Карта коническая. Конические проекции

План лекции
1. Классификация проекций по виду нормальной картографической сетки.
2. Классификация проекций в зависимости от ориентирования вспомогательной картографической поверхности.
3. Выбор проекций.
4. Распознавание проекций.

6.1. КЛАССИФИКАЦИЯ ПРОЕКЦИЙ ПО ВИДУ НОРМАЛЬНОЙ КАРТОГРАФИЧЕСКОЙ СЕТКИ

В картографической практике распространена классификация проекций по виду вспомогательной геометрической поверхности, которая может быть использована при их построении. С этой точки зрения выделяют проекции: цилиндрические, когда вспомогательной поверхностью служит боковая поверхность цилиндра; конические, когда вспомогательной плоскостью является боковая поверхность конуса; азимутальные, когда вспомогательная поверхность - плоскость (картинная плоскость).
Поверхности, на которые проектируют земной шар, могут быть к нему касательными или секущими его. Они могут быть и по-разному ориентированы.
Проекции, при построении которых оси цилиндра и конуса совмещались с полярной осью земного шара, а картинная плоскость, на которую проектировалось изображение, размещалась касательно в точке полюса, называются нормальными.
Геометрическое построение названных проекций отличается большой наглядностью.

6.1.1. Цилиндрические проекции

Для простоты рассуждения вместо эллипсоида воспользуемся шаром. Заключим шар в цилиндр, касательный по экватору (рис. 6.1, а).

Рис. 6.1. Построение картографической сетки в равновеликой цилиндрической проекции

Продолжим плоскости меридианов ПА, ПБ, ПВ, ... и примем пересечения этих плоскостей с боковой поверхностью цилиндра за изображение на ней меридианов. Если разрезать боковую поверхность цилиндра по образующей аАа 1 и развернуть ее на плоскость, то меридианы изобразятся параллельными равноотстоящими прямыми линиями аАа 1 , бБб 1 , вВв 1 ..., перпендикулярными экватору АБВ.
Изображение параллелей может быть получено различными способами. Один из них - продолжение плоскостей параллелей до пересечения с поверхностью цилиндра, что даст в развертке второе семейство параллельных прямых линий, перпендикулярных меридианам.
Полученная цилиндрическая проекция (рис. 6.1, б) будет равновеликой , так как боковая поверхность шарового пояса АГДЕ, равная 2πRh (где h - расстояние между плоскостями АГ и ЕД), соответствует площади изображения этого пояса в развертке. Главный масштаб сохраняется вдоль экватора; частные масштабы по параллели увеличиваются, а по меридианам уменьшаются по мере удаления от экватора.
Другой способ определения положения параллелей основан на сохранении длин меридианов, т. е. на сохранении главного масштаба вдоль всех меридианов. В этом случае цилиндрическая проекция будет равнопромежуточной по меридианам .
Для равноугольной цилиндрической проекции необходимо в любой точке постоянство масштаба по всем направлениям, что требует увеличения масштаба вдоль меридианов по мере удаления от экватора в соответствии с увеличением масштабов вдоль параллелей на соответствующих широтах.
Нередко вместо касательного цилиндра используют цилиндр, секущий сферу по двум параллелям (рис. 6.2), вдоль которых при развертке сохраняется главный масштаб. В этом случае частные масштабы вдоль всех параллелей между параллелями сечения будут меньше, а на остальных параллелях - больше главного масштаба.


Рис. 6.2. Цилиндр, секущий шар по двум параллелям

6.1.2. Конические проекции

Для построения конической проекции заключим шар в конус, касающийся шара по параллели АБВГ (рис. 6.3, а).


Рис. 6.3. Построение картографической сетки в равнопромежуточной конической проекции

Аналогично предыдущему построению продолжим плоскости меридианов ПА, ПБ, ПВ, ... и примем их пересечения с боковой поверхностью конуса за изображение на ней меридианов. После развертки боковой поверхности конуса на плоскости (рис. 6.3, б) меридианы изобразятся радиальными прямыми ТА, ТБ, ТВ,..., исходящими из точки Т. Обратите внимание на то, что углы между ними (схождение меридианов) будут пропорциональны (но не равны) разностям долгот. Вдоль параллели касания АБВ (дуги окружности радиусом ТА) сохраняется главный масштаб.
Положение других параллелей, изображающихся дугами концентрических окружностей, можно определить из определенных условий, одно из которых - сохранение главного масштаба вдоль меридианов (АЕ = Ае) - приводит к конической равнопромежуточной проекции.

6.1.3. Азимутальные проекции

Для построения азимутальной проекции воспользуемся плоскостью, касательной к шару в точке полюса П (рис. 6.4). Пересечения плоскостей меридианов с касательной плоскостью дают изображение меридианов Па, Пе, Пв,... в виде прямых, углы между которыми равны разностям долгот. Параллели, являющиеся концентрическими окружностями, могут быть определены различным путем, например, проведены радиусами, равными выпрямленным дугам меридианов от полюса до соответствующей параллели ПА = Па. Такая проекция будет равнопромежуточной по меридианам и сохраняет вдоль них главный масштаб.


