должна быть ДНК митохондрий, где кислородные радикалы могут во множестве формироваться. И действительно, установлено, в частности, что в ходе онтогенеза миокарда и мозга у престарелых людей наблюдается накопление дефектов митохондриальной ДНК. Предполагается, что это может нарушать функцию митохондрий и вызывать энергетический голод в стареющих клетках по типу сенильной тканевой гипоксии (Дж.Кортопасси, Н.Арндхейм 1990).

А ведь подобное неполное хроническое энергетическое голодание еще М.С.Мильман (1926) называл в качестве основной черты метаболизма при старении!

Ниже, в разделе «Механизмы апоптоза» подробно описываются гены, ингибирующие и провоцирующие запрограммированную гибель клеток. Так как гибель клеток в жизненно важных органах с ограниченными пролиферативными возможностями может оказывать лимитирующее действие на срок жизни организма в целом, эти гены тоже можно считать элементами наследственной детерминации процесса старения.

Основоположники геронтологии придавали особое значение возрастным изменениям интегративных систем аппарата реактивности. И.И.Мечников установил, что естественная смерть у подёнок и коловраток начинается с деструкции нервных центров (1908). А.Чайльд (1915) считал, что первичные изменения при естественной смерти касаются головного мозга и заключаются в накоплении там неметаболизируемого груза продуктов распада. М.Рибберт (1906) отводил при старении решающую роль инволюции соматической, а А.С.Догель (1922) - симпатической вегетативной нервной системы.

Возрастные изменения, по М.С.Мильману и другим авторам, сопровождаются потерей нейронов и их глиальным замещением в ряде важных структур ЦНС (синее пятно, гиппокамп, черная субстанция, путамен, хвостатое ядро, кора больших полушарий). Функциональные изменения с возрастом касаются некоторого понижения остроты памяти и замедления работы мозга при решении новых задач. Но это можно объяснить атеросклеротическими сосудистыми изменениями и ишемией мозга болезнь Альцгеймера , весьма характерную для старческого мозга и поражающую не менее 20% индивидов после 80 лет, большинство современных авторов не считают составной частью физиологического старения, а связывают с действием патологических, возможно, экзогенных факторов (прионов, алюминиевой интоксикации, аутоиммунного процесса).

По-видимому, нельзя считать изменения нервной системы первичными в процессе старения - ведь стареют и организмы, лишенные ЦНС. Недаром такие авторитеты, как И.П.Павлов (1949) и А.В.Нагорный (1954) доказывали, что центральная нервная система, напротив, орган наиболее функционально долговечный и структурно пластичный.

Патологи, формулировавшие учение о реактивности на основе ключевой роли эндокринной системы, естественно, предприняли поиск механизмов системного старения, связанных с железами внутренней секреции.

Многие авторы придерживались мнения о существовании эндокринной периодизации в онтогенезе: детство и юность - под знаком активного влияния тимуса и эпифиза при высокой активности щитовидной железы, зрелость - при активации половых желез и надпочечников и начале инволюции вилочковой и шишковидной желез, старость - с угасанием активности гонад и щитовидной железы, завершением инволюции эпифиза и тимуса. При этом предполагалось, что эндокринным органам присущ «продленный эмбрионализм», позволяющий им координировать морфогенетические процессы и возрастную динамику реактивности в организме (М.М.Завадовский, 1931; С.С.Халатов, 1944). На основе сходных представлений были предприняты знаменитые опыты Ш.Э.Броун-Секара (1889), Э.Штейнаха (1919) и С.А.Воронова (1923) по омоложению животных и человека путем пересадки гонад и воздействия их экстрактов, так захватившие в свое время воображение околомедицинской общественности.

Современные данные согласуются с некоторыми аспектами этой концепции. Так, именно гормон эпифиза мелатонин оказался не только блокатором активации половых желез, но и активатором антиоксидантной системы организма, стимулятором противоопухолевого иммунитета. Установлена его способность стимулировать активность Т-лимфоцитов и синтез антител, то есть именно те функции иммунной системы, которые ослабевают в старости. Пептидные экстракты эпифиза также стимулируют клеточный иммунитет. Эпифиз осуществляет иммуномодулирующее действие путем стимуляции продукции эндогенных опиоидов. Опиоидные агонисты - это медиаторы физиологического выхода из стресса (см. ниже главу «Стресс»). Их недостаточная активность снижает стрессорезистентность организма, что также характерно для последствий старения. Таким образом, эпифизарная недостаточность может играть важную роль в происхождении старческих психонейроэндокринных и иммунологических изменений. (В.Н.Анисимов, Р.Дж.Рейтер 1990). С возрастом уменьшается секреция эпифизарного мелатонина и гипофизарного гормона роста. Отчетливо снижается пульсовая частота эпизодов секреции соматотропина (Р.Л.Растинг, 1993). Среди современных авторов концепцию нейроэндокринной природы старения поддерживает К.Э.Финч (1990), обнаруживший, что гипоталамо-гипофизарная система и управляемые ею гонады своими гормональными сигналами взаимно усиливают обоюдное старение. Существует возрастная тенденция повышения порога чувствительности гипоталамуса к половым гормонам, способствующая возникновению гормонозависимых опухолей, в частности, рака молочной железы. Пептидные экстракты эпифиза способны восстанавливать ингибирующее действие эстрогенов на гипоталамус. Гормоны эпифиза оказывают положительный эффект при раке молочной железы. Наконец, эпифизэктомия укорачивает, а мелатонин и пептидные гормоны эпифиза - удлиняют среднюю и максимальную продолжительность жизни грызунов. (О.Мальм и др., 1955, В.Пьерпаоли и др. 1989, В.Н.Анисимов, Р.Дж.Рейтер, 1990). Следовательно, Рене Декарт, возможно, был не так уж далек от истины, когда в 17 веке поместил бессмертную душу именно в шишковидную железу.

Г.Селье считал причиной старения и смерти исчерпание конечного запаса адаптационной энергии, расходуемой гипоталамо-гипофизарно-надпочечниковой системой при стрессах (1950). Еще М.Симмондс (1914) - у больных и Ф.Э.Смит (1927) - у подопытных крыс наблюдали явления прогерии при недостаточности функций гипофиза.

Однако, в гипоталамусе и гипофизе не обнаруживается сколько-нибудь значительной убыли клеток с возрастом. В надпочечниках снижение секреции касается исключительно андрогенов и минералокортикоидов, пучковая зона с возрастом даже гипертрофируется. Более того, вопреки трактовке старости, как ослабления способности к стрессу, во многих случаях престарелые люди страдают от расстройств, связанных с повышенной активностью стрессорных механизмов, например, гипертензии. Не исключено, что лимитированы как раз резервы антистрессорных систем, в частности, эндорфиновой (см. также раздел «Стресс»), Нарушения в ее работе при старении могут быть связаны с возрастной инволюцией эпифиза и влекут негативные последствия для иммунной системы. Отмечено также возрастное снижение количества глюкокортикоидных рецепторов во многих тканях-мишенях, что может отражаться на эффективности стрессорной реакции у престарелых.

Старение сопровождается облигатными изменениями в иммунной системе: вследствие возрастной инволюции тимуса (другой кандидат на роль обиталища души, согласно представлениям Руфуса Эфесского (100г. до н. э.), ослабевает клеточный иммунитет {8} . Снижается продукция интерлейкина-2 и иных цитокинов, а также ответ Т-лимфоцитов на интерлейкиновый стимул. Уменьшаются продукция цитотоксических эффекторов и ответ на кожные тесты замедленной гиперчувствительности. Сообщалось о снижении супрессорных функций лимфоцитов в старости. В то же время, ослабления функций антигенпредставля-ющих клеток, фагоцитов и Т-хелперов у пожилых не отмечается (Дж.Делафуэнте, 1985). При старении снижается продукция иммуноглобулинов против чужеродных антигенов, в то же время учащаются аутоиммунные расстройства (М.Векслер 1981).

Сторонники теории физиологического аутоиммунитета, к которым принадлежат и авторы этой книги, отводят аутоантителам роль синхронизаторов онтогенетических процессов в различных органах и тканях (П.Н.Грабарь, 1975). Еще И.И.Мечников (1908) предсказывал важную роль аутоиммунных процессов в старении, а А.А.Богомолец (1938) пытался с помощью антиретикулярной цитотоксической сыворотки оказать направленное влияние на процессы старения. И все же, современная геронтология не считает именно иммунологические изменения прямой причиной старения (Дж.Делафуэнте, 1985). Геронтологи выделяют болезни, зависящие от старения и связанные со старостью. В разряд первых, рассматриваемых как прямой и обязательный компонент естественного старения, попадают сравнительно немногие недуги. Р.Котран и соавторы (1993) называют среди них старческую катаракту, сенильную эмфизему, остеопороз и остеоартрит, гиперплазию предстательной железы, вульвовагинальную атрофию, понижение слуха и (под вопросом) болезнь Паркинсона. Р.Л.Растинг (3 993) добавляет старческую пресбиопию. Остальные гериатрические болезни, включая атеросклероз, попадают в разряд связанных со старостью, то есть имеющих важные патогенетические механизмы, независимые от самого механизма старения.

Рассмотренные данные убеждают, что, в организме нет главного места старения, но у престарелых имеются отчетливые сенильные изменения в интегративных функциях аппарата реактивности. Стареют не отдельные органы, «старость - изменение общей ситуации» (С.Хирш, 1926). В то же время, нельзя уподоблять организм равнопрочной конструкции, которая старится синхронно. Если и не удается обнаружить центрального звена или часов системного старения, то это не значит, что процесс старения не идет по принципу конкретного прорыва в местах наименьшего сопротивления. Таким locus minoris resistentiae, по-видимому, может быть редокс-состояние организма, особенно тех органов и тканей, где клетки находятся в необратимо постмитотическом состоянии. По Л.А.Гаврилову (1991), старение - проявление ограниченной надежности организма при каскадных отказах в работе его интегративных систем.

Современные геронтологические теории, выросшие на плодотворной почве унавоженного в годы лысенковщины вейсманизма, убедительно иллюстрируют основную концепцию данной книги - природа дала человеку погрешимые и несовершенные механизмы соматической адаптации, и потому растить детей - важнее, чем жить вечно.

