Теория коррозии металлов. Почему ржавеют автомобили

С незапамятных времен человечество использовало металлы. На промежутке существования люди учились добывать, переплавлять и применять удивительные ископаемые. Со временем процесс усовершенствовался и появились сплавы металлов, расширилась до невозможности их сфера применения.

Сегодня, наверное, и не встретить места, где бы не применялись металлические изделия и конструкции из них. Интересные факты о металлах свидетельствуют об востребованности элементов в этапы человеческого существования.

Серебро – самое древнее ископаемое. Во время раскопок археологи обнаружили серебряные изделия, которые пролежали в почве 6 000 лет. Ранние находки найдены на территории стран Древнего Междуречья и в Египте. Историками доказано, что древние монеты изготавливались из этого металла.

Факты про металлы свидетельствуют:

  • Серебро относится к металлам, которые встречаются крайне редко на нашей планете. В природных условиях элемент встречается в виде самородков или входит в состав иных соединений. Самородок-великан был найден на севере Чили. Пластина весила 1420 кг. Элемент обнаруживается в составе метеоритов, является частью морской воды. Астрологи называют серебро металлом Луны. Древние манускрипты свидетельствуют о лунном происхождении металла: изображения серебра в виде лунного серпа или женщины-Луны свидетельствуют о космическом происхождении ископаемого.

  • Индия – страна больших серебряных запасов. В этой местности металл считается народным. Коренные жители верят в чудодейственную силу элемента: металл настолько популярен, что его употребляют даже для приготовления блюд.
  • Серебро популярно в промышленности. Его используют при изготовлении электроники – практически каждый прибор содержит этот металл.

  • Серебро отличается антибактериальными свойствами. К примеру, широко используется вода, очищенная металлом. Американские первооткрыватели пошли дальше: положив серебряную монету в кувшин с молоком, они продлевали его свежесть на три дня. Впервые о его антисептических свойствах узнали в Египте: 4 000 лет назад люди использовали элементы серебра для лечения ран и порезов. Неудивительно, что древние воины всегда имели при себе серебряную пластину и при ранении прикладывали ее к пораженному месту: считалось, что с помощью изделия можно остановить кровь и исключить инфицирование раны. Сегодня использование серебра в медицине все так же стремительно развивается.
  • Удивительно, но в Японии металл применяется не только для лечения, но и для очищения воздуха: так японцы борются с загрязнением воздушных масс на континенте.

Золото – метал, почитаемый с древних времен

Золото – величественный металл, который почитался еще с давних времен. Благодаря характеристикам золото стало предметом желания культур и народов.

Особенности драгоценного металла:

  • Встречается крайне редко. К примеру, на планете за 1 час стали выплавляется в 4 раза больше, чем было добыто желтого металла за период существования человечества.

  • В мировом океане «спрятано» 10 млрд. тонн драгоценного ископаемого. Но встречается золото на всех континентах земного шара. Добыча драгоценного металла активно развивается: считается, что более 80% ископаемого все еще находится в земле.
  • Золото прекрасно плавится: температура плавления составляет 1064,43 градуса. Элемент обладает высокими показателями проводимости тепла и электрической энергии, не подвержен коррозии. Первые золотые изделия, которые найдены археологами, сохранили свою первозданную красоту.

  • Народы используют золото в процессе приготовления пищи. К примеру, население Древней Индии верили, что употребление металла раскрывает левитационные возможности, в Азии его использовали в качестве приправы для десертов, добавляли к напиткам. Начиная с 16 столетия сусальное золото помещали в дорогие горячительные напитки: Goldschlager, Danziger Goldwasser. Об этом указывают не только факты о металлах, но и закупоренные бутылки.
  • В Австралии в 1869 году золотоискателями обнаружен самородок-лидер, весивший 72 кг. Его величина составляла 31х63,5 см. До сегодняшнего дня рекорд остается в силе. Великану было присвоено имя «Здравствуй, незнакомец». Интересно, что слиток-великан находился на поверхности почвы: глубина залегания составляла 5 см.