Рис. 6.4. Построение картографической сетки в азимутальной проекции

Частным случаем азимутальных проекций являются перспективные проекции, построенные по законам геометрической перспективы. В этих проекциях каждая точка поверхности глобуса переносится на картинную плоскость по лучам, выходящим из одной точки С , называемой точкой зрения. В зависимости от положения точки зрения относительно центра глобуса проекции подразделяются на:

  • центральные - точка зрения совпадает с центром глобуса;
  • стереографические - точка зрения располагается на поверхности глобуса в точке, диаметрально противоположной точке касания картинной плоскости к поверхности глобуса;
  • внешние - точка зрения вынесена за пределы глобуса;
  • ортографические - точка зрения вынесена в бесконечность, т. е. проектирование осуществляется параллельными лучами.


Рис. 6.5. Виды перспективных проекций: а - центральная;
б - стереографическая; в - внешняя; г - ортографическая.

6.1.4. Условные проекции

Условные проекции - проекции, для которых нельзя подобрать простых геометрических аналогов. Их строят, исходя из каких-либо заданных условий, например желательного вида географической сетки, того или иного распределения искажений на карте, заданного вида сетки и др. В частности, к условным принадлежат псевдоцилиндрические, псевдоконические, псевдоазимутальные и другие проекции, полученные путем преобразования одной или нескольких исходных проекций.
У псевдоцилиндрических проекций экватор и параллели - прямые, параллельные друг другу линии (что роднит их с цилиндрическими проекциями), а меридианы - кривые, симметричные относительно среднего прямолинейного меридиана (рис. 6.6)


Рис. 6.6. Вид картографической сетки в псевдоцилиндрической проекции.

У псевдоконических проекций параллели - дуги концентрических окружностей, а меридианы - кривые, симметричные относительно среднего прямолинейного меридиана (рис. 6.7);


Рис. 6.7. Картографическая сетка в одной из псевдоконических проекций

Построение сетки в поликонической проекции можно представить путем проектирования участков градусной сетки глобуса на поверхность нескольких касательных конусов и последующей развертки в плоскость образовавшихся на поверхности конусов полос. Общий принцип такого проектирования показан на рисунке 6.8.

Рис. 6.8. Принцип построения поликонической проекции:
а - положение конусов; б - полосы; в - развертка

Буквами S на рисунке обозначены вершины конусов. На каждый конус проектируют широтный участок поверхности глобуса, примыкающий к параллели касания соответствующего конуса.
Для внешнего облика картографических сеток в поликонической проекции характерно, что меридианы имеют форму кривых линий (кроме среднего — прямого), а параллели — дуги эксцентрических окружностей.
В поликонических проекциях, используемых для построения мировых карт, приэкваториальный участок проектируют на касательный цилиндр, поэтому на полученной сетке экватор имеет форму прямой линии, перпендикулярной среднему меридиану.
После развертки конусов получают изображение этих участков в виде полос на плоскости (рис. 6.8, б); полосы соприкасаются по среднему меридиану карты. Окончательный вид сетка получает после ликвидации разрывов между полосами путем растяжений (рис. 6.8, в).


Рис. 6.9. Картографическая сетка в одной из поликонических

Многогранные проекции - проекции, получаемые путем проектирования на поверхность многогранника (рис. 6.10), касательного или секущего шар (эллипсоид). Чаще всего каждая грань представляет собой равнобочную трапецию, хотя возможны и иные варианты (например, шестиугольники, квадраты, ромбы). Разновидностью многогранных являются многополосные проекции, причем полосы могут «нарезаться» и по меридианам, и по параллелям. Такие проекции выгодны тем, что искажения в пределах каждой грани или полосы совсем невелики, поэтому их всегда используют для многолистных карт. Топографические и обзорно-топографические создают исключительно в многогранной проекции, и рамка каждого листа представляет собой трапецию, составленную линиями меридианов и параллелей. За это приходится "расплачиваться" - блок листов карт нельзя совместить по общим рамкам без разрывов.


Рис. 6.10. Схема многогранной проекции и расположение листов карт

Необходимо отметить, что в наши дни для получения картографических проекций не пользуются вспомогательными поверхностями. Никто не помещает шар в цилиндр и не надевает на него конус. Это всего лишь геометрические аналогии, позволяющие понять геометрическую суть проекции. Изыскание проекций выполняют аналитически. Компьютерное моделирование позволяет достаточно быстро рассчитать любую проекцию с заданными параметрами, а автоматические графопостроители легко вычерчивают соответствующую сетку меридианов и параллелей, а при необходимости - и карту изокол.
Существуют специальные атласы проекций, позволяющие подобрать нужную проекцию для любой территории. В последнее время созданы электронные атласы проекций, с помощью которых легко отыскать подходящую сетку, сразу оценить ее свойства, а при необходимости провести в интерактивном режиме те или иные модификации или преобразования.

6.2. КЛАССИФИКАЦИЯ ПРОЕКЦИЙ В ЗАВИСИМОСТИ ОТ ОРИЕНТИРОВАНИЯ ВСПОМОГАТЕЛЬНОЙ КАРТОГРАФИЧЕСКОЙ ПОВЕРХНОСТИ

Нормальные проекции - плоскость проектирования касается земного шара в точке полюса или ось цилиндра (конуса) совпадает с осью вращения Земли (рис. 6.11).