УСЛОВИЯ ОБИТАНИЯ И РЕАКТИВНОСТЬ

По формуле В.Иоганссена, совокупность условий среды определяет, в какой мере генотип индивида выразится в его фенотипе. Поэтому индивидуальная реактивность находится под влиянием условий обитания, в том числе, питания, патогенных факторов и состояния здоровья, лечебно-профилактических воздействий. Следовательно, индивидуальная реактивность может быть изменена искусственно (о чем свидетельствуют явления вакцинации, закаливания, тренировки, десенсибилизации). А. А. Богомолец подчеркивал, что для реактивности организма и, в частности, для его конституции «чрезвычайно характерен ритм протекающих в нем жизненных процессов». Влияние условий среды на реактивность индивида циклично. Организм способен отвечать на естественные циклические экологические явления колебаниями параметров реактивности - биологическими ритмами , которые сложились эволюционно. Насчитывают не менее 300 ритмически колеблющихся параметров реактивности. Наиболее хорошо изучены циркадные (околосуточные) ритмы с периодом 20-28 часов. В основе циркадных ритмов, как и ритмов сезонных , как показал А.Л.Чижевский (1935), лежит чувствительность организма к фотопериодическим явлениям. Главным фотопейсмейкером в нейроэндокринной системе выступает эпифиз. Свет воспринимается сетчаткой, и соответствующий сигнал передается через супрахиазматическое ядро базального гипоталамуса, интермедиолатеральный клеточный столб спинного мозга и верхний шейный ганглий в шишковидную железу. В темноте постганглионарные нервные волокна этого пути секретируют норадреналин, побуждающий пинеалоциты вырабатывать мелатонин (N-ацетил-5-метокситриптамин), а на свету описанный процесс тормозится. (Дж.Рейтер, 1990). Мелатонин поступает в системный кровоток и в гипоталамо-гипофизарную систему, для которой эпифиз выполняет, согласно классической точке зрения, роль «тесных башмаков» (Б.В.Алешин, 1974). Чувствительность центрального нейроэндокринного звена к ингибирующему действию половых гормонов варьирует в зависимости от уровня концентрации мелатонина, что отражается на поведенческой реактивности. Мелатонин ритмически влияет на секрецию опиоидов, контролирующих ряд параметров иммунологической реактивности. Таким образом, фотопериодические явления природы через естественный ритм секреции мелатонина, с акрофазой в ночное время и сезонной вариацией, контролируют основные биоритмы интегративного аппарата реактивности. Еще в 70-е годы А.С.Пресман (1971) предполагал, что техногенное излучение различных диапазонов может вносить возмущения в работу эпифиза, и даже связывал с этим механизм акселерации роста и развития детей. В последние годы получены свидетельства того, что нарушение светового режима, избыточное и круглосуточное освещение, микроволны, радиоволны, электромагнитные поля и ионизирующее излучение подавляют продукцию мелатонина, способствуя увеличению риска канцерогенеза в молочной и предстательной железах (Д.Блэск и соавторы, 1988; Б.Уилсон и соавторы, 1988). Таким образом, интактность естественных биоритмов важна для сохранения нормальной реактивности.

Циклические изменения в нейроэндокринной системе являются первоосновой циркадного ритма функций такого важного для неспецифической резистентности организма звена, как корковое вещество надпочечников. Многими авторами доказано, что у человека и дневных животных акрофаза секреции кортикостероидов, АКТГ и кортиколиберина приходится на ранние утренние (7-8 ч) часы, а минимум - на поздние вечерние (19-20 ч, см., например, данные А.Шафарчика и соавторов, 1983). Данный ритм определяет поддержание стабильного уровня глюкозы в промежутках между приемами пищи и отражается на стрессоустойчивости индивидов в различное время суток. Доказано, что ночная работа нарушает естественный ритм адреналовой активности и именно поэтому служит важным фактором риска гипертензий. Данный периодизм играет известную роль в формировании конституциональных ритмологических особенностей индивидов.

Околомесячные ритмы также играют важнейшую роль в динамике реактивности организма. Лунномесячному ритму следует менструальный цикл женщин. Согласно концепции Г.Свободы и В.Флейса (1898, 1901), существуют двадцати восьмидневный цикл эмоциональной активности человека, тридцати трехдневный интеллектуальный цикл и цикл физической активности, продолжительностью 23 дня, исчисляемые от момента рождения. Первая половина каждого цикла - анакротическая, с подъемом интенсивности соответствующей функции, а вторая - катакротическая, характеризуемая ее спадом. Дни в середине каждого цикла считаются критическими, переходными. Сторонники этой теории приводят данные об учащении несчастных случаев и психоэмоциональных срывов в критические дни. Один из авторов данной книги предпринял курьезный расчет ритмов Свободы-Флейса у В.И.Ульянова в период Октябрьского переворота. Читатель может повторить этот любопытный эксперимент и убедиться, что знаменитое ленинское «Сегодня рано, а послезавтра - поздно!» имело под собой архиважную биоритмологическую основу. Впрочем, представления Флейса и Свободы встречают много возражений, так как их критики справедливо указывают на широкую индивидуальную вариацию параметров реактивности.

Индивидуальные механизмы реактивности и пределы их функционирования действительно, чрезвычайно изменчивы. Широкий диапазон изменчивости позволяет виду лучше приспособиться к меняющимся условиям среды и использовать ее многообразие для своих нужд. Согласно теореме Р. Фишера об отборе в пользу популяции в целом, при небольших различиях в коэффициенте выживания между носителями разных аллелей, в популяции устанавливается такое равновесие между ними, которое обеспечивает максимум среднепопуляционной приспособленности.

Если плохо приспособленный аллель доминантен, то число его носителей будет в ряду поколений уменьшаться в геометрической прогрессии, но если он рецессивен - то отбраковка идет значительно медленнее - пропорционально 1/Т, где Τ - время. Поэтому популяционный генофонд насыщен рецессивными аллелями, которые имеют достаточно времени, чтобы быть испытанными в разных, потенциально полезных комбинациях. Генетический полиморфизм, даже если в ряде случаев он у индивида приводит к возникновению преднозологических состояний или проявляется как болезнь, в рамках популяции и вида в целом полезен. Генетический груз популяций расширяет потенциальную базу приспособлений. Действует принцип сооптимальности аллелей, при котором любой из устойчивых аллелей в генофонде оптимален лишь на фоне остальных (А.Н.Горбань, Р.Г.Хлебопрос 1988). То, что не выигрышно или даже проигрышно сегодня, может стать главным козырем адаптации при резко изменившихся условиях обитания. В этом случае былые аутсайдеры спасут популяцию. Священное Писание выражает эту мысль в образной форме, предрекая, что «Хромые внидут первыми» в царствие небесное.

Рассмотренные закономерности дают основания говорить о популяционном уровне реактивности, наряду с индивидуальной и видовой. Существование популяционной реактивности подтверждается различиями в реакциях домашних животных разных пород, растений разных сортов, микроорганизмов различных штаммов на одни и те же воздействия. На основе популяционных особенностей реактивности, под влиянием мутаций, отбора, дрейфа и потока генов формируются расовые особенности реактивности, которые объективно существуют, несмотря на то, что все человечество представляет собой единый биологический вид. Так, негроиды обладают повышенной устойчивостью к столбняку, а европеоиды - к натуральной оспе. Существуют расовые особенности белков плазмы крови, имеющие отношение к региональной экологической адаптации рас. Например, в системе трансферрина имеются два аллельных варианта: ТfD1, часто встречающийся в тропиках, и TfC, обычный для умеренных широт. Показано, что первый вариант отличается повышенной катехоламин-связывающей способностью, а это может иметь значение для эффективной температурной адаптации. У данных белков отличается и антибактериальная железо-связывающая активность, что может отражаться на антибактериальном иммунитете обитателей разных широт. Частота аллели А1 гена дофаминового рецептора Д2, имеющего связь с повышенным риском развития алкоголизма и токсикоманий, синдрома Жиля де ля Туретта, аутизма и других поведенческих расстройств (Д.Комингз, С.Фланаган, 1991) весьма различна среди представителей разных этносов. По данным К.Блама, Э.Ноубла (1990), в США она существенно выше среди индейцев и ирландцев, чем среди евреев.

Расовые особенности реактивности человека, как и классовые, профессиональные, этнические, можно считать групповыми . Но, главной формой групповой реактивности является конституциональная.

Глава 1. Определение понятия "реактивность* организма"


*oт лат. reactio - противодействие

Реактивность - свойство организма как целого отвечать изменениями жизнедеятельности на воздействия окружающей среды , представляющее собой такое же важное свойство всего живого, как обмен веществ, рост, размножение и др.

Реактивность присуща всякому живому организму. В процессе эволюции вместе с усложнением организации живых существ усложнялись формы и механизмы реактивности. Чем проще организовано животное и чем менее развита у него нервная система, тем соответственно и проще форма его реактивности. Реактивность простейших и многих беспозвоночных животных по существу ограничивается изменениями обмена веществ, позволяющими животному существовать в неблагоприятных для него условиях внешней среды.

Особенность реактивности низших животных, связанная со способностью изменять интенсивность процессов обмена веществ, позволяет им переносить значительное высыхание, понижение температуры окружающей среды, уменьшение содержания в ней кислорода и пр.

Чем выше организовано животное, тем более широким арсеналом средств активного реагирования на различные вредные влияния внешней среды оно располагает.

Наиболее сложной и многообразной является реактивность у человека. Как в здоровом, так и в больном состоянии деятельность всех его органов и систем, конечно, выражает физиологические закономерности, но эти закономерности в такой мере зависят у человека от социальных факторов, что можно с полным правом говорить об их полном опосредовании и "снятии" в человеческом организме.

Для примера достаточно напомнить такие функции как пищеварение, теплорегуляцию, размножение, не говоря уже о высшей нервной деятельности человека. Ярким примером социального опосредования реактивности у человека в наше время научно-технического прогресса являются различные системы "человек-машина". Реактивность человека, едущего на велосипеде, например, ориентируется на новые скорости движения на данном виде транспорта, его организм соответственно приспосабливается к быстрым сменам зрительных и слуховых раздражителей, "человек-велосипед" становится новой комплексной системой реагирования в окружающей его среде. Подобным же образом формируются различные системы "человек-машина" на производствах, где человек стновится нередко частью машины и как бы сливается с ней в ходе той или иной производственной операции. Нарушения работы этой системы (отставание от темпа или ритма работы машины и др.) могут стать причинами травм, нарушений функций анализаторов, психических расстройств.

Особое значение для реактивности человека имеет вторая сигнальная система - воздействие слов, письменных знаков. Слово для человека может оказывать как лечебное, так и болезнетворное действие, изменяя различным образом реактивность его организма.

