Критерий манна-уитни. Подсчет критерия U Манна-Уитни

Критерий предназначен для оценки различий между двумя выборками по уровню какого-либо количественно измеренного признака, при распределении вариант отличном от нормального . Более того, он позволяет выявлять различия между малыми выборками (когда n 1 , n 2 ³3 или n 1 =2, n 2 ³5). Этот метод определяет насколько слабо перекрещиваются (совпадают) значения между двумя выборками. Чем меньше перекрещивающихся значений, тем более вероятно, что различия достоверны.

Чем меньше U эмп тем более вероятно, что различия достоверны.

Нулевая гипотеза: уровень признака в выборке 2 не ниже уровня признака в выборке 1.

Прежде чем проводить оценку критерием U необходимо провести ранжирование.

ОПРЕДЕЛЕНИЕ: Ранжирование – распределение вариант внутри вариационного ряда от меньших величин к большим.

Правила ранжирования:

1. Меньшему значению начисляется меньший ранг, как правило, это 1. Наибольшему значению начисляется ранг, соответствующий количеству ранжируемых значений (если n=10, то наибольшее значение получит ранг 10).

2. Если несколько значений равны, им начисляется ранг, представляющийсобой среднее значение из тех рангов, которые они получили бы, если бы не были равны:

3. Общая сумма рангов должна совпадать с расчетной, которая определяется по формуле: , где N- общее количество ранжируемых значений. Несовпадение реальной и расчетной сумм рангов будет свидетельствовать об ошибке, допущенной при начислении рангов или их суммировании. Прежде чем продолжить работу, необходимо найти ошибку и устранить ее.

Пример .

Проранжируем следующий ряд.

По формуле проверим правильность ранжирования.

. Определим сумму рангов: 1+2,5+2,5+4+5+6+7=28.

Общая сумма рангов совпадает с расчетной. Следовательно мы правильно проранжировали.

Схема подсчета критерия Манна-Уитни:

Чем меньше значения U , тем достоверность различий выше и тем больше уверенности в отклонении нулевой гипотезы.


3 пример .

При заболеваниях сетчатки повышается проницаемость ее сосудов. Исследователи измерили проницаемость сосудов сетчатки у здоровых и у больных с ее поражением. Полученные результаты приведены в таблице.

Проверить, подтверждают ли эти данные гипотезу о различии в проницаемости сосудов сетчатки.

Нулевая гипотеза : проницаемость сосудов сетчатки при заболеваниях сетчатки у больных не больше, чем у здоровых, (нет статистического различия между двумя выборками).

Альтернативная гипотеза : проницаемость сосудов сетчатки при заболеваниях сетчатки у больных больше, чем у здоровых, (есть статистическое различие между двумя выборками).

Здоровые больные
Порядковый номер Ранг проницаемость сосудов сетчатки Порядковый номер Ранг
0,5 1,2 6,5
0,7 2,5 1,4
0,7 2,5 1,6
1,0 4,5 1,7
1,0 4,5 1,7
1,2 6,5 1,8
1,4 2,2 18,5
1,4 2,3
1,6 2,4
1,6 6,4
1,7
2,2 18,5 23,6