  • Весной 2008 года, во время резкого спада показателей мировой экономики, стоимость золота резко возросла и составляла $1000 за унцию (28,55 г). Такая стоимость зафиксирована однажды за историю существования металла, хотя ценилось он во все века высоко.
  • В древние времена больше всего золота добывалось в Нубии: рабы, добывающие металл, испытывали небывалые страдания, а знать считала его божественным металлом.
  • Для изготовления ювелирных украшений используются только сплавы: чистое золото не применяется.

Медь – востребованный металл в электронике

Медь получила название благодаря первому месту, где велась добыча металла. Уже в 3 тысячелетии до н.э. на острове Кипр возделывали металл.

Особенности металла:

  • Чаще залегает в виде целостных самородков. Металл в природных условиях добывают интенсивней нежели драгоценные ископаемые. Лидирующий экземпляр меди - самородок, найденный в Северной Америке. Весил он 420 тонн.

  • Сегодня медь востребована в электротехнике. Применяют для производства электрических кабелей и проводов: применяется только чистый металл, так как комбинация с иными металлами приводит до снижения показателей электропроводимости. К примеру, если в медь добавить 0,02% алюминия теплопроводность снизится на 10%.
  • Отличается антибактериальными свойствами. Наука химия доказывает, что медь может устранять бактерии в воде и воздушных массах. Еще в древние времена в Непале медь считалась божественным металлом. С его помощью знахари исцеляли заболевания желудочно-кишечного тракта. Не удивительно, что в Непале существует храм «Медный», в котором поклоняются природному ископаемому и сегодня.

Медные браслеты используют в медицинских целях
  • Согласно утверждениям ученых с Польши, в водоеме, где обнаруживается медь, рыба растет намного больше привычных размеров. В реках и ставках, где отсутствует элемент, вода склонна к развитию грибка, плесени. Но вместе с тем, акулы не переносят присутствие меди в воде. Это доказали американские военные во время второй мировой войны: в то время ежедневно тонули корабли и необходимо было искать «антиакулье» средство. Медь превзошла все ожидания: рыбины и близко не подходили к участку, в котором содержался сульфат меди.
  • В человеческом организме содержится 80 мг меди: металл присутствует в жизненноважных органах человеческого организма. Группой ирландских и французских исследователей металлов создан медный состав, который способствует возобновлению обменных процессов в живом организме. Новшеством воспользовался кутюрье из Франции, обработав нити джинсовой одежды Gold Vision – 3000 Classic. Пояс и карманы с использованием состава сформированы с помощью «медного корсета», который благотворно влияет на функциональность жизненно необходимых систем человека.

Обобщенные интересные факты о металлах

Компания Valcambi радует почитателей драгоценных металлов своей изысканной продукцией. Она выпускает золотые, серебряные, платиновые слитки в виде плиток шоколада. Особенностью таких изделий является то, что их можно быстро разломить: квадратики часто используют в виде подарка. Вес одной «дольки» составляет 1 г.

Золотые Олимпийские медали состоят вовсе не из золота, а из серебра. Международный Олимпийский комитет при изготовлении наград требует, чтобы они были покрыты 6 граммами золота. К примеру, золотые награды за первенство Олимпиады в 2012 году имели в составе 1% драгоценного желтого металла.


  • , работая на Британском монетном дворе, впервые нанес резьбу на края монет, состоящих из драгоценных металлов. Сегодня ребристость именуется гуртом. Нанесение неровностей на края монет было связано с необходимостью бороться с мошенниками, которые срезали края монет и формировали подделку.
  • Всего за бытность люди извлекли из земных недр 161 тыс. тонн золота, в перерасчете на стоимость этот показатель составляет $9 трлн.
  • При изготовлении ювелирных золотых украшений используется специальный сплав с добавлением серебра или меди.