В практической медицине термин "реактивность организма" широко применялся с целью общей, чаще всего количественной, оценки состояния организма больного. Так, состояние повышенной реактивности называли гиперергией (от греч. hyper - больше, ergon - действую), а пониженной - гипергией. Подобное разделение было положено в основу многих клинических классификаций реактивности при различных заболеваниях. Так, например, в клинике внутренних и инфекционных болезней различали гиперергические, гипергические и энергические формы пневмонии, туберкулеза, дизентерии и других инфекций. Гиперергическими формами называли болезни с более быстрым, бурным течением, сопровождающиеся выраженными изменениями деятельности органов и систем. Гипергическими называли заболевания с вялым течением, с неясными, стертыми признаками, со слабо выраженными механизмами защиты организма от микробов (выработка антител, фагоцитоз и др.).

В хирургии с изменениями реактивности связывали различное течение раневого процесса, сепсиса, перитонита, и других заболеваний. Быстрое заживление, пышные красные грануляции, совершенная эпителизация раны свидетельствуют о высокой реактивности организма. Медленное заживление, вялые бледные грануляции, слабая эпителизация раны свидетельствуют о низкой реактивности больного. Различают молниеносную, гиперергическую форму сепсиса и вялую, затяжную его форму.

§ 68. Реактивность и резистентность

Понятие о реактивности организма нередко рассматривают вместе с понятием резистентность (Н. Н. Сиротинин).

Под резистентностью организма понимают его устойчивость против различных болезнетворных воздействий (от лат. resisteo - сопротивление).

Резистентность организма к болезнетворным воздействиям выражается в различных формах. Например, кожа и слизистые оболочки представляют собой структуры, препятствующие проникновению микробов и многих ядовитых веществ в организм. Они осуществляют так называемую барьерную функцию. Кожа представляет собой структуру, обладающую большим сопротивлением для электрического тока, для β-излучения. Подкожная жировая клетчатка обладает плохой теплопроводностью. Кости и другие ткани опорнодвигательного аппарата обладают значительным сопротивлением к деформации под влиянием механических воздействий (см. § 28-30). Сейчас нередко говорят о "надежности" различных тканевых структур (кости, суставы и др.) человека.

Приведенные примеры характеризуют резистентность тканей и соответственно организма в целом в зависимости от их строения и свойств, полученных организмом по наследству. Эти свойства не выражают активные реакции организма на болезнетворные влияния. Но существуют и другие формы резистентности, которые выражают активную реакцию организма на болезнетворные влияния. К таковым относятся многочисленные механизмы неспецифической и специфической защиты организма от болезнетворных влияний среды. Все эти механизмы теснейшим образом связаны с реактивностью организма. В качестве примера можно указать на различные виды иммунитета, на процессы нейтрализации и выделения ядов из организма, на процессы заживления ран и многие другие. Во всех этих процессах реактивность можно рассматривать как выражение активных механизмов возникновения резистентности организма к различным болезнетворным факторам. Именно поэтому Н.Н. Сиротинин нередко объединял рассмотрение вопросов реактивности и резистентности в общем изложении.

Следует однако помнить, что бывают состояния организма, при которых реактивность и резистентность изменяются не однозначно. Например, при гипертермии, при зимней спячке животных, при некоторых видах голодания реактивность организма снижается, а резистентность его к инфекциям увеличивается (Н. Н. Сиротинин). Некоторые специальные механизмы резистентности будут рассмотрены вместе с механизмами иммунитета и аллергии.

§ 69. Реактивность и поведение организма в среде

Реактивность организма как целого тесно смыкается с современным учением о поведении животных в окружающей их среде, т. е. с проблемами их экологии. Для человека естественно под средой следует понимать не только биологическую, но и социальную среду, окружающую его, так как человек живет в обществе и все его физиологические функции опосредованы социальными, общественными влияниями. Рассмотрение поведения животных (Хайндль, 1975) в настоящее время тесно связывают с состоянием реактивности их организма. Так называемая видовая биологическая реактивность животных по существу и выражается в различных формах их поведения в окружающей среде (см. § 71).

Применительно к человеку проблемы реактивности и поведения тесно смыкаются при рассмотрении многих нарушений высшей нервной деятельности, при неврозах, вызываемых нарушениями микросоциаль-ных соотношений на работе и в быту, при так называемых информационных неврозах. Существуют специальные виды заболеваний, так называемые "реактивные состояния", при которых человек неадекватно ведет себя в окружающей его социальной и биологической средах.

§ 70. Некоторые частные показатели состояния реактивности организма

Реактивность как свойство целого организма изменять свою жизнедеятельность под влиянием воздействий внешней среды имеет ряд частных физиологических проявлений или показателей. Важнейшие из них:

  • Раздражимость - важнейшее свойство каждой живой клетки отвечать функциональными и структурными изменениями на изменения окружающей среды. Раздражимость является наиболее элементарным свойством протоплазмы живой клетки. Различные состояния раздражимости клеток и прежде всего нервных клеток в сложном многоклеточном организме у высших животных формируют механизмы реактивности.
  • Возбудимость. Понятие весьма близкое к раздражимости. Оно возникло из потребности физиологов количественно оценить состояние раздражимости в живых тканях. Порогом возбудимости называется минимальная сила раздражения раздражителя (механического, электрического, химического), которая способна вывести ткань из состояния покоя в состояние деятельности (сокращение, секреция).

    Возбудимость является только одним из показателей реактивности. Возможны состояния, при которых на фоне высокой реактивности возбудимость может снижаться, и наоборот. Так, например, на фоне повышенной реактивности организма к чужеродному белку наблюдаются фазовые изменения возбудимости.

    В табл. 12 представлены сравнительные данные о возбудимости, функциональной подвижности и хронаксии нервных стволов при различных состояниях реактивности животных при некоторых заболеваниях.

    Таблица 12. Реактивность организма и показатели функционального состояния нервных стволов
    Объект Реактивность Возбудимость Лабильность Хронаксия
    Седалищный нерв у кролика Столбняк Увеличена, уменьшена Повышена Укорочена, удлинена
    Малоберцовый нерв у кошки Камфорная эпилепсия Увеличена Повышена Укорочена
    То же Электрическая эпилепсия Увеличена Без изменений Укорочена, удлинена
    Малоберцовый нерв у кролика Анафилаксия Увеличена, уменьшена Повышена, понижена Укорочена, удлинена
    Кожный нерв у собаки Травматический шок Уменьшена Понижена Удлинена
  • Реактивность и функциональная подвижность (лабильность). При изменении реактивности организма наблюдаются изменения лабильности тканей.

    Резкое снижение реактивности организма и функциональной подвижности нервной системы и нервных центров наблюдается при травматическом шоке, что предполагал в свое время Н. Е. Введенский.

    В качестве изменения реактивности и функциональной подвижности другого типа Н. Е. Введенским было описано состояние так называемого "истериозиса" нервных центров. Оно развивается вследствие более или менее длительного раздражения какого-либо чувствительного нерва, что ведет к торможению в соответствующих нейронах рефлекторной дуги и повышению возбудимости других рефлекторных дуг. При этом возникает увеличение реактивности и функциональной подвижности соответствующих нервных центров. Слабое подпороговое раздражение другого чувствительного нерва на фоне истериозиса вызывает рефлекторную реакцию большой силы.

    Установлено, что явление это имеет место при столбняке, бешенстве, стрихнинном отравлении, некоторых видах электротравм и других патологических состояниях.

    Таким образом, функциональная подвижность, так же как и возбудимость, является одним из важных физиологических показателей реактивности организма.

  • Хронаксия. Хронаксия, как возбудимость и лабильность, представляет собой также одно из выражений реактивности организма. Различные изменения реактивности организма сопровождаются разнообразными изменениями хронаксии.

    Если возбудимая ткань разобщается с центральной нервной системой, ее хронаксия удлиняется. Влияние центральной нервной системы на хронаксию нервов и периферических тканей называется субординацией, а хронаксия нервов и других тканей, связанных с центральной нервной системой, называется субординационной хронаксией.

    Различные изменения функционального состояния коры мозга и нижележащих отделов центральной нервной системы существенно отражаются на хронаксии.

    Наркоз обычно вызывает удлинение субординационной хронаксии, так как влияние центральной нервной системы в этом случае более или менее выключается.

    При эпилепсии наблюдается укорочение хронаксии перед приступом и в начале его. Вслед за этим возникает ее удлинение. При анафилаксии хронаксия укорачивается в период сенсибилизации и удлиняется во время анафилактического шока.

    При нейроинфекциях, поражающих различные отделы головного и спинного мозга, наблюдаются различные изменения хронаксии в зависимости от места поражения и стадии развития заболевания.

    Так, например, при полиомиелите по ходу развития параличей наблюдается увеличение реобазы и удлинение двигательной хронаксии. В дальнейшем удлиняется и хронаксия рецепторов и чувствительных нервов. Могут иметь место и фазные изменения хронаксии. Вначале хронаксия укорачивается, а потом удлиняется.

    Хронаксия удлиняется при дегенерации нерва и вновь укорачивается до нормы при его регенерации.

    Травмы головного мозга существенно влияют на субординационную хронаксию. Последняя удлиняется за счет большего или меньшего выключения субординационных влияний центральной нервной системы.

  • Чувствительность - термин почти тождественный возбудимости, но применяемый к более сложным процессам в целом организме, чем элементарные акты сокращения мышц, секреции желез. Чувствительностью называют способность органов чувств приходить в состояние возбуждения при минимальной силе адекватного раздражителя. Существует, например, температурная чувствительность, болевая чувствительность. Говорят об изменении чувствительности высших органов чувств - зрения, слуха, обоняния, осязания, вкуса. Различные нарушения чувствительности могут существенно влиять на реактивность и поведение целого организма. Достаточно представить себе поведение слепого или глухого человека, чтобы понять роль и место различных нарушений чувствительности в реактивности человека в окружающей его среде.

Каждая болезнь имеет свою причину, без которой она не может возникнуть и которая обусловливает признаки, характерные для данной болезни. В качестве причин болезней выступают многочисленные факторы окружающей и внутренней среды организма - патогенные факторы.

Вида патогенных факторов

  1. По происхождению:
    • экзогенные, например чрезмерно высокая или низкая температура воздуха; воздействие электрического тока, механические воздействия; микробы, находящиеся в продуктах питания или воздухе;
    • эндогенные, например избыток или недостаток гормонов или ферментов; высокий уровень свободных радикалов и перекисей органических веществ; отложения в тканях солей кальция.
  2. В свою очередь экзо- и эндогенные патогенные факторы могут быть:
    • инфекционными (различные микроорганизмы - бактерии, вирусы риккетсии, грибы, прионы);
    • неинфекционными (например, чужеродные белки, попавшие в кровь; продукты поврежденных тканей и др.; воздействие пламени, холодной воды, кислоты, щелочи).
  3. По природе:
    • физические факторы, например проникающая радиация, воздействие низкой или высокой температуры, электрического тока; увеличение или снижение барометрического давления и др.;
    • химические факторы, например кислоты, щелочи, лекарственные препараты в избыточной дозе; пестициды; недостаток или избыток кислорода в тканях; органические растворители; продукты обмена веществ, которые в норме выводятся из организма - аммиак и его соединения, фенолы;
    • биологические агенты, например микроорганизмы или чужеродные белки, попавшие в кровь.