Рис. 6.11. Нормальные (прямые) проекции

Поперечные проекции - плоскость проектирования касается экватора в какой-либо точке или ось цилиндра (конуса) совпадает с плоскостью экватора (рис. 6.12).




Рис. 6.12. Поперечные проекции

Косые проекции - плоскость проектирования касается земного шара в любой заданной точке (рис. 6.13).


Рис. 6.13. Косые проекции

Из косых и поперечных проекций наиболее часто используют косые и поперечные цилиндрические, азимутальные (перспективные) и псевдоазимутальные проекции. Поперечные азимутальные применяют для карт полушарий, косые - для территорий, имеющих округлую форму. Карты материков часто составляют в поперечных и косых азимутальных проекциях. Поперечно-цилиндрическая проекция Гаусса - Крюгера применяется для государственных топографических карт.

6.3. ВЫБОР ПРОЕКЦИЙ

На выбор проекций влияет много факторов, которые можно сгруппировать следующим образом:

  • географические особенности картографируемой территории, ее положение на Земном шаре, размеры и конфигурация;
  • назначение, масштаб и тематика карты, предполагаемый круг потребителей;
  • условия и способы использования карты, задачи, которые будут решаться по карте, требования к точности результатов измерений;
  • особенности самой проекции - величины искажений длин, площадей, углов и их распределение по территории, форма меридианов и параллелей, их симметричность, изображение полюсов, кривизна линий кратчайшего расстояния.

Первые три группы факторов задаются изначально, четвертая - зависит от них. Если составляется карта, предназначенная для навигации, обязательно должна быть использована равноугольная цилиндрическая проекция Меркатора. Если картографируется Антарктида, то почти наверняка будет принята нормальная (полярная) азимутальная проекция и т.д.
Значимость названных факторов может быть различной: в одном случае на первое место ставят наглядность (например, для настенной школьной карты), в другом - особенности использования карты (навигация), в третьем - положение территории на земном шаре (полярная область). Возможны любые комбинации, а следовательно - и разные варианты проекций. Тем более что выбор очень велик. Но все же можно указать некоторые предпочтительные и наиболее традиционные проекции.
Карты мира обычно составляют в цилиндрических, псевдоцилиндрических и поликонических проекциях. Для уменьшения искажений часто используют секущие цилиндры, а псевдоцилиндрические проекции иногда дают с разрывами на океанах.
Карты полушарий всегда строят в азимутальных проекциях. Для западного и восточного полушарий естественно брать поперечные (экваториальные), для северного и южного полушарий - нормальные (полярные), а в других случаях (например, для материкового и океанического полушарий) — косые азимутальные проекции.
Карты материков Европы, Азии, Северной Америки, Южной Америки, Австралии с Океанией чаще всего строят в равновеликих косых азимутальных проекциях, для Африки берут поперечные, а для Антарктиды - нормальные азимутальные.
Карты отдельных стран , административных областей, провинций, штатов выполняют в косых равноугольных и равновеликих конических или азимутальных проекциях, но многое зависит от конфигурации территории и ее положения на земном шаре. Для небольших по площади районов задача выбора проекции теряет актуальность, можно использовать разные равноугольные проекции, имея в виду, что искажения площадей на малых территориях почти неощутимы.
Топографические карты Украины создают в поперечно-цилиндрической проекции Гаусса, а США и многие другие западные страны - в универсальной поперечно-цилиндрической проекции Меркатора (сокращенно UТМ). Обе проекции близки по своим свойствам; по существу та и другая являются многополостными.
Морские и аэронавигационные карты всегда даются исключительно в цилиндрической проекции Меркатора, а тематические карты морей и океанов создают в самых разнообразных, иногда довольно сложных проекциях. Например, для совместного показа Атлантического и Северного Ледовитого океанов применяют особые проекции с овальными изоколами, а для изображения всего Мирового океана - равновеликие проекции с разрывами на материках.
В любом случае при выборе проекции, в особенности для тематических карт, следует иметь в виду, что обычно искажения на карте минимальны в центре и быстро возрастают к краям. Кроме того, чем мельче масштаб карты и обширнее пространственный охват, тем большее внимание приходится уделять «математическим» факторам выбора проекции, и наоборот - для малых территорий и крупных масштабов более существенными становятся «географические» факторы.