  • Щелочные металлы - франций, цезий, рубидий, калий, натрий, литий способны растворятся в воде, образовывая соединения. Хранят их под маслом или керосином.
  • Некоторые люди обладают свойством поглощать металлические изделия. К примеру, актер М. Лотито прославился тем, что проглатывал металлические изделия: доказано, что за все свои выступления человек съел до 9 тонн металлических сплавов.
  • Долгое время платина не использовалась как драгоценный металл. Тугоплавкий элемент ценился намного ниже серебра. В начале 17 столетия в Южной Америке монеты, изготовленные из платины, считались фальшивыми. Правительство страны даже утопили корабль с драгоценной валютой в океане, дабы монеты не попали в обиход. В Алмазном фонде Московского Кремля хранится самородок-великан платины. Его вес составляет 7 кг.

  • В Японии добывают золото нетрадиционным способом: металл извлекают из пепла. Ученые попросту сжигают канализационные отходы предприятий промышленности, которые в производстве используют золото и соединения драгоценных металлов.
  • Пластичным металлом считается ванадий, используемый в ковке. Ему отдают предпочтения профессиональные умельцы.

  • Земная кора содержит металлы, большее количество в ней алюминия – до 8%. В свою очередь, золото составляет 5% миллионных частей процента. Длительное время алюминий не использовался человеком: впервые о нем узнали в 1885 году. В то время французы отнеслись к алюминию как к драгоценному металлу.

  • Согласно записям Книги рекордов Гиннеса, самый дорогой металл - Калифорний. Элемент искусственно получен в 1950 году. В год металла производится несколько миллиграммов и стоит он $6 500 000 за грамм.

Вольфрам – тугоплавкий металл: температура кипения составляет 5900 градусов. Хром отличается прочностью, золото – мягкостью.


Титан – мистический металл, названный на честь царицы фей. Он легкий, как воздушные крылья феи. Возможно от этой особенности и произошло название элемента.


Благодаря уникальным свойствам золото, платина и серебро используются в медицине. Металлы не вступают в реакцию с теплом, а соответственно имеют неизменную температуру в независимости от внешних факторов.

Металлы используют экономно, ведь запасы ископаемого небезграничные. Благодаря уникальным свойствам они востребованы во всех отраслях промышленности. Сегодня человеческое существование невозможно уже представить без этих даров матушки природы.

Коррозия металлов, как известно, приносит много бед. Уж не вам ли, уважаемые автовладельцы, объяснять, чем она грозит: дай ей волю, так от машины одни покрышки останутся. Поэтому, чем раньше начнется борьба с этим бедствием, тем дольше проживет автомобильный кузов.

Чтобы быть успешными в борьбе с коррозией, необходимо выяснить, что же это за «зверь» и понять причины ее возникновения.

Сегодня вы узнаете

Есть ли надежда?

Ущерб, наносимый человечеству коррозией, колоссален. По разным данным коррозия «съедает» от 10 до 25% мировой добычи железа. Превращаясь в бурый порошок, оно безвозвратно рассеивается по белому свету, в результате чего не только мы, но и наши потомки остаемся без этого ценнейшего конструкционного материала.

Но беда не только в том, что теряется металл как таковой, нет — разрушаются мосты, машины, крыши, памятники архитектуры. Коррозия не щадит ничего.

Неизлечимо больна та же Эйфелева башня — символ Парижа. Изготовленная из обычной стали, она неизбежно ржавеет и разрушается. Башню приходится красить каждые 7 лет, отчего ее масса каждый раз увеличивается на 60-70 тонн.

К сожалению, полностью предотвратить коррозию металлов невозможно. Ну, разве что полностью изолировать металл от окружающей среды, например поместить в вакуум. 🙂 Но какой прок от таких «консервированных» деталей? Металл должен «работать». Поэтому единственным способом защиты от коррозии является поиск путей ее замедления.

В незапамятные времена для этого применяли жир, масла, позднее начали покрывать железо другими металлами. Прежде всего, легкоплавким оловом. В трудах древнегреческого историка Геродота (V в. до н.э.) и римского ученого Плиния-старшего уже есть упоминания о применении олова для защиты железа от коррозии.