Причиной заболеваний являются также дефекты генетического аппарата, реализующие свое патогенное действие через первичные нарушения метаболизма.

Важно, что даже обычный фактор среды может стать чрезвычайным в связи с чрезмерной длительностью воздействия на организм или нарушением естественных биоритмов (длительное звуковое раздражение или полная тишина; одиночество, пребывание в темноте, вибрация, гипокинезия, запыленность воздуха, хроническая нервно-психическая перегрузка и т. п.).

Особое место занимают индифферентные воздействия, в том числе не материального, а информационного характера, ранее сочетавшиеся с действием на организм какого-либо патогенного фактора. Такие воздействия могут, иногда даже после однократного сочетания, сами стать патогенными. Механизм условного патогенного рефлекса лежит, например, в основе возникновения тошноты при виде пищи, однажды вызвавшей рвоту в связи с ее недоброкачественностью. Подобный механизм может лежать в основе приступов стенокардии или бронхиальной астмы и др.

ЗНАЧЕНИЕ УСЛОВИЙ В ВОЗНИКНОВЕНИИ БОЛЕЗНЕЙ

Один и тот же патогенный фактор может приводить к различным результатам в зависимости от условий, в которых происходит его взаимодействие с организмом. Под условиями понимают какие-либо обстоятельства или воздействия, которые сами по себе не могут вызвать заболевания, но ослабляют, усиливают или модифицируют действие этиологических факторов. Так, высокая температура воздуха при низкой влажности может не вызвать каких-либо расстройств жизнедеятельности, а в условиях высокой влажности стать для организма чрезмерной и привести к гипертермии или тепловому удару. При этом очевидно, что сама по себе высокая влажность не может вызвать теплового удара.

Знание причин и условий (в совокупности их обозначают термином «этиология») возникновения болезни или патологического процесса позволяет сформулировать принципы этиотропного лечения и профилактики. К ним относятся:

  • установление этиологического фактора, его устранение, ослабление патогенных свойств или ограждение организма от его воздействия;
  • выявление условий, влияющих на патогенный эффект причинного фактора, и их изменение в благоприятном для организма направлении.

ЗНАЧЕНИЕ РЕАКТИВНОСТИ ОРГАНИЗМА В ВОЗНИКНОВЕНИИ И РАЗВИТИИ БОЛЕЗНЕЙ

Наряду с особенностями этиологических факторов большое значение имеют свойства самого организма, подвергающегося патогенному воздействию, - его реактивность - свойство организма определенным образом реагировать на воздействие факторов внешней и внутренней среды изменениями жизнедеятельности.

ВИДЫ РЕАКТИВНОСТИ

В зависимости от биологических свойств организма выделяют видовую, групповую и индивидуальную реактивность.

Видовая реактивность определяется особенностями вида, к которому принадлежит животное (например, атеросклероз наблюдается у людей, но не выявляется у кроликов; у животных, в отличие от человека, также не развивается сифилис и другие венерические болезни).

Групповая реактивность. В ней выделяют:

  • возрастную реактивность (например, дети в большой мере, чем взрослые, подвержены инфекционным заболеваниям в связи с незрелостью их иммунной системы);
  • половую реактивность , которая характеризуется, в частности, разной устойчивостью мужчин и женщин к кровопотере (у женщин она выше), физической нагрузке (выше у мужчин);
  • конституциональную реактивность (относительно стабильные морфофункциональные особенности организма, обусловленные наследственностью и длительным влиянием факторов окружающей среды). Например, так называемые «астеники», в отличие от «нормостеников», менее устойчивы к сильным и длительным физическим и психическим нагрузкам.

Индивидуальная реактивность определяется наследуемой генетической информацией и индивидуальной изменчивостью организма. В отличие от первых двух категорий индивидуальная реактивность организма может быть физиологической и патологической. Последнее проявляется, например, развитием у отдельных людей аллергических реакций на факторы, которые у других такого ответа не вызывают.

В зависимости от выраженности реакции организма на воздействие:

  • нормергическая реактивность выражается количественно и качественно адекватной реакций на воздействие патогенного фактора;
  • гиперергическая реактивность проявляется чрезмерной реакцией на раздражитель, например развитием анафилактического шока на повторное попадание в кровь антигена;
  • гипергическая реактивность характеризуется неадекватной, слабой реакцией на воздействие, например неэффективным иммунным ответом на чужеродный антиген при развитии иммунодефицитного состояния.

В зависимости от природы патогенного фактора , вызывающего ответ организма, выделяют неиммуногенную и иммуногенную реактивность:

  • Неимунногенная реактивность характеризуется изменениями жизнедеятельности организма, вызванными воздействием различных факторов психического, химического или биологического характера, не обладающих антигенными свойствами.
  • Иммуногенная реактивность проявляется изменениями жизнедеятельности организма, обусловленными антигенными факторами.

В зависимости от биологической значимости ответа организма выделяют физиологическую и патологическую реактивность:

  • Физиологическая реактивность представляет собой ответ, адекватный характеру и интенсивности воздействия, а также играет адаптивную роль (примером может служить одна из разновидностей иммуногенной реактивности - иммунитет).
  • Патологическая реактивность неадекватна воздействию по выраженности или характеру изменения реакция организма, сопровождается снижением его адаптивных возможностей (пример: аллергические реакции).

Реактивность - динамичное, постоянно меняющееся свойство организма. Это свойство можно изменять целенаправленно с целью повышения устойчивости организма к действию различных патогенных факторов.

Факторы реактивности организма в значительной мере определяют другое важное его свойство - резистентность - устойчивость организма, его отдельных органов или тканей к воздействию определенных факторов внешней и внутренней среды (например, гипоксии, холоду или токсинам).

РОЛЬ НАСЛЕДСТВЕННОСТИ В ПАТОЛОГИИ

Наследственность - свойство организмов сохранять и обеспечивать передачу морфофункциональных признаков потомкам, а также программировать особенности их индивидуального развития в конкретных условиях окружающей среды. Отсюда следует, что состояния здоровья и болезни - результат взаимодействия наследственных и средовых факторов.

В отличие от этого изменчивость - свойство организмов приобретать новые морфофункциональные признаки и особенности индивидуального развития, отличающиеся от родительских. Новые признаки могут служить основой для эволюции вида при условии их наследования. Часть изменчивости проявляется только изменением самого признака; другая часть затрагивает генетический аппарат.

ПРИЧИНЫ НАСЛЕДСТВЕННОЙ ПАТОЛОГИИ

Инициальным («стартовым») звеном механизма наследственных форм патологии являются мутации - нарушения структуры генов, хромосом или изменения их числа. Причинами мутаций могут быть различные факторы физической, химической, биологической природы - мутагены.

Физические мутагены:

  • ионизирующие излучения (например, альфа-, бета-, гамма-, рентгеновское, нейтронное);
  • ультрафиолетовое излучение;
  • чрезмерно высокая или низкая температура внешней среды.

Химические мутагены - самая многочисленная группа. К ним относятся:

  • сильные окислители или восстановители (например, нитраты. нитриты, активные формы кислорода):
  • пестициды (например, гербициды, фунгициды);
  • некоторые пищевые добавки (например, ароматические углеводороды);
  • продукты переработки нефти:
  • лекарственные препараты (например, цитостатики, ртутьсодержащие средства, иммунодепрессанты) и другие химические соединения.

Биологические мутагены:

  • вирусы;
  • антигены некоторых микробов.

ВИДЫ МУТАЦИЙ

По причине:

  • спонтанные - возникают под влиянием естественных мутагенов экзо- или эндогенного происхождения, без специального (целенаправленного) вмешательства человека. Спонтанные мутации возникают, например, в результате действия химических веществ, образующихся в процессе обмена веществ, воздействия естественного фона радиации или ультрафиолетового излучения; ошибок репликации ит. д.;
  • индуцированные - вызваны случайным или умышленным воздействием факторов внешней или внутренней среды.

По биологическому значению:

  • патогенные - вызывают развитие патологии;
  • нейтральные - не влияют на жизнедеятельность организма (например, мутации, вызывающие веснушки, изменение цвета волос, радужки глаз);
  • благоприятные - повышают жизнедеятельность организма или вида (например, темная окраска кожных покровов у жителей африканского континента).

По уровню («масштабу») изменения генетического материала:

  • генные (син.: точковые) мутации - любые изменения молекулярной структуры ДНК, которые приводят к развитию генных болезней. Эти мутации проявляются признаками нарушений метаболизма в организме. Например, гемофилии, которые характеризуются дефектом факторов свертывающей системы крови, что проявляется повышенной кровоточивостью и кровоизлияниями в ткани.