6.4. РАСПОЗНАВАНИЕ ПРОЕКЦИЙ

Распознать проекцию, в которой составлена карта, - значит установить ее название, определить принадлежность к тому или иному виду, классу. Это нужно для того, чтобы иметь представление о свойствах проекции, характере, распределении и величине искажений - словом, для того, чтобы знать, как пользоваться картой, чего от нее можно ожидать.
Некоторые нормальные проекции сразу распознаются по виду меридианов и параллелей. Например, легко узнаваемы нормальные цилиндрические, псевдоцилиндрические, конические, азимутальные проекции. Но даже опытный картограф не сразу распознает многие произвольные проекции, потребуются специальные измерения по карте, чтобы выявить их равноугольность, равновеликость или равнопромежуточность по одному из направлений. Для этого существуют особые приемы: сперва устанавливают форму рамки (прямоугольник, окружность, эллипс), определяют, как изображены полюсы, затем измеряют расстояния между соседними параллелями вдоль по меридиану, площади соседних клеток сетки, углы пересечения меридианов и параллелей, характер их кривизны и т.п.
Существуют специальные таблицы-определители проекций для карт мира, полушарий, материков и океанов. Проведя необходимые измерения по сетке, можно отыскать в такой таблице название проекции. Это даст представление о ее свойствах, позволит оценить возможности количественных определений по данной карте, выбрать соответствующую карту с изоколами для внесения поправок.

Вопросы для самоконтроля:

  1. Как классифицируют проекции по виду вспомогательной поверхности?
  2. Как классифицируют проекции в зависимости от положения оси вспомогательной поверхности относительно оси вращения глобуса?
  3. Какой принцип построения поликонической проекции?
  4. Как получают азимутальные проекции?
  5. Как получить косую проекцию на касательном цилиндре?
  6. Как получить азимутальную экваториальную проекцию?
  7. Какие виды перспективных проекций вы знаете? Дайте им краткую характеристику.
  8. Какие проекции относят к условным?
  9. Какие факторы оказывают влияние на выбор картографической проекции?
  10. В каких проекциях обычно составляют карты мира,морские и аэронавигационные карты, топографические карты, карты отдельных стран, карты материков, карты полушарий?
  11. По каким признакам распознают проекции?

Длинная карта, коническая колода

Данные приемы предназначены для начинающих фокусников, настоящие мастера развивают ловкость своих пальцев. Длинной картой называют карту, которая длиннее и шире всех остальных карт в колоде, примерно на 1 мм. Такая карта выступает за края колоды, благодаря чему, фокуснику очень легко снять колоду на этой карте. Для того, чтобы изготовить длинную карту необходимо купить две одинаковые колоды. У одной колоды нужно немного обрезать края. Это можно сделать в любой мастерской, где переплетают книги. Если мастерской поблизости нет, то можно взять остро отточенный нож и металлическую линейку и обрезать края. Любая карта из стандартной колоды будет для такой колоды длинной. Неплохо бы сделать колоду с картами в виде конуса, в таком случае любая перевернутая карта становится для этой колоды длинной. В конической колоде один конец карты должен быть шире другого конца на 2 мм. И если сложить карты в колоде так, что все срезанные концы находятся в одной стороне, то карта, которая перевернута в другую сторону, будет выступать с узкого конца колоды и может служить длинной картой.
Такой прием с длинной картой можно использовать во многих фокусах. Например, Вы складываете такую колоду в одну сторону, далее предлагаете любому из зрителей вытащить одну карту и запомнить ее, после чего положить назад в колоду. Но прежде чем положить в колоду Вы ее переворачиваете относительно всей колоды. Теперь найти эту карту Вам не составит большого труда.
Можно обрезать узкие края у карт красной масти, после чего сложить колоду так, чтобы края карт красной масти смотрели в одну сторону, а края карт черной масти смотрели в другую сторону. Если взять колоду за края большими и указательными пальцами, то можно легко отделить красную масть от черной масти или простые карты от фигурных карт, при условии, что такая колода заранее подготовлена.
Коническая колода имеет ряд преимуществ перед длинной картой. В конической колоде любая карта может стать длинной. А используя длинную карту в колоде, длинная карта только одна.

»
На ведение визуальной ориентировки оказывают влияние: 1. Характер пролетаемой местности. Это условие имеет первостепенное значение при определении возможности и удобства ведения визуальной ориентировки. В районах, насыщен­ных крупными и характерными ориентирами, вести визуальную ориентировку легче, чем в районах с однообразными ориентирами. При полете над безориентирной местностью или над...

»
Самое сложное для авиамоделиста-кордовика — научиться управлять моделью ие кистью, а всей рукой, сгибая ее лишь в локтевом или даже только в плечевом суставе. Чтобы быстрее ос­воить этот прием, применяют ручку управления, которая фиксируется на предплечье не­большим хомутом (рис. 67).

»
Указатель пилота предназначен только для отсчета КУР по шкале против стрелки указателя. Шкала оцифрована через 30°, цена одного деления раина 5°. Указатель штурмана предназначен для отсчета КУР и пелен­гов радиостанции и самолета. Для отсчета КУР необходимо: 1) ручкой с надписью КУРС подвести нуль шкалы против не­подвижного треугольного индекса; 2) отсчитать значение КУР по шкале против остро...

»
Заход на посадку по кратчайшему пути предусматривает под­ход к заданным точкам прямоугольного маршрута. В основу пост­роения такого захода принят прямоугольный маршрут. Однако выполняется он не полностью, а от траверза ДПРМ или от одного из разворотов. Снижение с маршрута и заход на посадку выполняются при тех же условиях и с теми же ограничениями, что и заход с прямой.