Интересный случай произошел в 1965 году на Международном симпозиуме по борьбе с коррозией. Некий индийский ученый рассказал об обществе по борьбе с коррозией, которое существует около 1600 лет и членом которого он является. Так вот, полторы тысячи лет назад это общество принимало участие в постройке храмов Солнца на побережье у Конарака. И несмотря на то, что эти храмы некоторое время были затоплены морем, железные балки прекрасно сохранились. Так что и в те далекие времена люди знали толк в борьбе с коррозией. Значит, не все так безнадежно.

Что такое коррозия?

Слово «коррозия» происходит от латинского «corrodo – грызу». Встречаются ссылки и на позднелатинское «corrosio – разъедание». Но так или иначе:

Коррозия – это процесс разрушения металла в результате химического и электрохимического взаимодействия с окружающей средой.

Хотя коррозию чаще всего связывают с металлами, ей также подвергаются бетон, камень, керамика, дерево, пластмассы. Применительно к полимерным материалам, правда, чаще используется термин деструкция или старение.

Коррозия и ржавчина — не одно и то же

В определении коррозии абзацем выше не зря выделено слово «процесс». Дело в том, коррозию частенько отождествляют с термином «ржавчина». Однако это не синонимы. Коррозия — это именно процесс, в то время как ржавчина — один из результатов этого процесса.

Также стоит отметить, что ржавчина — продукт коррозии исключительно железа и его сплавов (таких как сталь или чугун). Поэтому, когда говорим «ржавеет сталь», мы подразумеваем, что ржавеет железо в ее составе.

Если ржавчина относится только к железу, значит другие металлы не ржавеют? Не ржавеют, но это не значит, что они не корродируют. Просто продукты коррозии у них другие.

Например, медь, корродируя, покрывается красивым по цвету зеленоватым налетом (патиной). Серебро на воздухе тускнеет — это на его поверхности образуется налет сульфида, чья тонкая пленка придает металлу характерную розоватую окраску.

Патина — продукт коррозии меди и ее сплавов

Механизм протекания коррозионных процессов

Разнообразие условий и сред, в которых протекают коррозионные процессы, очень широко, поэтому сложно дать единую и всеобъемлющую классификацию встречающихся случаев коррозии. Но не смотря на это, все коррозионные процессы имеют не только общий результат — разрушение металла, но и единую химическую сущность — окисление.

Упрощенно окисление можно назвать процессом обмена веществ электронами. Когда одно вещество окисляется (отдает электроны), другое, наоборот, восстанавливается (получает электроны).

Например, в реакции…

… атом цинка теряет два электрона (окисляется), а молекула хлора присоединяет их (восстанавливается).

Частицы, которые отдают электроны и окисляются, называются восстановителями , а частицы, которые принимают электроны и восстанавливаются, называются окислителями . Два этих процесса (окисление и восстановление) взаимосвязаны и всегда протекают одновременно.

Такие вот реакции, которые в химии называются окислительно-восстановительными, лежат в основе любого коррозионного процесса.

Естественно, склонность к окислению у разных металлов неодинакова. Чтобы понять, у каких она больше, а у каких меньше, вспомним школьный курс химии. Было там такое понятие как электрохимический ряд напряжений (активности) металлов, в котором все металлы расположены слева направо в порядке повышения «благородности».

Так вот, металлы, расположенные в ряду левее, более склонны к отдаче электронов (а значит и к окислению), чем металлы, стоящие правее. Например, железо (Fe) больше подвержено окислению, чем более благородная медь (Cu). Отдельные металлы (например, золото), могут отдавать электроны только при определенных экстремальных условиях.

К ряду активности вернемся немного позднее, а сейчас поговорим об основных видах коррозии.

Виды коррозии

Как уже говорилось, критериев классификация коррозионных процессов существует множество. Так, различают коррозию по виду распространения (сплошная, местная), по типу коррозионной среды (газовая, атмосферная, жидкостная, почвенная), по характеру механических воздействий (коррозионное растрескивание, явление Фреттинга, кавитационная коррозия) и так далее.