В зависимости от типа наследования генные болезни разделяют на несколько групп:

  • Аутосомно-доминантные. Патогенный доминантный ген, находящийся в одной из хромосом, закономерно проявляется какой-либо формой патологии, например полипозом толстого кишечника или семейной гиперхолестеринемией.
  • Аутосомно-рецессивные. Патогенный ген проявляет свои свойства при условии его нахождения в обеих хромосомах, полученных от матери и отца. Примеры: фенилкетонурия, гемофилии, гликогенозы.
  • Доминантные, сцепленные с Х-хромосомой. Патогенный ген находится в Х-хромосоме, вызывает патологию чаще у женщин, например рахит, устойчивый к лечению препаратами витамина D.
  • Рецессивные, сцепленные с Х-хромосомой (патогенный ген находится в Х-хромосоме). Заболевания поражают почти исключительно лиц мужского пола, а матери являются обязательными носителями патогенного гена, например дальтонизм.
  • Голандрические, или сцепленные с Y-хромисомой. Патогенный ген локализован в Y-хромосоме, а признак передается только от отца сыновьям, например мужское бесплодие в связи с азооспермией.
  • Митохондриальные. У человека ДНК содержится и в митохондриях. Мутация ее генов приводит к «митохондриальным болезням»: атрофии зрительного нерва, эпилепсии, кардиомиопатии.
  • Хромосомные мутации (син.: аберрации). Характеризуются изменением структуры отдельных хромосом. При этом обычно не меняется последовательность нуклеотидов в генах. Однако изменение числа или положения генов может обусловить генетический «дисбаланс», что приводит к нарушению нормального развития организма. Например, хронический миелолейкоз является следствием утраты участка хромосомы 21-й пары. Удвоение участка короткого плеча 9-й пары хромосом приводит к развитию множественных пороков развития, включая микроцефалию, задержку физического, психического и интеллектуального развития.
  • Геномные мутации характеризуются изменением числа хромосом. К числу наиболее частых геномных мутаций относятся трисомия и моносомия.
  • Трисомия - наличие трех гомологичных хромосом в кариотипе (например, по 21-й паре, что обусловливает развитие синдрома Дауна; по 18-й паре - синдрома Эдвардса; по 13-й паре - синдрома Патау; по половым хромосомам: синдромы полисомии - XXX, XXY, XYY).
  • Моносомия - наличие только одной из двух гомологичных хромосом. При моносомии по любой из аутосом в подавляющем большинстве случаев нормальное развитие эмбриона невозможно.
ГЛАВА 6 РЕАКТИВНОСТЬ И РЕЗИСТЕНТНОСТЬ ОРГАНИЗМА, ИХ РОЛЬ В ПАТОЛОГИИ

ГЛАВА 6 РЕАКТИВНОСТЬ И РЕЗИСТЕНТНОСТЬ ОРГАНИЗМА, ИХ РОЛЬ В ПАТОЛОГИИ



6.1. ОПРЕДЕЛЕНИЕ ПОНЯТИЯ «РЕАКТИВНОСТЬ ОРГАНИЗМА»

Все живые объекты обладают свойством изменять свое состояние или деятельность, т.е. реагировать на воздействия внешней среды. Это свойство принято называть раздражимостью. Однако не все реагируют одинаково на одно и то же воздействие. Одни виды животных изменяют жизнедеятельность на внешние воздействия не так, как другие виды; одни группы людей (или животных) реагируют на одно и то же воздействие не так, как другие группы; и каждый индивидуум в отдельности имеет свои особенности реагирования. Известный отечественный патофизиолог Н.Н. Сиротинин более 30 лет назад писал в связи с этим: «Под реактивностью организма обычно понимают его свойство реагировать определенным образом на воздействия окружающей среды».

Итак, реактивность организма (от лат. reactia - противодействие) - это его способность определенным образом отвечать изменениями жизнедеятельности на воздействие факторов внутренней и внешней среды.

Реактивность присуща всему живому. От реактивности в большой степени зависит приспособляемость организма человека или животного к условиям среды, поддержание гомеостаза. Именно от реактивности организма зависит, возникнет или не возникнет болезнь при воздействии болезнетворного фактора, как она будет протекать. Вот почему изучение реактивности, ее механизмов имеет важное значение для понимания патогенеза заболеваний и целенаправленной их профилактики и лечения.

6.2. ВИДЫ РЕАКТИВНОСТИ

6.2.1. Биологическая (видовая) реактивность

Реактивность зависит от вида животного. Иными словами, реактивность различна в зависимости от филогенетического (эволюционного) положения животного. Чем выше в филогенетическом отношении стоит животное, тем сложнее его реакции на различные воздействия.

Так, реактивность простейших и многих низших животных ограничивается лишь изменениями интенсивности обмена веществ, что позволяет животному существовать в неблагоприятных для него условиях внешней среды (понижение температуры, уменьшение содержания кислорода и пр.).

Более сложной является реактивность теплокровных животных (значительную роль играют нервная и эндокринная системы), в связи с чем у них лучше развиты адаптационные механизмы к физическим, химическим, механическим и биологическим воздействиям, выражена иммунологическая реактивность. Все теплокровные обладают способностью вырабатывать специфические антитела, причем это свойство у различных видов выражено поразному.

Наиболее сложной и многообразной является реактивность человека, для которой особое значение имеет вторая сигнальная система - воздействие слов, письменных знаков. Слово, изменяя различным образом реактивность человека, может оказывать как лечебное, так и болезнетворное действие. В отличие от животных у человека физиологические закономерности деятельности органов и систем в значительной мере зависят от социальных факторов, что позволяет с уверенностью говорить об их социальной опосредованности.

Реактивность, которая определяется наследственными анатомофизиологическими особенностями представителей данного вида, получила название видовой. Это наиболее общая форма реактивности организма (рис. 6-1).

Биологическая (видовая) реактивность формируется у всех представителей данного вида под влиянием обычных (адекватных) воздействий окружающей среды, не нарушающих гомеостаза организма. Это реактивность здорового человека (животного). Такую реактивность еще называют физиологической (первичной) - она

Рис. 6-1. Виды реактивности и факторы, влияющие на их проявление

направлена на сохранение вида в целом. В качестве примеров биологической реактивности можно назвать: направленное движение (таксис) простейших и сложнорефлекторные изменения (инстинкты) жизнедеятельности беспозвоночных (пчелы, пауки и др.); сезонные миграции (передвижения, перелеты) рыб и птиц; сезонные изменения жизнедеятельности животных (анабиоз, зимняя спячка и др.), особенности протекания патологических процессов (воспаление, лихорадка, аллергия) у разных представителей животного мира. Ярким проявлением биологической реактивности является восприимчивость (или невосприимчивость) к инфекции. Так, чума собак и ящур крупного рогатого скота не угрожают человеку. Столбняк опасен для человека, обезьян, лошадей и не представляет опасности для кошек, собак, черепах, крокодилов. У акул не встречаются инфекционные заболевания, никогда не нагнаиваются раны; крысы и мыши не болеют дифтерией, собаки и кошки - ботулизмом.

На основе видовой реактивности формируется реактивность группы индивидов в пределах вида (групповая) и каждого отдельного индивида (индивидуальная).

6.2.2. Групповая реактивность

Групповая реактивность - это реактивность отдельных групп особей в пределах одного вида, объединенных каким-либо признаком, определяющим особенности реагирования всех представителей данной группы на воздействия факторов внешней среды. К таким признакам могут относиться: особенности возраста, пола, консти-

туции, наследственности, принадлежность к определенной расе, группы крови, типы высшей нервной деятельности и др.

Например, вирус Биттнера вызывает рак молочной железы только у самок мышей, а у самцов - только при условии их кастрации и введения эстрогенов. У мужчин значительно чаще встречаются такие заболевания, как подагра, стеноз привратника, язвенная болезнь желудка и двенадцатиперстной кишки, рак головки поджелудочной железы, коронаросклероз, а у женщин - ревматоидный артрит, желчекаменная болезнь, рак желчного пузыря, микседема, гипертиреоз. У лиц с I группой крови (группой 0) на 35% выше риск заболеть язвенной болезнью двенадцатиперстной кишки, а со II группой крови - заболеть раком желудка, ишемической болезнью сердца. Люди, имеющие II-ю группу крови (группу А), более чувствительны к вирусам гриппа, но устойчивы к возбудителю брюшного тифа. Особенности групповой реактивности учитываются при переливании крови. На действие одних и тех же факторов (социальных, психических) неодинаково реагируют представители разных конституциональных типов (сангвиники, холерики, флегматики, меланхолики). Все больные сахарным диабетом обладают сниженной толерантностью к углеводам, а больные атеросклерозом - к жирной пище. Особая реактивность свойственна детям и старикам, что послужило основой выделения специальных разделов в медицине - педиатрии и гериатрии.

6.2.3. Индивидуальная реактивность

Кроме общих (т.е. видовых и групповых свойств реактивности) имеются и индивидуальные особенности реактивности у каждого индивида в отдельности. Так, воздействие какого-либо фактора (например, инфекционного агента) на группу людей или животных никогда не вызывает у всех индивидов этой группы совершенно одинаковые изменения жизнедеятельности. Например, при эпидемии гриппа некоторые люди болеют тяжело, другие - легко, а третьи не болеют вовсе, хотя возбудитель и находится в их организме (вирусоносительство). Объясняется это индивидуальной реактивностью каждого организма.

В проявлении индивидуальной реактивности существуют циклические изменения, связанные со сменой времен года, дня и ночи (так называемые хронобиологические изменения). Помнить о них необходимо врачу любой специальности. Например, смерт-

ность при ночных операциях втрое выше, чем при дневных. Кроме того, следует рассчитывать оптимальное время приема лекарств.

Характерные изменения реактивности организма обнаруживаются в течение индивидуальной жизни человека (или в онтогенезе). Так, проявления индивидуальной реактивности организма в зависимости от возраста можно проследить на примере формирования воспалительной реакции.

Способность к развитию воспаления в полном его объеме формируется у индивида постепенно, по мере развития, протекая невыразительно в эмбриональном периоде и приобретая яркую выраженность у новорожденных. Выраженность воспалительной реакции в пубертатном периоде (12-14 лет) во многом определяется изменениями, возникающими в гормональной системе. Повышается восприимчивость к гнойничковым инфекциям - развиваются юношеские угри. Оптимальной для жизнедеятельности организма является его реактивность в зрелом возрасте, когда все системы сформированы и функционально полноценны. В старости вновь отмечается снижение индивидуальной реактивности, чему, повидимому, способствуют инволютивные изменения эндокринной системы, понижение реактивности нервной системы, ослабление функции барьерных систем, фагоцитарной активности соединительнотканных клеток, снижение способности к выработке антител. Отсюда повышение восприимчивости к кокковым и вирусным (грипп, энцефалит) инфекциям, частые воспаления легких, гнойничковые заболевания кожи и слизистых оболочек.

Реактивность организма связана с полом, т.е. с анатомо-физиологическими отличиями индивидов. Это обусловливает деление болезней на преимущественно женские и мужские, особенности возникновения и течения болезней в женском или мужском организме и т.д. В женском организме реактивность меняется в связи с менструальным циклом, беременностью, климактерическим периодом.

6.2.4. Физиологическая реактивность

Физиологическая реактивность - это реактивность, изменяющая жизнедеятельность организма под действием факторов среды, не нарушая его гомеостаза; это реактивность здорового человека (животного). Например, адаптация к умеренной физической нагрузке, системы терморегуляции - к изменению температуры, выработка

пищеварительных ферментов в ответ на прием пищи, естественная эмиграция лейкоцитов и т.п.

Физиологическая реактивность проявляется как у отдельных индивидуумов (в виде особенностей физиологических процессов), так и у разных видов животных (например, особенности размножения и сохранения потомства, видовые особенности теплообмена). Физиологическая реактивность различна у отдельных групп людей (животных). Например, такие физиологические процессы, как кровообращение, дыхание, пищеварение, секреция гормонов и др., различны у детей и стариков, у людей с разным типом нервной системы.