Методы математической обработки в психологии

ГЛАВА I. ОСНОВНЫЕ ПОНЯТИЯ, ИСПОЛЬЗУЕМЫЕ В МАТЕМАТИЧЕСКОЙ ОБРАБОТКЕ ПСИХОЛОГИЧЕСКИХ ДАННЫХ

Возможности и ограничения параметрических и непараметрических критериев

ПАРАМЕТРИЧЕСКИЕ КРИТЕРИИ НЕПАРАМЕТРИЧЕСКИЕ КРИТЕРИИ
1. Позволяют прямо оценить различия в средних, полученных в двух вы­борках (t - критерий Стьюдента). Позволяют оценить лишь средние тенден­ции, например, ответить на вопрос, чаще ли в выборке А встречаются более высо­кие, а в выборке Б - более низкие значе­ния признака (критерии Q, U, φ и др.).
2. Позволяют прямо оценить различия в дисперсиях (критерий Фишера). Позволяют оценить лишь различия в диа­пазонах вариативности признака (критерий φ).
3. Позволяют выявить тенденции изменения признака при переходе от условия к условию (дисперсионный однофакторный анализ), но лишь при условии нормального распреде­ления признака. Позволяют выявить тенденции изменения признака при переходе от условия к усло­вию при любом распределении признака (критерии тенденций L и S).
4. Позволяют оценить взаимодействие двух и более факторов в их влиянии на изменения признака (двухфакторный дисперсионный анализ). Эта возможность отсутствует.
5. Экспериментальные данные должны отвечать двум, а иногда трем, усло­виям: а) значения признака измерены по интервальной шкале; б) распределение признака является нормальным; в) в дисперсионном анализе должно соблюдаться требование равенства дисперсий в ячейках комплекса. Экспериментальные данные могут не от­вечать ни одному из этих условий: а) значения признака могут быть пред­ставлены в любой шкале, начиная от шка­лы наименований; б) распределение признака может быть любым и совпадение его с каким-либо теоретическим законом распределения необязательно и не нуждается в проверке; в) требование равенства дисперсий отсут­ствует.
6. Математические расчеты довольно сложны. Математические расчеты по большей час­ти просты и занимают мало времени (за исключением критериев χ 2 и λ).
7. Если условия, перечисленные в п.5, выполняются, параметрические кри­терии оказываются несколько более мощными, чем непараметрические. Если условия, перечисленные в п.5, не выполняются, непараметрические критерии оказываются более мощными, чем пара­метрические, так как они менее чувстви­тельны к «засорениям».

Классификация задач и методов их решения

Задачи Условия Методы
1.Выявление различий в уровне исследуемого признака а) 2 выборки испытуемых Q- критерий Розенбаума; U - критерий Манна-Уитни; φ* - критерий (угловое преобразование Фишера)
б) 3 и более выбо­рок испытуемых S - критерий тенденций Джонкира; Н - критерий Крускала-Уоллиса.
2. Оценка сдвига зна­чений исследуемого признака а) 2 замера на од­ной и той же вы­борке испытуемых Т - критерий Вилкоксона; G - критерий знаков; φ* - критерий (угловое преобразование Фишера).
б) 3 и более заме­ров на одной и той же выборке испы­туемых χ л 2 - критерий Фридмана; L - критерий тенденций Пейджа.
3. Выявление различий в распределении а) при сопоставлении эмпирического признака распределения с теоретическим χ 2 - критерий Пирсона; λ - критерий Колмогорова-Смирнова; m - биномиальный критерий.
б) при сопоставле­нии двух эмпириче­ских распределений χ 2 - критерий Пирсона; λ - критерий Колмогорова-Смирнова; φ* - критерий (угловое преобразование Фишера).
4.Выявление степени согласованности изменений а) двух признаков
б) двух иерархий или профилей r s - коэффициент ранговой корреляции Спирмена.
5. Анализ изменений признака под влия­нием контролируе­мых условий а) под влиянием одного фактора S- критерий тенденций Джонкира; L - критерий тенденций Пейджа; однофакторный дисперсионный анализ Фишера.
б) под влиянием двух факторов одновременно Двухфакторный дисперсионный анализ Фишера.

ГЛАВА II. ВЫЯВЛЕНИЕ РАЗЛИЧИЙ В УРОВНЕ ИССЛЕДУЕМОГО ПРИЗНАКА

Принятие решения о выборе метода математической об­работки

Если данные уже получены, то вам предлагается следующий ал­горитм определения задачи и метода.

АЛГОРИТМ 2

Принятие решения о задаче и методе обработки на стадии планирования исследования

1. Определите, какая модель вам кажется наиболее подходящей для доказательства ваших научных предположений.

2. Внимательно ознакомьтесь с описанием метода, примерами и задачами для самостоятельного решения, которые к нему прилагаются.

3. Если вы убедились, что это то, что вам нужно, вернитесь к разделу «Ограничения критерия» и решите, сможете ли вы собрать данные, которые будут отвечать этим ограничениям (большие объемы выборок, наличие не­скольких выборок, монотонно различающихся по какому-либо признаку, напри­мер, по возрасту и т.п.).

4. Проводите исследование, а затем обрабатывайте полученные данные по заранее! выбранному алгоритму, если вам удалось выполнить ограничения.