»
Азимут и дальность до самолета опре­деляются диспетчером по экрану индика­тора, на котором самолет изображается в виде ярко светящейся метки. Азимут от­считывается относительно северного на­правления истинного меридиана по шка­ле индикатора, которая имеет оцифровку от 0 до 360°. Наклонная дальность до самолета определяется на индикаторе по масштабным кольцам (рис. 16.1). Точность определения даль...

»
Предполетная штурманская подготовка организуется и про­водится командиром корабля перед каждым полетом с учетом конкретной навигационной обстановки и метеорологических ус­ловий, складывающихся непосредственно перед вылетом. В этот период каждый член экипажа выполняет по своей специально­сти перечень обязательных действий в соответствии с Инструк­цией по организации и технологии предполетной подгот...

»
Сборные таблицы предназначены для подбора нужных листов карт и быстрого определения их номенклатуры. Они представляют собой схематическую карту мелкого масштаба с обозначенной на ней разграфкой и номенклатурой листов карт одного, а иногда двух-трех масштабов. Для облегчения выбора нужных листов карт на сборных таблицах указаны названия крупных городов. Сборные таблицы издаются на отдельных листах. ...

»
Режимы «Снос» и «Снос точно» предназначены для определе­ния угла сноса самолета. Первый используется при полетах до вы­соты 5000 м, а второй — при полетах на высотах от 5000 м и бо­лее. Измерение угла сноса основано на использовании эффекта Доп­лера, сущность которого заключается в том, что при перемещении источника излучения радиосигналов (передатчика) относительно приемника или приемника о...

»
В гражданской авиации при полетах по трассам в качестве ИПМ берется аэродром вылета. В отдельных случаях при внетрассовых полетах ИПМ может быть ориентир, расположенный на не­котором расстоянии от аэродрома вылета. Полет по заданному маршруту начинается от ИПМ. Поэтому, прежде всего, необходимо обеспечить точный выход на него. Ма­невр выхода на ИПМ намечается с таким расчетом, чтобы самолет прошел...

»
Одноступенчатая модель ракеты (рис. 58). Корпус клеят из двух слоев чертежной бу­маги на оправке диаметром 20 мм. Размер бумажной за­готовки 300X275 мм. Оправ­кой может служить круглый стержень из металла или дру­гого материала нужного диа­метра. Дав просохнуть бумаге, шов зачищают шлифовальной шкуркой и покрывают жидким нитролаком.

»
Са­мые простые соревнования — на время полета. Тут может быть и одновременный старт всех шаров и старт по очереди (по жребию). Выигрывает та команда, у которой шар доль­ше продержится в воздухе.

»
Модели воздушного боя, или как их часто называют «бойцовки», несомненно, держат первенство среди всех кор­довых летательных аппара­тов. Обилие всевозможных схем и конструкторских ре­шений — наглядное подтверж­дение сказанному. Знакомство с этим классом авиационных моделей начнем с несложной «бойцовки», разработанной в пионерском лагере «Родник», где много лет автор был руководителем авиакр...

»
Современные самолеты с ГТД, применяемые в ГА, рассчитаны на экономичную эксплуатацию на больших высотах и больших скоростях полета. Самолетовождение высотно-скоростных самоле­тов имеет целый ряд особенностей, которые необходимо учитывать как; при подготовке к полету, так и в процессе самого полета. Самолетовождение на больших высотах (от 6000 м и выше) имеет следующие особенности:

»
Для ведения контроля пути нужно знать фактическую путевую скорость и угол сноса. При отсутствии на самолете навигацион­ных средств для автоматического измерения этих элементов послед­ние могут быть определены на контрольном этапе. Длина контроль­ного этапа берется не менее 50—70 км. Его входной и выходной ориентиры выбираются с учетом надежности их опознавания с вы­соты полета. На контрольно...

»
При полете по ортодромии для контроля пути по направлению используются ортодромические радиопеленги, которые могут быть отсчитаны по УШ или получены путем расчетов. При полете по ортодромии от радиостанции контроль пути по направлению ведется сравнением ОМПС с ОЗМПУ (рис. 23.10).

»
Заданный путевой угол мо­жет быть истинным и магнит­ным в зависимости от меридиа­на, от которого он отсчитывает­ся (рис. 3.7). Заданным магнитным путевым углом ЗМПУ называется угол, заключенный между северным направлением магнитного меридиана и линией заданного пути. ЗМПУ отсчиты­вается от северного направления магнитного меридиана до ЛЗП по ходу часовой стрелки от 0 до 360° и...

»
Автожир, если он соответствующим образом сбалансирован, может совершать крутые планирующие спуски при больших углах атаки, так как для него, в отличие от самолета, не существует критического угла, при котором начинаются срыв струй на крыле и резкое уменьшение подъемной силы, и нет опасности штопора при потере скорости.

»
В процессе выполнения полета штурман выполняет различные навигационные расчеты и измерения. Так как запомнить результа­ты всех расчетов и измерений невозможно, штурман записывает их в бортовом журнале, а некоторые отмечает на карте. В бортовом журнале и на карте рекомендуется четко и быстро записывать только те данные, которые нужны для определения на­вигационных элементов полета, контроля и испра...