6.2.5. Патологическая реактивность

Под воздействием болезнетворных факторов, вызывающих в организме повреждение и нарушение гомеостаза, возникает патологическая реактивность, которая характеризуется понижением приспособляемости болеющего организма. Ее еще называют вторичной (или болезненно измененной) реактивностью. По сути, развитие болезни и есть проявление патологической реактивности, которая выявляется как у отдельных особей, так и у групп и видов животных.

6.2.6. Неспецифическая реактивность

Способность организма сопротивляться воздействиям окружающей среды, сохраняя при этом постоянство гомеостаза, тесно связана с функционированием механизмов как неспецифической, так и специфической защиты.

Сопротивляемость организма инфекциям, его защита от проникновения микробов зависят от непроницаемости нормальных кожных и слизистых покровов для большинства микроорганизмов, наличия бактерицидных субстанций в кожных секретах, количества и активности фагоцитов, присутствия в крови и в тканях таких ферментных систем, как лизоцим, пропердин, интерферон, лимфокины и др.

Все эти изменения в организме, возникающие в ответ на действие внешних факторов и не связанные с иммунным ответом, служат проявлением неспецифической реактивности. Например, изменения в организме при геморрагическом или травматическом

шоке, гипоксии, действии ускорений и перегрузок; воспаление, лихорадка, лейкоцитоз, изменения функции поврежденных органов и систем при инфекционных заболеваниях; спазм бронхиол, отек слизистой оболочки, гиперсекреция слизи, одышка, сердцебиение и др.

6.2.7. Специфическая реактивность

Вместе с тем сопротивляемость организма, его защита зависят также от его способности развивать высокоспециализированную форму реакции - иммунный ответ. Способность иммунной системы к распознаванию «своего» и «несвоего» является центральным биологическим механизмом реактивности.

Специфическая реактивность - это способность организма отвечать на действие антигена выработкой антител или комплексом клеточных реакций, специфичных по отношению к этому антигену, т.е. это реактивность иммунной системы (иммунологическая реактивность).

Ее виды: активный специфический иммунитет, аллергия, аутоиммунные заболевания, иммунодефицитные и иммунодепрессивные состояния, иммунопролиферативные заболевания; выработка и накопление специфических антител (сенсибилизация), образование иммунных комплексов на поверхности тучных клеток - проявления специфической реактивности.

Выражение реактивности может быть общим (формирование иммунитета, болезнь, здоровье, изменение обмена веществ, кровообращения, дыхания) и местным. Например, у больных бронхиальной астмой выявляется повышенная чувствительность бронхов к ацетилхолину. Тучные клетки, взятые от животного, сенсибилизированного яичным альбумином, дегранулируют при добавлении к ним этого же альбумина на предметном стекле в отличие от тучных клеток, полученных от несенсибилизированного животного. Лейкоциты, не имеющие на своей поверхности рецепторов к хемоаттрактантам, одинаково ведут себя в живом организме и в культуре (in vitro). На этом основаны методы, позволяющие in vitro оценивать способность лейкоцитов к хемотаксису, слипанию, респираторному взрыву.

6.3. ФОРМЫ РЕАКТИВНОСТИ

Понятие реактивности прочно вошло в практическую медицину в основном с целью общей оценки состояния организма больного. Еще древние врачи заметили, что различные люди одними и теми же болезнями болеют по-разному, с присущими каждому индивидуальными особенностями, т.е. неодинаково реагируют на болезнетворное воздействие.

Реактивность может проявляться в форме: нормальной - нормергии, повышенной - гиперергии, пониженной - гипергии (анергии), извращенной - дизергии.

При гиперергии (от греч. hyper - больше, ergon - действую) чаще преобладают процессы возбуждения. Поэтому более бурно протекает воспаление, интенсивнее проявляются симптомы болезни с выраженными изменениями деятельности органов и систем. Например, пневмония, туберкулез, дизентерия и т.д. протекают интенсивно, бурно, с ярко выраженными симптомами, с высокой лихорадкой, резким ускорением скорости оседания эритроцитов, высоким лейкоцитозом.

При гипергии (пониженной реактивности) преобладают процессы торможения. Гипергическое воспаление протекает вяло, невыраженно, симптомы заболевания стерты, мало заметны. В свою очередь, различают гипергию (анергию) положительную и отрицательную.

При положительной гипергии (анергии) внешние проявления реакции снижены (или отсутствуют), но связано это с развитием активных реакций защиты, например, антимикробного иммунитета.

При отрицательной гипергии (дизергии) внешние проявления реакции также снижены, но связано это с тем, что механизмы, регулирующие реактивность организма, заторможены, угнетены, истощены, повреждены. Например, медленное течение раневого процесса с вялыми бледными грануляциями, слабой эпителизацией после длительной и тяжелой инфекции.

Дизергия проявляется нетипичным (извращенным) реагированием больного на какое-либо лекарство, действие холода (расширением сосудов и увеличением потоотделения).

6.4. РЕАКТИВНОСТЬ И РЕЗИСТЕНТНОСТЬ

С понятием «реактивность» тесно связано другое важное понятие, также отражающее основные свойства живого организма, - «резистентность».

Резистентность организма - это его устойчивость к действию патогенных факторов (от лат. resisteo - сопротивление).

Резистентность организма к болезнетворным воздействиям выражается в различных формах.

Естественная (первичная, наследственная) резистентность (толерантность) проявляется в виде абсолютной невосприимчивости (например, человека - к чуме рогатого скота, к собственным тканевым антигенам, животных - к венерическим заболеваниям человека) и относительной невосприимчивости (например, человека - к чуме верблюда, заболевание которой возможно при контакте с источником заражения на фоне переутомления и связанного с ним ослабления иммунологической реактивности).

Естественная резистентность формируется еще в эмбриональный период и поддерживается в течение всей жизни индивида. Ее основой являются морфофункциональные особенности организма, благодаря которым он устойчив к действию экстремальных факторов (устойчивость одноклеточных организмов и червей к радиации, холоднокровных животных - к гипотермии). Согласно теории запрещенных клонов (Бернет) в организме существуют отдельные клоны, отвечающие за врожденную (естественную) толерантность. Благодаря наследственному иммунитету людям не страшны многие инфекции животных. Наследственный иммунитет к инфекции обусловлен молекулярными особенностями конституции организма. Именно поэтому структуры организма не могут служить средой обитания данного микроба, или на поверхности клеток отсутствуют химические радикалы, необходимые для фиксации микроба, и возникает химическая некомплементарность между молекулами агрессии и их молекулярными мишенями в организме, или в клетках отсутствуют вещества, необходимые для развития микроорганизма. Так, клетки животного поражаются парагриппозным вирусом «сендай» только при определенном количестве и порядке расположения на мембране клеток ганглиозидов и при наличии концевого радикала на сиаловых кислотах. Малярийный плазмодий не может размножаться в эритроцитах, содержащих гемоглобин S, поэтому больные серповидно-клеточной

анемией имеют наследственную резистентность к малярии. Мутация клонов, контролирующих естественный иммунитет, и их пролиферация ведут к аномальному иммунному ответу с запуском механизмов аутоиммунизации, которые могут обусловить потерю толерантности (резистентности) и индукцию иммунного ответа в отношении, например, собственных антигенов.

Приобретенная (вторичная, индуцированная) резистентность, которая может возникнуть в результате: перенесенных инфекционных заболеваний, после введения вакцин и сывороток, антигенной перегрузки в ответ на введение в организм большого количества белкового антигена (иммунологический паралич) либо при многократном введении малых количеств антигена - низкодозовая толерантность. Резистентность к неинфекционным воздействиям приобретается путем тренировок, например к физическим нагрузкам, действию ускорений и перегрузок, гипоксии, низким и высоким температурам и т.д.

Резистентность может быть активной и пассивной.

Активная резистентность возникает в результате активной адаптации (активного включения механизмов защиты) к повреждающему фактору. К таковым относятся многочисленные механизмы неспецифической (например, фагоцитоз, устойчивость к гипоксии, связанная с усилением вентиляции легких и увеличением числа эритроцитов) и специфической (образование антител при инфекции) защиты организма от болезнетворных влияний среды.

Пассивная резистентность - не связанная с активным функционированием механизмов защиты, обеспечивается его барьерными системами (кожа, слизистые оболочки, гематоэнцефалический барьер). Примером может служить препятствие проникновению микробов и многих ядовитых веществ в организм со стороны кожи и слизистых оболочек, осуществляющих так называемую барьерную функцию, которая в целом зависит от их строения и свойств, полученных организмом по наследству. Эти свойства не выражают активных реакций организма на болезнетворные влияния, например устойчивость к инфекциям, возникающая при передаче антител от матери к ребенку, при заместительном переливании крови.

Резистентность, как и реактивность, может быть: специфической - к действию какого-либо одного определенного патогенного агента (например, устойчивость к определенной инфекции) и неспецифической - по отношению к самым различным воздействиям.

Нередко понятие «реактивность организма» рассматривается вместе с понятием «резистентность» (Н.Н. Сиротинин). Связано это с тем, что довольно часто реактивность представляет собой выражение активных механизмов возникновения резистентности организма к различным болезнетворным факторам. Однако бывают состояния организма, при которых реактивность и резистентность изменяются разнонаправленно. Например, при гипертермии, некоторых видах голодания, зимней спячке животных реактивность организма снижается, а его резистентность к инфекциям возрастает.

6.5. ФАКТОРЫ, ОПРЕДЕЛЯЮЩИЕ РЕАКТИВНОСТЬ

Как уже было сказано, все разновидности реактивности формируются на основе и зависят от возрастных особенностей, пола, наследственности, конституции и внешних условий (см. рис. 6-1).

6.5.1. Роль внешних факторов

Естественно, что реактивность организма как целого тесно смыкается с проблемами экологии, действием самых различных факторов: механических, физических, химических, биологических. Например, активная приспособляемость к недостатку кислорода в виде усиления легочной вентиляции и кровообращения, увеличения количества эритроцитов, гемоглобина, а также активная адаптация к повышению температуры в виде изменения теплопродукции и теплоотдачи.

Разнообразие людей (наследственное, конституциональное, возрастное и т.д.) в сочетании с постоянно меняющимися влияниями внешней среды на каждого человека создает бесчисленные варианты его реактивности, от которых в конечном итоге зависит возникновение и течение патологии.

6.5.2. Роль конституции (см. раздел 5.2)

6.5.3. Роль наследственности

Как следует из определения реактивности, основой ее является генотип.