5. Если ограничения выполнить не удалось, обратитесь к алгоритму 1.


Алгоритм принятия решения о выборе критерия для сопоставлений


Q - критерий Розенбаума

Назначение критерия . Критерий используется для оценки различий между двумявы­борками по уровнюкакого-либо признака, количественно измеренного. В каждой из выборок должно быть не менее 11 испытуемых.

Пример.

У предполагаемых участников психологического эксперимента, моделирующего деятельность воздушного диспетчера, был измерен уро­вень вербального и невербального интеллекта с помощью методики Д. Векслера. Было обследовано 26 юношей в возрасте от 18 до 24 лет (средний возраст 20,5 лет). 14 из них были студентами физического факультета, а 12 - студентами психологического факультета Ленинград­ского университета. Можно ли утверждать, что одна из групп превосходит другую по уровню вербального интеллекта?

АЛГОРИТМ 3 Подсчет критерия Q Розенбаума 1. Проверить, выполняются ли ограничения: n 1 ,n 2 ≥11, n 1 ,n 2 ≈n 2. 2. Упорядочить значения отдельно в каждой выборке по степени воз­растания признака. Считать выборкой 1 ту выборку, значения в ко­торой предположительно выше, а выборкой 2 - ту, где значения предположительно ниже. 3. Определить самое высокое (максимальное) значение в выборке 2. 4. Подсчитать количество значений в выборке 1, которые выше макси­мального значения в выборке 2. Обозначить полученную величину как S 1 . 5. Определить самое низкое (минимальное) значение в выборке 1. 6. Подсчитать количество значений в выборке 2, которые ниже мини­мального значения выборки 1. Обозначить полученную величину как S 2 . 7. Подсчитать эмпирическое значение Q по формуле: Q=S 1 +S2 8. По Табл. I определить критические значения Q для данных n 1 и n 2 . Если Q эмп равно Q 0,05 или превышает его, уровень признака в выборке 1 превышает уровень признака в вы­борке 2. 9. При n 1 и n 2 >26сопоставить полученное эмпирическое значение с Q к p = 8 (р≤ 0,05) и Q к p = 10 (p≤ 0,01). Если Q эмп ≥ Q к p = 8, уровень признака в выборке 1 превышает уровень признака в вы­борке 2.

Таблица I. Критические значения критерия Q Розенбаума

n
p=0,05
7
p=0,01

U - критерий Манна-Уитни

Назначение критерия . Критерий предназначен для оценки различий между двумя вы­борками по уровню какого-либо признака, количественно измеренного. Он позволяет выявлять различия между малыми выборками, когда n 1 ,n 2 ≥ 3 или n 1 =2, n 2 ≥5, и является более мощным, чем критерий Ро­зенбаума.

Пример

Уровень вербального интеллекта в выборке студентов физического факультета выше чем студентов психологического факультета Ленинградского университета. Попытаемся установить теперь, воспроизводится ли этот резуль­тат при сопоставлении выборок по уровню невербального интеллекта. Можно ли утверждать, что одна из выборок превосходит другую по уровню невербального интеллекта?

Правила ранжирования

1. Меньшему значению начисляется меньший ранг. Наименьшему значению начисляется ранг 1. Наибольшему значению начисляется ранг, соответствующий количе­ству ранжируемых значений. Например, если n=7, то наибольшее значение получит ранг 7, за возможным исключением для тех слу­чаев, которые предусмотрены правилом 2.

2. В случае, если несколько значений равны, им начисляется ранг, представляющий собой среднее значение из тех рангов, которые они получили бы, если бы не были равны.

Допустим, следующие 2 значения равны 12 сек. Они должны были бы получить ранги 4 и 5, но, поскольку они равны, то получают средний ранг:

3. Общая сумма рангов должна совпадать с расчетной, которая опре­деляется по формуле:

где N - общее количество ранжируемых наблюдений (значений). Несовпадение реальной и расчетной сумм рангов будет свидетельст­вовать об ошибке, допущенной при начислении рангов или их сум­мировании. Прежде чем продолжить работу, необходимо найти ошибку и устранить ее.

АЛГОРИТМ 4

Подсчет критерия U Манна-Уитни.