Но основным способом классификации коррозии, позволяющим наиболее полно объяснить все тонкости этого коварного процесса, является классификация по механизму протекания.

По этому критерию различают два вида коррозии:

  • химическую
  • электрохимическую

Химическая коррозия

Химическая коррозия отличается от электрохимической тем, что протекает в средах, не проводящих электрический ток. Поэтому при такой коррозии разрушение металла не сопровождается возникновением электрического тока в системе. Это обычное окислительно-восстановительное взаимодействие металла с окружающей средой.

Наиболее типичным примером химической коррозии является газовая коррозия. Газовую коррозию еще называют высокотемпературной, поскольку обычно она протекает при повышенных температурах, когда возможность конденсации влаги на поверхности металла полностью исключена. К такому виду коррозии можно отнести, например, коррозию элементов электронагревателей или сопел ракетных двигателей.

Скорость химической коррозии зависит от температуры — при ее повышении коррозия ускоряется. Из-за этого, например, в процессе производства металлического проката, во все стороны от раскаленной массы разлетаются огненные брызги. Это с поверхности металла скалываются частички окалины.

Окалина — типичный продукт химической коррозии, — оксид, возникающий в результате взаимодействия раскаленного металла с кислородом воздуха.

Помимо кислорода и другие газы могут обладать сильными агрессивными свойствами по отношению к металлам. К таким газам относятся диоксид серы, фтор, хлор, сероводород. Так, например, алюминий и его сплавы, а также стали с высоким содержанием хрома (нержавеющие стали) устойчивы в атмосфере, которая содержит в качестве основного агрессивного агента кислород. Но картина кардинально меняется, если в атмосфере присутствует хлор.

В документации к некоторым антикоррозионным препаратам химическую коррозию иногда называют «сухой», а электрохимическую — «мокрой». Однако химическая коррозия может протекать и в жидкостях. Только в отличие от электрохимической коррозии эти жидкости — неэлектролиты (т.е. не проводящие электрический ток, например спирт, бензол, бензин, керосин).

Примером такой коррозии является коррозия железных деталей двигателя автомобиля. Присутствующая в бензине в качестве примесей сера взаимодействует с поверхностью детали, образуя сульфид железа. Сульфид железа очень хрупок и легко отслаивается, освобождая свежую поверхность для дальнейшего взаимодействия с серой. И так, слой за слоем, деталь постепенно разрушается.

Электрохимическая коррозия

Если химическая коррозия представляет собой не что иное, как простое окисление металла, то электрохимическая — это разрушение за счет гальванических процессов.

В отличие от химической, электрохимическая коррозия протекает в средах с хорошей электропроводностью и сопровождается возникновением тока. Для «запуска» электрохимической коррозии необходимы два условия: гальваническая пара и электролит .

В роли электролита выступает влага на поверхности металла (конденсат, дождевая вода и т.д.). Что такое гальваническая пара? Чтобы понять это, вернемся к ряду активности металлов.

Смотрим. Cлева расположены более активные металлы, справа — менее активные.

Если в контакт вступают два металла с различной активностью, они образуют гальваническую пару, и в присутствии электролита между ними возникает поток электронов, перетекающих от анодных участков к катодным. При этом более активный металл, являющийся анодом гальванопары, начинает корродировать, в то время как менее активный коррозии не подвергается.

Схема гальванического элемента

Для наглядности рассмотрим несколько простых примеров.

Допустим, стальной болт закреплен медной гайкой. Что будет корродировать, железо или медь? Смотрим в ряд активности. Железо более активно (стоит левее), а значит именно оно будет разрушаться в месте соединения.

Стальной болт — медная гайка (корродирует сталь)

А если гайка алюминиевая? Снова смотрим в ряд активности. Здесь картина меняется: уже алюминий (Al), как более активный металл, будет терять электроны и разрушаться.

Таким образом, контакт более активного «левого» металла с менее активным «правым» усиливает коррозию первого.