Процессы адаптации к окружающим условиям тесно связаны с формированием их наследственных особенностей. Наследственность человека неотделима от организма как целого, обеспечивая устойчивость жизненных функций, без чего невозможно сохранение и поддержание жизни на любом уровне равновесия.

Наследственность - одна из основных предпосылок эволюции. Вместе с тем наследственная информация (генетическая программа), реализующаяся в каждом индивиде, обеспечивает формирование всех признаков и свойств лишь во взаимодействии с условиями внешней среды. В связи с этим нормальные и патологические признаки организма - это результат взаимодействия наследственных (внутренних) и средовых (внешних) факторов. Следовательно, общее понимание патологических процессов возможно только с учетом взаимодействия наследственности и среды (см. раздел 5.1).

6.5.4. Значение возраста (см. раздел 5.3)

6.6. ОСНОВНЫЕ МЕХАНИЗМЫ РЕАКТИВНОСТИ (РЕЗИСТЕНТНОСТИ)ОРГАНИЗМА

Одной из важнейших задач патологии является раскрытие тех механизмов, которые лежат в основе реактивности (резистентности), поскольку от них зависит сопротивляемость и устойчивость организма к воздействию болезнетворных агентов.

Как уже говорилось ранее, различные индивиды неодинаково восприимчивы к той или иной инфекции. Возникшее заболевание в зависимости от реактивности организма протекает по-разному. Так, заживление ран, при прочих равных условиях, у разных людей имеет свои характерные особенности. При повышенной реактивности заживление ран совершается относительно быстро, тогда как при пониженной реактивности оно происходит вяло, часто принимая затяжную форму.

6.6.1. Функциональная подвижность и возбудимость нервной системы в механизмах реактивности

Реактивность человека и животных всецело зависит от силы, подвижности и уравновешенности основных процессов (возбуждения и

торможения) в нервной системе. Ослабление высшей нервной деятельности вследствие ее перенапряжения резко снижает реактивность (резистентность) организма к химическим ядам, бактериальным токсинам, инфицирующему действию микробов, антигенам.

Удаление коры головного мозга резко изменяет реактивность животного. У такого животного легко возникают реакции «ложного гнева», немотивированного возбуждения, снижается чувствительность дыхательного центра к гипоксии.

Удаление или повреждение свода гиппокампа и передних ядер миндалевидного комплекса или прехиазмальной области мозга у животных (кошки, обезьяны, крысы) вызывают повышение половых реакций, реакций «ложного гнева», резкое снижение условнорефлекторных реакций «страха» и «испуга».

Большое значение в проявлении реактивности имеют различные отделы гипоталамуса. Двустороннее его повреждение у животных может оказывать сильное влияние на сон, половое поведение, аппетит и другие инстинкты; повреждение заднего отдела гипоталамуса вызывает заторможенность поведенческих реакций.

Повреждение серого бугра обусловливает дистрофические изменения в легких и желудочно-кишечном тракте (кровоизлияния, язвы, опухоли). Значительное влияние на реактивность организма оказывают различные повреждения спинного мозга. Так, перерезка спинного мозга у голубей снижает их устойчивость к сибирской язве, вызывает угнетение выработки антител и фагоцитоза, замедление обмена веществ, падение температуры тела.

Возбуждение парасимпатического отдела вегетативной нервной системы сопровождается увеличением титра антител, усилением антитоксической и барьерной функций печени и лимфатических узлов, увеличением комплементарной активности крови.

Возбуждение симпатического отдела вегетативной нервной системы сопровождается выделением в кровь норадреналина и адреналина, стимулирующих фагоцитоз, ускорением обмена веществ и повышением реактивности организма.

Денервация тканей существенно повышает их реактивность по отношению к алкалоидам, гормонам, чужеродным белкам и бактериальным антигенам.

6.6.2. Функция эндокринной системы и реактивность

В механизмах реактивности особое значение имеют гипофиз, надпочечники, щитовидная и поджелудочная железы.

Наибольшее воздействие на проявления реактивности организма оказывают гормоны передней доли гипофиза (тропные гормоны), стимулирующие секрецию гормонов коры надпочечников, щитовидной, половых и других желез внутренней секреции. Так, удаление гипофиза повышает устойчивость животного к гипоксии, а введение экстракта из передней доли гипофиза снижает эту устойчивость. Повторное (на протяжении нескольких дней) введение адренокортикотропного гормона гипофиза животным перед облучением обусловливает повышение их радиорезистентности.

Значение надпочечников в механизме реактивности определяется в основном гормонами коркового вещества (кортикостероидами). Удаление надпочечников приводит к резкому снижению сопротивляемости организма механической травме, электрическому току, бактериальным токсинам и другим вредным влияниям среды и гибели человека или животного в сравнительно короткий срок. Введение гормонов коркового вещества надпочечников больным или экспериментальным животным увеличивает защитные силы организма (повышает сопротивляемость к гипоксии). Кортизол (глюкокортикоид) в больших дозах обладает противовоспалительным действием, задерживая процессы размножения (пролиферации) клеток соединительной ткани, угнетает иммунологическую реактивность, подавляя выработку антител.

Значительное влияние на проявление реактивности оказывает щитовидная железа, что обусловлено ее функциональной взаимосвязью с гипофизом и надпочечниками. Животные после удаления щитовидной железы становятся более устойчивыми к гипоксии, что связано с понижением обмена веществ и потребления кислорода. При недостаточной функции щитовидной железы утяжеляется течение слабовирулентных инфекций.

6.6.3. Функция иммунной системы и реактивность

Как было сказано выше, иммунные механизмы являются центральным звеном реактивности организма, поддерживающим его гомеостаз (прежде всего антигенный).

Контакт человека (животного) с разнообразными инфекционными и токсическими агентами ведет к образованию антител, которые «защищают» его организм посредством лизиса, нейтрализации или элиминации (с помощью фагоцитов) чужеродных веществ, сохраняя при этом постоянство внутренней среды. Однако результатом иммунных реакций может быть не только «защита» организма, но и явное повреждение.

В этом случае развивается тот или иной вид иммунопатологии - патологический процесс или заболевание, основу которого составляет повреждение иммунного ответа (иммунологической реактивности). С учетом механизмов, лежащих в его основе, условно можно выделить две большие группы заболеваний, имеющих иммунную природу:

1. Болезни, обусловленные нарушением иммунного ответа (иммунологической недостаточностью) или повреждением иммунологической реактивности в отношении чужеродных антигенов.

2. Болезни, обусловленные срывом иммунологической резистентности (толерантности) в отношении собственных антигенных структур (подробнее см. раздел 7.4 и главу 8).

6.6.4. Функция элементов соединительной ткани и реактивность

Соединительнотканные клеточные элементы (ретикулоэндотелиальная система, система макрофагов), находясь во взаимоотношении с другими органами и физиологическими системами, участвуют в формировании реактивности организма. Они обладают фагоцитарной активностью, барьерной и антитоксической функцией, обеспечивают интенсивность заживления ран.

Блокада функции ретикулоэндотелиальной системы ослабляет проявление аллергической реактивности, тогда как ее стимуляция ведет к усилению продукции антител. Угнетение высшей нервной деятельности (шок, наркоз) сопровождается уменьшением поглотительной функции элементов соединительной ткани в отношении красок, микробов, торможением процессов заживления ран и воспаления. Возбуждение высшей нервной деятельности, напротив, стимулирует указанные функции соединительнотканных клеток.

6.6.5. Обмен веществ и реактивность

Количественные и качественные изменения обмена веществ существенным образом влияют на реактивность организма. Голодание, хроническое недоедание вызывают резкое снижение реактивности. При этом вяло идет воспаление, падает способность к выработке антител, существенно изменяется течение болезней. Реакция на введение вакцин и токсинов выражена слабо и протекает вяло. Для многих острых инфекционных заболеваний характерно отсутствие повышения температуры и резких воспалительных изменений (появление стертых форм инфекции). Иммунологическая реактивность ослабевает, что сопровождается снижением способности к развитию иммунитета, вероятности возникновения аллергических заболеваний.

На прошлой лекции, мы говорили о значении причин и условий в возникновении и развитии болезней.

Так, в зависимости от видовых, возрастных, половых, конституциональных, индивидуальных особенностей организма, одни и те же раздражители могут вызывать тяжелые расстройства жизненных процессов вплоть до гибели всего организма, в то время как в других случаях, эти расстройства при таком же воздействии лишь слабо выражены или полностью отсутствуют. В ряде случаев именно сочетание этих особенностей приводит к тому, что патогенные свойства приобретают самые обычные, банальные раздражители. Особенно ярко эта зависимость проявляется на примере различных аллергических реакций, когда именно особенности организма становятся основой развития патологии. Патологическое воздействие обычных раздражителей может также возникать в случаях нарушения гомеостатической функции нервной и эндокринной системы, в период незавершенного выздоровления после различных заболеваний и т.д. Нужно, однако, оговориться, что бывают ситуации, когда от организма, его свойств, практически ничего не зависит при встрече с патогенным фактором. Речь идет о тех случаях, когда организм подвергается воздействию исключительных, экстремальных разрушающих или повреждающих факторов, интенсивность которых явно превосходит возможности адаптивных механизмов организма.

Например, каким бы живучим и выносливым не был человек, но если ему на голову упадет многотонная плита, шансов на выживание практически не останется. Но таких экстремальных ситуаций, как Вы понимаете, в нашей жизни возникает немного, и в большинстве случаев наш организм активно участвует в возникновении патологического процесса. Что же это за особенность, свойство организма, изменять, модифицировать действие вредоносного агента, отвечать таким необычным способом на действие патогенного фактора? В патофизиологии это кардинальное свойство живых систем называется реактивностью.

Реактивность - способность организма как целого, а также его органов и клеток, отвечать адекватными изменениям жизнедеятельности на воздействия окружающей среды. Сам термин состоит из корня - актив, активность - действие, приведение, запуск и приставки ре- означающей обратный эффект. Таким образом, дословно реактивность можно перевести как способность к обратному действию, отдаче. Иными словами, реактивность всегда предполагает способность к использованию энергии раздражителя для формирования ответной реакции, т.е. подчеркивает пассивный, реактивный характер возникающего ответа.