1. Перенести все данные испытуемых на индивидуальные карточки.

2. Пометить карточки испытуемых выборки 1 одним цветом, скажем красным, а все карточки из выборки 2 - другим, например синим.

3. Разложить все карточки в единый ряд по степени нарастания при­знака, не считаясь с тем, к какой выборке они относятся, как если бы мы работали с одной большой выборкой.

4. Проранжировать значения на карточках, приписывая меньшему зна­чению меньший ранг. Всего рангов получится столько, сколько у нас (n 1 +п 2).

5. Вновь разложить карточки на две группы, ориентируясь на цветные обозначения: красные карточки в один ряд, синие - в другой.

7. Определить большую из двух ранговых сумм.

8. Определить значение U по формуле:

где n 1 - количество испытуемых в выборке 1;

n 2 - количество испытуемых в выборке 2;

Т х - большая из двух ранговых сумм;

n х - количество испытуемых в группе с большей суммой рангов.

9. Определить критические значения U по Табл. II. Если U эмп U к p _ 005 , различия достоверны. Чем меньше значения U, тем достоверность различий выше.


Таблица II. Критические значения критерия U Манна-Уитни

для уровней статистической значимости р≤0,05 и р≤0,01.

n1
n2 p=0,05
-
-
p=0,01
- -
- -
-
-
-
-
-
-

Таблица II. Продолжение

n 1
n 2 p=0,05
р=0,01

Таблица II. Продолжение

Критерий в математической статистике - это строгое правило, в соответствии с которым гипотеза с определённым уровнем значимости принимается или отвергается. Чтобы построить его, необходимо найти определенную функцию. Она должна зависеть от конечных результатов эксперимента, то есть от эмпирически найденных значений. Именно эта функция будет являться инструментом оценки расхождения между выборками.

Статистически значимая величина. Общие сведения

Статистическая значимость - это величина, вероятность случайного возникновения которой очень мала. Незначительны также и более крайние ее показатели. Разницу называют статистически значимой в том случае, если существуют данные, вероятность появления которых незначительна, если утверждать, что эти расхождения не существуют. Но это не значит вовсе, что эта разница обязательно должна быть велика и значима.

Уровень статистической достоверности теста

Под данным термином следует понимать вероятность отклонения нулевой гипотезы в случае её истинности. Это также называется ошибкой первого рода или ложноположительным решением. В большинстве случаев процесс опирается на p-величину ("пи-величина"). Это накопленная вероятность при наблюдении за уровнем статистического критерия. Он, в свою очередь, насчитывается по выборке во время принятия нулевой гипотезы. Предположение будет отвергнуто, если эта p-величина будет меньше заявленного аналитиком уровня. От этого показателя зависит напрямую значимость тестовой величины: чем она меньше, тем, соответственно, и больше оснований отвергнуть гипотезу.

Уровень значимости, как правило, обозначается буквой б (альфа). Популярные показатели среди специалистов: 0,1%, 1%, 5% и 10%. Если, скажем, говорится, что шансы на совпадения равны 1 к 1000, то определённо речь идёт об уровне 0,1% статистической значимости случайной величины. Различные по значению б-уровни имеют свои плюсы и минусы. Если показатель меньше, то больше вероятность, что альтернативная гипотеза значимая. Хотя при этом возможен риск, что ложное нулевое предположение не будет отвергнуто. Можно сделать вывод, что выбор оптимального б-уровня зависит от баланса "значимость-мощность" или, соответственно, от компромисса вероятностей ложноположительного и ложноотрицательного решений. Синонимом "статистической значимости" в отечественной литературе является термин "достоверность".

Определение нулевой гипотезы

В математической статистике проверяемое на согласованность с уже имеющимися в запасе эмпирическими данными. В большинстве случаев в качестве нулевой гипотезы берётся гипотеза о том, что корреляция между исследуемыми переменными отсутствует или что в изучаемых распределениях нет различий однородности. При стандартных исследованиях математик пытается опровергнуть нулевую гипотезу, то есть доказать, что она не согласована с экспериментально полученными данными. Причем должно иметь место и альтернативное предположение, которое принимается вместо нулевого.