»
Удачное развитие конструкции автожира повело к теоретическим изысканиям по несущему авторотирующему винту-ротору. Так, например, в 1926 г. появилась работа Пистолези. В 1927 г. была опубликована Глауэртом теория автожира. В 1928 г. ее развил и дополнил Локк. Можно также указать на несколько работ итальянских аэродинамиков (Ферарри, Цистолези, Уго-де-Кариа), относящихся к работе винта в боковом пот...

»
Кодовые выражения ЩГЕ и ЩТФ используются при запросе места самолета у радиопеленгаторного узла или радиопеленгатора, работающего совместно с наземным радиолокатором. ЩГЕ (в телеграфном режиме) .означает: «Сообщите истинный пеленг самолета (ИПС) и расстояние (S) от радиопеленгатора до самолета». Для получения МС штурман прокладывает на борто­вой карте от радиопеленгатора ИПС, а на линии пеленга &md ...

»
Радиодевиация компенсируется в следующем порядке: 1. Выключить радиокомпас и отсоединить компенсатор от бло­ка рамки. 2. Снять скобу с указателя радиодевиаций.

»
Плавность в работе ротора на всех полетных режимах автожира является необходимым требованием, так как неровности и тряска, передаваясь на остальные части машины, будут влиять на прочность конструкции, регулировку ротора и других деталей. За неимением достаточного эксплуатационного опыта придется пока ограничиться предварительными соображениями об условиях плавной работы ротора. Во-первых, ротор до...

»
Видоизмененная поликоническая проекция была принята на международной геофизической конференции в Лондоне в 1909 г. и получила название международной. В этой проекции из­дается международная карта масштаба 1: 1 000 000. Строится она по особому закону, принятому международным соглашением.

»
Умножение и деление чисел на НЛ-10М выполняется по шка­лам 1 и 2 или 14 и 15. При пользовании этими шкалами значения чисел, нанесенных на них, можно увеличивать или уменьшать в любое число раз, кратное десяти. Для умножения чисел по шкалам 1 и 2 необходимо прямо­угольный индекс с цифрой.10 или 100 шкалы 2 установить на мно­жимое, а пробив множителя отсчитать по шкале 1 искомое произ­ведение.

»
Обеспечение безопасности полета является одной из главных задач самолетовождения. Она решается как экипажем, так и службой движения, которые обязаны добиваться безопасно­сти полета каждого самолета даже в тех случаях, когда приня­тые для этого меры повлекут за собой нарушение регулярности или снижение экономических показателей полета.

»
Одним из основных правил самолетовождения является непре­рывное сохранение ориентировки в течение всего полета. Сохра­нять ориентировку — это значит в любое время полета знать ме­сто самолета. Местом самолета называется проекция положения самолета в данный момент времени на земную поверхность. Ори­ентировка может осуществляться визуально и при помощи техни­ческих средств самолетовождения.

»
Несмотря на большое раз­нообразие, все ракеты имеют много общего в своем устрой­стве. Основными частями управляемой ракеты являются полезный груз, корпус, двига­тель, бортовая аппаратура си­стемы управления, органы управления и источники энер­гии. Полезный груз — объект для проведения иссле­дований или других работ, размещается в головном от­секе и прикрывается головным обтекателем. Корпус р...

»
Одним из важнейших требований безопасности самолето­вождения является предотвращение столкновений самолетов с земной поверхностью или препятствиями. Основным способом ре­шения этой задачи в настоящее время является расчет и выдер­живание в полете безопасной высоты по барометрическому высо­томеру. Безопасной высотой называется минимально допусти­мая истинная высота полета, гарантирующая самолет от...

»
В полете угол сноса может быть определен одним из следую­щих способов: 1) по известному ветру (на НЛ-10М, НРК-2, ветрочете и под­счетом в уме); 2) по отметкам места самолета на карте; 3) по радиопеленгам при полете от РНТ или на РНТ; 4) с помощью доплеровского измерителя; 5) при помощи бортового визира или самолетного радиоло­катора; 6) глазомерно (по видимому бегу визирных точек).

»
В целях достижения экономичности полеты по трассам необхо­димо выполнять на наивыгоднейших режимах. Данные о крейсер­ских режимах горизонтального полета для самолета Ан-24 для основных полетных весов приведены в табл. 24.1. Эта таблица пред­назначена для определения наивыгоднейшей скорости полета и часового расхода топлива. Ниже дается характеристика установ­ленных крейсерских режимов полета для с...

Конические проекции - поверхность шара (эллипсоида) проектируется на поверхность касательного или секущего конуса, после чего она как бы разрезается по образующей и разворачивается в плоскость. Как и в предыдущем случае, различают нормальную (прямую) коническую проекцию, когда ось конуса совпадает с осью вращения Земли, поперечную коническую - ось конуса лежит в плоскости экватора и косую коническую - ось конуса наклонена к плоскости экватора.

Коническими называются такие проекции, в которых параллели нормальной сетки изображаются дугами концентрических окружностей, а меридианы - их радиусами, углы между которыми на карте пропорциональны соответствующим разностям долгот в натуре.