Типичным примером может служить запуск реактивных летательных аппаратов. В то же время из курса нормальной физиологии Вы знаете, что существует кардинальное свойство, специфичное именно для живых систем - это свойство раздражимости. Напомним, что раздражимость - это способность биологических систем под действием раздражителя изменять свой уровень обмена веществ, энергии и информации. Однако это свойство характерно лишь для нормальных, неповрежденных структур. Большинство же патогенных факторов повреждают клетку, и она теряет способность к раздражению. Тем не менее, и в поврежденной ткани идут многочисленные процессы (прежде всего репаративные), являющиеся следствием именно реактивности. Таким образом, реактивность является тем свойством, которое способно отразить качественно-количественные особенности ответа организма не только на обычные, но и на патологические раздражители. Само понятие реактивность возникло в начале XX в., когда патологи стали выделять различные формы реагирования организма. Тогда были описаны явления своеобразной реактивности, которые были названы К. Пирке аллергией (измененная способность реагировать). Понятие реактивность прочно вошло в практическую медицину и способствует оценке состояния больного.

Гиперергическими называют болезни с быстрым и интенсивным течением, выраженными изменениями в деятельности органов и систем. Под гиперергическими понимают заболевания с вялым течением, стертыми симптомами, низким уровнем антителообразования и фагоцитоза.

Виды реактивности

Существует ряд критериев для деления реактивности на отдельные виды.

По филогенетическому уровню :

1) Биологическая или видовая реактивность - наиболее общая форма реактивности, которая определяется генетическим багажом данного индивида и определяет потенциальную способность организма к какому-либо типу реагирования. Ее еще называют первичной или базальной реактивностью. Например, человек практически невосприимчив к ряду инфекционных заболеваний животных - в частности, к чуме крупного рогатого скота. Яркими примерами видовой реактивности являются:

a) хемотаксис простейших и инстинкты беспозвоночных животных (пчелы строят соты);

b) сезонные миграции рыб и птиц;

c) сезонные изменения жизнедеятельности животных (анабиоз, зимняя и летняя спячка животных). Долгое время считалось, что зимняя спячка животных - это всего лишь способ экономии энергии в условиях дефицита питательных веществ. Сейчас установлено, что это и способ противодействия неблагоприятным и явно патогенным факторам. Так, животные, находящиеся в спячке практически не реагируют на действие самых вирулентных микроорганизмов и самых токсичных ядов. У спящих животных не удается воспроизвести анафилактический шок и анафилактические реакции.

2) На основе видовой реактивности формируется групповая и индивидуальная реактивность. Групповая реактивность предполагает различные формы реагирования на одни и те же раздражители среди разных групп особей одного вида. Например, серповидно-клеточная анемия встречается чаще у негроидной расы; лица, имеющие VI группу крови при наличии резус-фактора, имеют гораздо меньше шансов гемотрансфузионных осложнений, нежели представители другой групповой принадлежности крови. Механизмы групповой реактивности в основном наследственные.

3) Индивидуальная - эта форма реактивности характерна для каждого отдельного индивида.

Последняя бывает :

а) по механизму формирования:

Преимущественно наследственно обусловленная;

Преимущественно приобретенная.

Для наследственных механизмов реализации конституции важен тот генетический багаж, который получает данный индивид в процессе онтогенеза. Приобретенные факторы реактивности - определяются условиями внешней среды - образа жизни, характера питания, экологических условий, климатического пояса и т.д.

б) по антропометрическим признакам выделяют:

Половую;

Возрастную;

Конституциональную реактивность.

Индивидуальная реактивность имеет выраженный половой диморфизм. Так, женский организм более устойчив к гипоксии, кровопотере, голоданию. Это связано, прежде всего, с тормозным влиянием эстрогенов на анаболические процессы в организме, что обуславливает выраженный адаптационно-тренирующий эффект.

Известна роль возраста в реактивности. Выделяют 3 стадии изменений возрастной реактивности:

а) пониженная реактивность в раннем детском возрасте (дети 1 - 2 года жизни);

б) увеличение реактивности в период полового созревания (14-20 лет);

в) понижение реактивности в старческом возрасте (старше 70 лет). Возрастные изменения реактивности обусловлены уровнем развития нервной и эндокринной систем, иммунитета, неспецифических защитных механизмов.

Конституциональные особенности реактивности предполагают выделение как наследуемых (генетическая конституциональная реактивность), так и приобретенных морфологических, функциональных и других особенностей (фенотипическая конституциональная реактивность).

Как известно, существует множество теорий, связывающих конституцию человека с развитием тех или иных заболеваний.

Весьма распространенной патологией, связанной с конституциональной реактивностью являются диатезы. Термином диатез обозначают предрасположение организма к неадекватным реакциям на действие раздражителей.

Чаще всего имеют дело с т.н. экссудативно-катаральным диатезом, характеризующимся возникновением воспалительных процессов с образованием экссудата, со склонностью к затяжному течению и аллергическим проявлением.

Как правило, имеет место избыточная продукция реагинов или IgE, в связи с чем легко возникают аллергические реакции немедленного типа (1 тип по классификации Джелла-Кумбса).

Реже встречается лимфатико-гипопластический диатез, характеризующийся недостаточностью и, как следствие, компенсаторной гиперплазией лимфоидной ткани. У больных увеличены селезенка, лимфоузлы, в крови - лифоцитоз, но при этом возникают частые инфекционные заболевания, инволюция внутренних органов (капельное сердце), больные очень чувствительны к действию факторов внешней среды и часто умирают (status thymicolimphaticus). Причина недостаточность лимфоидной ткани - задержка инволюции вилочковой железы, что в свою очередь обусловлено нарушением регуляторных влияний со стороны надпочечников.

Нервно-артритический диатез характеризуется склонностью к заболеваниям нервной системы и суставов: деформирующим артритам, психозам, ревматизму и др.

Наконец, астенический диатез характеризуется общей адинамией, лабильностью сосудистых реакций. Часто наблюдается спланхноптоз.

Индивидуальная реактивность делится на специфическую и неспецифическую реактивность. В свою очередь, каждая из этих видов реактивности подразделяется на физиологическую и патологическую реактивность.

Физиологическая реактивность охватывает реакции здорового организма в относительно благоприятных условиях существования.

К специфической физиологической реактивности относятся: иммунологическая реактивность (т.е. система иммунитета) и т.н. резистентность или специфическая сопротивляемость действию конкретных факторов среды.

К неспецифической физиологической реактивности:

Стресс - реакции, парабиоз, доминанта, запредельное торможение и др.

К специфической патологической реактивности можно отнести:

1) аллергию - состояние качественно измененной по сравнению с обычной реакцией организма по отношению к факторам внешней среды (пища, температура, лекарства).

2) патологию иммунитета в виде:

Иммунодефицитных состояний (состояния, связанные с недостатком элементов иммунной системы, чаще всего лимфоцитов)

Иммунодепрессивных состояний (состояний, связанных с торможением, депрессией иммунной системы).

К неспецифической патологической реактивности можно отнести патологическую доминанту, киндлинг (формирование эпилептогенного очага), патологическую лабильность, дистресс, некробиоз и др.

По формам проявления различают следующие виды реактивности:

1) повышенную (гиперэргия);

2) пониженную (гипоэргию);

3) извращенную (дизэргия).

Повышенная реактивность не всегда адекватна для организма (например, анафилактический шок, несмотря на его потенциально защитный характер, часто сам является весьма ощутимой угрозой для жизни). Часто пониженная реактивность бывает полезна для выживания (например, во время сезонной спячки, животные не уязвимы для инфекции, холода). Под наркозом, человек не подвержен аллергическим и анафилактическим воздействиям.

Реактивность может проявляться в следующих формах:

1. Неизмененная или первичная форма;

2. Измененная под влиянием внешних или внутренних воздействий или вторичная форма.

Различают:

1. Общую реактивность;

2. Местную реактивность.

Следует отметить еще одну классификацию реактивности на этот раз по уровню организации биологических систем.

Выделяют:

а) субклеточную,

b) клеточную,

c) органную,

d) системную,

e) организменную,

f) популяционную реактивность.

Так, реактивность на субклеточном (молекулярном) уровне определяет реакцию молекулы гемоглобина на гипоксию. Реактивность на клеточном уровне наблюдается при осуществлении лейкоцитами фагоцитоза. Реактивность органа, проявляется, например, в развитии компенсаторной

гипертрофии сердца. Реактивность анатомо-физиологической системы можно проследить при развитии эпилептиформного судорожного припадка, когда из локального очага, возбуждение начинает иррадиировать, захватывая все этажи ЦНС. Развитие иммунных реакций, воспаления, опухолевого роста связано с реактивностью всего организма. Наконец, примером популяционной реактивности могут служить демографические изменения рождаемости (в виде увеличения числа родившихся мальчиков) после войн или других общественных катаклизмов.

Эволюционные аспекты реактивности:

Реактивностью обладают все живые существа, но в разной степени. Чем выше в эволюционной лестнице находится организм тем сложнее, совершеннее его реакции. У простейших и многих беспозвоночных иммунологическая реактивность отсутствует, а есть таксис (хемо, фото, термотаксис). Насекомые уже образуют прототипы антител, но у них нет аллергической реактивности. Более совершенны и разнообразны механизмы реактивности у позвоночных. При повышении температуры тела холоднокровных их реактивность возрастает (иммунологическая реактивность, чувствительность к токсинам). У рыб впервые появляются комплимент и антитела, но последние не столь специфичны как у теплокровных. Аллергия у рыб отсутствует, слабо проявляясь у земноводных и несколько лучше у пресмыкающихся. Клод Бернар впервые выделил 3 формы жизни: латентная, осциллирующая, свободная жизнь. Так вот, высокая реактивность у представителей свободной жизни (это гомойотермные животные) - плата за эту свободу. В этой связи теплокровные животные - это пик развития всех видов реактивности. Они весьма реактивны к действию практически всех факторов внешней среды: механических, физических, химических, биологических. У всех теплокровных выявляется иммунологическая реактивность. Только теплокровным присуща аутоаллергия. Интенсивно выражены все элементы воспалительной реакции. Хорошо проявлются механизмы неспецифической защиты (барьеры, фагоцитоз, бактерицидные секреты и др.). Таким образом, в процессе эволюции совершенствуются механизмы, с помощью которых организм активно приспосабливается к постоянно меняющимся условиям среды, т.е. реактивность. Развитие реактивности в онтогенезе. Все млекопи ающие по степени зрелости к моменту рождения подразделяются на зрелорождающихся (лосята, слонята, морские свинки) незрелорождающихся (крысята, котята, крольчата).

Последние рождаются слепыми и не покрыты шерстью. В первые дни они практически не способны к поддержанию постоянства температуры, что обусловлено несоверщенством механизмов терморегуляции. До прозревания эти детеныши обладают весьма низкой реактивностью, что имеет и некоторое адаптивное значение, т.к. позволяет переносить глубокую гипотермию, гипоксию и другие неблагоприятные воздействия среды.