Ключевое определение

Критерий U (Манна-Уитни) в позволяет оценивать различия двух выборок. Они могут быть даны по уровню некоего признака, который измерен количественно. Этот метод идеален для оценки различий малых выборок. Этот простой критерий был предложен Фрэнком Уилкоксоном в 1945 году. А уже в 1947 году метод был пересмотрен и дополнен учёными Х. Б. Манном и Д. Р. Уитни, именами которых он и именуется по сей день. Критерий Манна-Уитни в психологии, математике, статистике и во многих других науках является одним из основополагающих элементов математического обоснования результатов теоретических исследований.

Описание

Критерий Манна-Уитни - относительно простой метод без параметров. Его мощность значительна. Она существенно выше, чем мощность Q-критерия Розенбаума. Метод оценивает, насколько мала область перекрёстных значений между выборками, а именно между ранжированными рядами значений первой и второй подборки. Чем значение критерия меньше, тем больше вероятность, что расхождения значений параметра достоверны. Чтобы корректно применить критерий U (Манна-Уитни), не стоит забывать о некоторых ограничениях. В каждой выборке должно быть как минимум 3 значения признака. Возможна ситуация, когда в одном случае значений два, но во втором обязательно тогда их должно быть хотя бы пять. В исследуемых выборках должно быть минимальное количество совпадающих показателей. Все числа должны быть разными в идеальном случае.

Использование

Как правильно использовать критерий Манна-Уитни? Таблица, которая составлена по данному методу, содержит определенные критические значения. Для начала нужно создать единый ряд из обеих сопоставленных выборок, который затем ранжируется. То есть элементы выстраиваются по степени нарастания признака, и меньший ранг присваивается меньшему значению. В итоге получим такое общее число рангов:

N = N1 + N2,

где величины N1 и N2 - количество единиц, содержащихся в первой и второй выборках соответственно. Далее единый ранжированный ряд значений делится на две категории. Единицы, соответственно, из первой и второй выборок. Теперь считается по очереди сумма рангов значений в первом и во втором рядах. Определяется большая из них (Tx), которая соответствует выборке с nx единицами. Чтобы использовать метод Уилкоксона далее, вычисляется его значение по следующей методике. Необходимо по таблице для выбранного уровня значимости выяснить критическое значение этого критерия для конкретно взятых N1 и N2.

Получившийся показатель может быть меньше или равен значению из таблицы. В этом случае констатируется значительное различие уровней признака в исследуемых выборках. Если полученное значение больше табличного, тогда нулевая гипотеза принимается. Когда производится расчет критерия Манна-Уитни, следует заметить, что если нулевая гипотеза справедлива, критерий будет иметь а также дисперсию. Отметим, что при достаточно больших объёмах данных выборок метод считается практически нормально распределенным. Достоверность различий тем выше, чем меньшее значение принимает критерий Манна-Уитни.

Критерий U Манна - Уитни

Назначение критерия. Критерий предназначен для оценки различий между двумя выборками по уровню какого-либо признака, количественно измеренного. Он позволяет выявлять различия между малыми выборками, когда п 1, п 2 > 3 или п Л = 2, п 2 > 5, и является более мощным, чем критерий Q Розенбаума.

Этот метод определяет, достаточно ли мала зона перекрещивающихся значений между двумя рядами. Мы помним, что 1-м рядом (выборкой, группой) мы называем тот ряд значений, в котором значения, по предварительной оценке, выше, а 2-м рядом - тот, где они предположительно ниже.

Чем меньше область перекрещивающихся значений, тем более вероятно, что различия достоверны. Иногда эти различия называют различиями в расположении двух выборок. Эмпирическое значение критерия и отражает то, насколько велика зона совпадения между рядами. Поэтому чем меньше t/ 3Mn , тем более вероятно, что различия достоверны.

Гипотезы.

Уровень невербального интеллекта в группе студентов физиков выше, чем в группе студентов-психологов.

Графическое представление критерия U. Па рис. 7.25 представлены три из множества возможных вариантов соотношения двух рядов значений.

В варианте (а) второй ряд ниже первого, и ряды почти не перекрещиваются. Область наложения (S j) слишком мала, чтобы скрадывать различия между рядами. Есть шанс, что различия между ними достоверны. Точно определить это мы сможем с помощью критерия U.