Геометрически картографическую сетку в этих проекциях можно получить путем проектирования меридианов и параллелей на боковую поверхность конуса с последующим развертыванием этой поверхности в плоскость.

Представим себе конус, касающийся глобуса по некоторой параллели АоВоСо (рис. 4). Продолжим плоскости географических меридианов и параллелей глобуса до пересечения их с поверхностью конуса. Линии пересечения указанных плоскостей с поверхностью конуса примем соответственно за изображения меридианов и параллелей глобуса. Разрежем поверхность конуса по образующей и развернем ее в плоскость; тогда получим на плоскости картографическую сетку в одной из конических проекций (рис. 5).

Параллели с глобуса на поверхность конуса можно перенести и другими способами, а именно: путем проектирования лучами, исходящими из центра глобуса или из некоторой точки, находящейся на оси конуса, путем откладывания на меридианах проекции в обе стороны от параллели касания выпрямленных дуг меридианов глобуса, заключенных между параллелями, и последующего проведения через точки отложения концентрических окружностей из точки S (рис. 5), как из центра. В последнем случае параллели на плоскости будут расположены на таком же расстоянии друг от друга, как и на глобусе.

При указанных выше способах перенесения географической сетки с глобуса на поверхность конуса параллели на плоскости будут

Рис.4 Конус, касающийся Глобуса по параллели.

Рис. 5 Отложения концентрических окружностей.

Картографическая сетка в конической проекции изображаться дугами концентрических окружностей, а меридианы будут представлять собой прямые, исходящие из одной точки и составляющие между собой углы, пропорциональные соответствующим разностям долгот.

Свойства конических проекций Птолемея, Красовского, Каврайского

Проекция Красовского

На карте нет искажений: длин вдоль параллелей с широтами +49,4 и +67,8 градусов; площадей на параллелях с широтами +48°,2 и+68°,4; углов на параллелях с широтами +50°,6 и+66°,8. Проекция рассчитана под условиями: сохранения площади пояса, ограниченного параллелями с широтами +39°28"42" и +73°28"42"; равенства масштабов вдоль крайних параллелей этого пояса; минимума суммы квадратов искажений длин вдоль параллелей.

Проекцию следует применять для карт Российской Федерации, когда существенно, чтобы не только материковая часть, но и прилегающий к нему район полярного бассейна передавались с возможно малыми искажениями. Карта может быть скомпонована только без включения в рамку полюса, который изображается в виде полярной дуги.

Проекция Птолемея

Коническая проекция Птолемея строится на прямом касательном конусе. Представив себе пространственную картину взаимного расположения фигур, перейдем к построению сетки проекции.

1. Задаются исходные данные для построения сетки, а именно масштаб карты, расстояние в градусах между параллелями (п°) и меридианами (т°), широта параллели касания (ф0).

2. Вычисляется радиус параллели касания (в мм) по формуле

3. Вычисляется расстояние между параллелями (а - отрезок меридиана - дуги большого круга) по формуле

4. Расстояние между меридианами (b - отрезок параллели) определяется на параллели касания. Из таблиц известно значение 1° дуги данной параллели (в км), его умножают на разность долгот между соседними меридианами (т°) и переводят в миллиметры, зная масштаб данной карты.

После этих вычислений приступают к построению проекции на листе бумаги.

1. Проводят меридиан симметрии. Для России принято считать таковым меридиан 100° в. д.

2. Вычисленным радиусом из вершины конуса, взятой на меридиане симметрии произвольно, проводят параллель касания. Обычно широту выбирают так, чтобы параллель находилась посредине карты. Для России это может быть 55° с. ш.

3. По обе стороны от параллели касания на меридиане симметрии откладывают отрезки - расстояния между параллелями. Сами дуги параллелей проводят из вершины конуса.

4. На параллели касания (не имеющей искажений на карте) откладывают отрезки b - расстояния между меридианами.

Внутренней рамкой ограничивают картографическое изображение территории России или другой страны, затем строят градусную рамку, внешнюю рамку, и построение картографической сетки в проекции закончено.

Свойства проекции Птолемея:

1. Главный масштаб сохраняется по всем меридианам и параллели касания.

2. Частные масштабы по другим параллелям больше главного.

3. Равноугольные и равновеликие свойства сохраняются вдоль параллели касания - линии нулевых искажений.

4 Искажения контуров, площадей возрастают по обе стороны от параллели касания. Причем в полосе 15° по обе стороны от нее они небольшие, далее к северу нарастают более значительно, чем к югу.

В 1931 г. для карт СССР была разработана нормальная коническая проекция В. В. Каврайского. Она применялась для «Атласа СССР» (7 класс), «Большого советского атласа мира». Проекция разработана Каврайским с расчетом наименьших искажений длин по меридианам и параллелям для территории СССР к югу от полярного круга. К северу от него качество изображения в расчет не принималось (рис. 60).

Проекция построена на секущем конусе и имеет две параллели касания, а именно 47° с. ш. и 62° с. ш., наибольшие искажения углов около 0,5°. В этой проекции имеются линии нулевых искажений всех видов. По всем меридианам масштаб главный, по параллелям касания также. При работе школьников или студентов с картами в этой проекции можно пользоваться транспортиром для измерения углов.