В варианте (б) второй ряд тоже ниже первого, но и область перекрещивающихся значений у двух рядов достаточно обширна (5 2). Она может еще не достигать критической величины, когда различия придется признать несущественными. Но так ли это, можно определить только путем точного подсчета критерия U.

В варианте (в) второй ряд ниже первого, но область наложения настолько обширна (5 3), что различия между рядами скрадываются.

Рис. 7.25.

в двух выборках

Примечание. Перекрытием (5 t , S 2 , *$з) обозначены зоны возможного наложения. Ограничения критерия U.

  • 1. В каждой выборке должно быть не менее трех наблюдений: n v п 2 > 3; допускается, чтобы в одной выборке было два наблюдения, но тогда во второй их должно быть не менее 5.
  • 2. В каждой выборке должно быть не более 60 наблюдений; п л, п 2 щ, п 2 > 20 ранжирование становится достаточно трудоемким.

Вернемся к результатам обследования студентов физического и психологического факультетов Ленинградского университета с помощью методики Д. Векслера для измерения вербального и невербального интеллекта. С помощью критерия Q Розенбаума было с высоким уровнем значимости определено, что уровень вербального интеллекта в выборке студентов физического факультета выше. Попытаемся установить теперь, воспроизводится ли этот результат при сопоставлении выборок по уровню невербального интеллекта. Данные приведены в таблице.

2 ниже уровня признака в выборке 1 на достоверно значимом уровне. Чем меньше значения U, тем достоверность различий выше.

Теперь проделаем всю эту работу на материале нашего примера. В результате работы по 1-6 шагам алгоритма построим таблицу (табл. 7.4).

Таблица 7.4

Подсчет ранговых сумм по выборкам студентов физического и психологического факультетов

Студенты-физики (п = 14)

Студенты-психологи (п= 12)

Показатель невербального интеллекта

Средние 107,2

Общая сумма рангов: 165 + 186 = 351. Расчетная сумма по формуле (5.1) такова:

Равенство реальной и расчетной сумм соблюдено. Мы видим, что по уровню невербального интеллекта более «высоким» рядом окалывается выборка студентов-психологов. Именно на эту выборку приходится большая ранговая сумма: 186. Теперь мы готовы сформулировать статистические гипотезы:

Я 0: группа студентов-психологов не превосходит группу студентов- физиков по уровню невербального интеллекта;

Я,: группа студентов-психологов превосходит группу студентов-физи- ков по уровню невербального интеллекта.

В соответствии со следующим шагом алгоритма определяем эмпирическую величину U :

Поскольку в нашем случае п л * п 2 , подсчитаем эмпирическую величину U и для второй ранговой суммы (165), подставляя в формулу (7.4) соответствующее ей п х.:

По приложению 8 определяем критические значения для п л = 14, п 2 = 12:

Мы помним, что критерий U является одним из двух исключений из общего правила принятия решения о достоверности различий, а именно, мы можем констатировать достоверные различия, если {/ эмп U Kp 0 05 (при ^эмп = 60, и шп > U Kf) о,05).

Следовательно, Н 0 принимается следующей: группа студентов-психологов не превосходит группы студентов-физиков по уровню невербального интеллекта.

Обратим внимание на то, что для данного случая Q-критерий Розенбаума неприменим, так как размах вариативности в группе физиков шире, чем в группе психологов: и самое высокое, и самое низкое значения невербального интеллекта приходятся на группу физиков (см. табл. 7.4).

U-критерий Манна-Уитни используется для оценки различий между двумя малыми выборками (n1,n2≥3 или n1=2, n2≥5) по уровню колич

U -критерий Манна-Уитни используется для оценки различий между двумя малыми выборками(n 1 , n 2 ≥3 или n 1 =2, n 2 ≥5) по уровню количественно измеряемого признака. При этом первой выборкой принято считать ту, где значение признака больше.

Нулевая гипотеза H 0 ={уровень признака во второй выборке не ниже уровня признака в первой выборке}; альтернативная гипотеза – H 1 ={уровень признака во второй выборке ниже уровня признака в первой выборке}.

Рассмотрим алгоритм применения U-критерия Манна-Уитни:

1. Перенести все данные испытуемых на индивидуальные карточки, пометив карточки 1-й выборки одним цветом, а 2-й – другим.

2. Разложить все карточки в единый ряд по степени возрастания признака и проранжировать в таком порядке.

3. Вновь разложить карточки по цвету на две группы.

5. Определить большую из двух ранговых сумм .

6. Вычислить эмпирическое значение U :

, где - количество испытуемых в - выборке (i = 1, 2), - количество испытуемых в группе с большей суммой рангов.

7. Задать уровень значимости α и, используя специальную таблицу, определить критическое значение U кр (α) . Если , то H 0 на выбранном уровне значимости принимается.

Рассмотрим использование U критерия Манна-Уитни на примере.

Проведение срезовой контрольной работы по математике (алгебра и геометрия) в средней общеобразовательной школе дало следующие результаты по 10-балльной шкале для класса, обучающегося по программе «Развивающего обучения» (7 «Б»), и класса, обучающегося по традиционной системе (7 «А»):

Ученик \ Класс

7 «А» (баллы)

7 «Б» (баллы)

Определите, превосходят ли учащиеся 7 «Б» учащихся 7 «А» по уровню знаний по математике.

Сравнение результатов показывает, что баллы, полученный за контрольную работу, в 7 «Б» классе несколько выше, поэтому первой считаем выборку результатов 7 «Б» класса. Таким образом, нам требуется определить, можно ли считать имеющуюся разницу между баллами существенной. Если можно, то это будет означать, что класс, обучающийся по системе «развивающего обучения» имеет более качественные знания по математике. В противном случае, на выбранном уровне значимости различие окажется несущественным.

Для оценки различий между двумя малыми выборками (в данном примере их объёмы равны: n 1 =12, n 2 =11) используем критерий Манна-Уитни. Проранжируем представленную таблицу:

7 «Б» (баллы)

ранг

7 «А» (баллы)

ранг

22,5

22,5

20.5

20.5

16.5

16.5

16.5

16.5

11.5

16.5

11.5

16.5

11.5

11.5

Сумма:

1 68 .5

Сумма:

107.5

При ранжировании объединяем две выборки в одну. Ранги присваиваются в порядке возрастания значения измеряемой величины, т.е. наименьшему рангу соответствует наименьший балл. Заметим, что в случае совпадения баллов для нескольких учеников ранг такого балла следует считать, как среднее арифметическое тех позиций, которые занимают данные баллы при их расположении в порядке возрастания. Например, 4 балла получили 3 ученика (см. таблицу). Значит, первые 3 позиции в расположении займёт балл, равный 4. Поэтому ранг для 4 баллов – это среднее арифметическое для позиций 1, 2 и 3, или: . Аналогично рассуждаем при вычислении ранга для балла, равного 5. Такой балл получили двое учащихся. Значит, при распределении по возрастанию первые три позиции занимает балл, равный 4, а четвёртую и пятую позиции займёт балл, равный 5. Поэтому его ранг будет равен среднему арифметическому между числами 4 и 5, т.е. 4.5.

Используя предложенный принцип ранжирования, получим таблицу рангов. Заметим, что выбор среднего арифметического в качестве ранга применяется при любом ранжировании, в том числе необходимого и для вычисления других критериев достоверности или же коэффициента корреляции Спирмена.

Чтобы использовать критерий Манна-Уитни, рассчитаем суммы рангов рассматриваемых выборок (см. таблицу). Сумма для первой выборки равна 168,5, для второй – 107,5. Обозначим наибольшую из этих сумм через T x (T x =168.5). Среди объёмов n 1 и n 2 выборок наибольший обозначим n x . Этих данных достаточно, чтобы воспользоваться формулой расчёта эмпирического значения критерия:

T x =168,5, n x =12>11= n 2 . Тогда:

Критическое значение критерия находим по специальной таблице. Пусть уровень значимости равен 0.05.

Гипотеза H 0 о незначительности различий между баллами двух классов принимается, если u кр < u эмп . В противном случае H 0 отвергается и различие определяется как существенное.

Следовательно, различия в уровне знаний по математике среди учащихся можно считать несущественными.

Схема использования критерия Манна-Уитни выглядит следующим образом