Рис. 60. Сетка в проекции Каврайского

В проекции Каврайского издана в 1949 г Гипсометрическая карта СССР в масштабе 1 2 500 000

С 50-х гг для карт СССР применяется нормальная равнопромежуточная проекция Ф Н Красовского Принцип ее построения похож на построение проекции Каврайского для расчетов использован тот же секущий конус, но введено условие сохранения площади заданного пояса и равенства масштабов длин по его крайним параллелям -39°48′ с ш и 73°30′ с ш, т е раздвинута полоса между параллелями касания, в пределах которой можно вы полнить картометрические работы, не внося поправки на искажения (Рис 61)

Недостаток нормальных конических проекций состоит в том, что на касательном конусе главный масштаб сохраняется только по параллели

касания, в остальных местах имеются искажения. На секущем конусе восточные и западные территории сильно развернуты полюс находится за пределами изображения

Чтобы сохранить масштаб на всех параллелях, необходимо градусную сетку строить с помощью множества конусов, а именно каждую параллель - на своем Тогда каждая параллель станет параллелью касания (радиус ее вычисляется по формуле Птолемея р = г ctg ф0) и изобразится без искажений Далее найти на параллелях, пользуясь таблицей длин дуг в Г, точки прохождения меридианов и провести их как сложные кривые, соединяя точки прохождения меридианов на соседних параллелях. Таков принцип строения картографической сетки в поликонических проекциях.

41. Поликонические проекции. Свойства проекций ЦНИИГАиК: вариант БСЭ, вариант 1951 г.

Поликоническая проекция ЦНИИГАиК (Вариант БСЭ) разработана для карт мира Большой Советской Энциклопедии. Искажения углов и площадей примерно одного порядка, но по характеру искажений она всё же больше тяготеет к равноугольным проекциям. При отображении Европы, Африки, значительных частей Азии, Южной и Северной Америки, Австралии и даже части Антарктиды искажения углов не превышают 20 градусов. Наибольшие искажения в углах рамки (более 50 градусов). Масштаб площадей изменяется от 0,833 (в центре проекции) до 2 (на северных окраинах материков) и до 3 и более (в полярных районах). Масштаб длин вдоль экватора равен 0,833. Нет искажений длин вдоль вдоль параллелей +-45 градусов. Отсутствуют угловые искажения на среднем меридиане в двух точках с широтами +-52,7 градусов.

Проекция используется для многих учебных, справочных настенных и настольных карт мира.

Свернем из листа бумаги конус в виде лавочного «фунтика». Наденем конус на наш проволочный глобус так, чтобы вершина конуса оказалась на продолжении оси глобуса над «северным полюсом». Тогда конус будет касаться глобуса вдоль некоторой параллели — более южной, если конус острый, более северной, если конус тупой. Разрежем меридианы вдоль экватора и на полюсе и, предполагая, что все параллели за исключением параллели касания эластичны, будем распрямлять меридианы так, чтобы меридианы и параллели совпали с поверхностью конуса. Разрезав снова сетку (вместе с бумагой) вдоль одного из меридианов и развернув ее на плоскость, получим равнопромежуточную коническую проекцию, которая сохраняет длины вдоль всех меридианов и вдоль параллели касания. Длины всех остальных параллелей преувеличены, это преувеличение возрастает с удалением от параллели касания, а поэтому преувеличены и площади отдельных клеток.

Подобно цилиндрическим проекциям для получения равновеликой конической проекции следует укоротить длины всех меридианов настолько, чтобы площадь каждой клетки проекции равнялась по величине поверхности соответствующей клетки на глобусе. Напротив, в равноугольной конической проекции меридианы удлиняются в той степени, в которой преувеличены параллели; степень удлинения возрастает по мере удаления от параллели касания.

В картографической практике, вместо касательной, нередко берут конус, секущий глобус по двум параллелям. Этот прием улучшает несколько распределение искажений: между параллелями сечения изображение будет преуменьшено против натуры, вне параллелей сечения — преувеличено; главный масштаб сохранится вдоль двух параллелей сечения.

Все конические проекции имеют параллели в виде концентрических окружностей и прямолинейные меридианы, исходящие из центра параллелей под углами, пропорциональными соответствующим углам в натуре.

От равнопромежуточной конической проекции легко перейти к имеющей широкое распространение проекции Бонна. Для этого сохраним от конической проекции круговые концентрические параллели и средний меридиан. Другие меридианы получим, откладывая на каждой параллели расстояния между меридианами в натуре (разумеется, после перевода их в масштаб карты) и соединяя полученные точки плавными кривыми.

Проекция Бонна сохраняет длины вдоль всех параллелей и среднего меридиана и передает без искажений площадь каждой клетки; она равновелика. Расстояние между параллелями сетки, являющимися концентрическими окружностями, везде является постоянным и равно расстоянию между параллелями в натуре. Таким образом, малая трапеция на глобусе и на проекции имеет равные основания (отрезки параллелей) и высоту.