В качестве примера электрохимической коррозии можно привести случаи разрушения и затопления кораблей, железная обшивка которых была скреплена медными заклепками. Также примечателен случай, который произошел в декабре 1967 года с норвежским рудовозом «Анатина», следовавшим из Кипра в Осаку. В Тихом океане на судно налетел тайфун и трюмы заполнились соленой водой, в результате чего возникла большая гальваническая пара: медный концентрат + стальной корпус судна. Через некоторое время стальной корпус судна начал размягчаться и оно вскоре подало сигнал бедствия. К счастью, экипаж был спасен подоспевшим немецким судном, а сама «Анатина» кое-как добралась до порта.

Олово и цинк. «Опасные» и «безопасные покрытия

Возьмем еще пример. Допустим, кузовная панель покрыта оловом. Олово — очень стойкий к коррозии металл, кроме того, оно создает пассивный защитный слой, ограждая железо от взаимодействия с внешней средой. Значит, железо под слоем олова находится в целости и сохранности? Да, но только до тех пор, пока слой олова не получит повреждение.

А коль уж такое случается, между оловом и железом тут же возникает гальваническая пара, и железо, являющееся более активным металлом, под воздействием гальванического тока начнет корродировать.

Кстати, в народе до сих пор ходят легенды о якобы «вечных» луженых кузовах «Победы». Корни этой легенды таковы: ремонтируя аварийные машины, мастера использовали паяльные лампы для нагрева. И вдруг, ни с того ни с сего, из-под пламени горелки начинает «рекой» литься олово! Отсюда и пошла молва, что кузов «Победы» был полностью облужен.

На самом деле все гораздо прозаичнее. Штамповая оснастка тех лет была несовершенной, поэтому поверхности деталей получались неровными. Вдобавок тогдашние стали не годились для глубокой вытяжки, и образование морщин при штамповке стало обычным делом. Сваренный, но еще не окрашенный кузов приходилось долго готовить. Выпуклости сглаживали наждачными кругами, а вмятины заполняли оловяным припоем, особенно много которого было вблизи рамки ветрового стекла. Только и всего.

Ну, а так ли «вечен» луженый кузов, вы уже знаете: он вечен до первого хорошего удара острым камешком. А их на наших дорогах более чем достаточно.

А вот с цинком картина совсем иная. Здесь, по сути, мы бьем электрохимическую коррозию ее же оружием. Защищающий металл (цинк) в ряду напряжений стоит левее железа. А значит при повреждении будет разрушаться уже не сталь, а цинк. И только после того, как прокорродирует весь цинк, начнет разрушаться железо. Но, к счастью, корродирует он очень и очень медленно, сохраняя сталь на долгие годы.

а) Коррозия луженой стали: при повреждении покрытия разрушается сталь. б) Коррозия оцинкованной стали: при повреждении покрытия разрушается цинк, защищая от коррозии сталь.

Покрытия, выполненные из более активных металлов называются «безопасными », а из менее активных - «опасными ». Безопасные покрытия, в частности оцинковка, давно и успешно применяются как способ защиты от коррозии автомобильных кузовов.

Почему именно цинк? Ведь помимо цинка в ряду активности относительно железа более активными являются еще несколько элементов. Здесь подвох вот в чем: чем дальше в ряду активности находятся друг от друга два металла, тем быстрее разрушение более активного (менее благородного) . А это, соответственно, сокращает долговечность антикоррозионной защиты. Так что для автомобильных кузовов, где помимо хорошей защиты металла важно достичь и продолжительного срока действия этой защиты, оцинковка подходит как нельзя лучше. Тем более, что цинк доступен и недорог.

Кстати, а что будет, если покрыть кузов, например, золотом? Во-первых, будет ох как дорого! 🙂 Но даже если золото стало бы самым дешевым металлом, такого делать нельзя, поскольку оно окажет нашей «железке» плохую услугу.

Золото ведь стоит очень далеко от железа в ряду активности (дальше всего), и при малейшей царапине железо вскоре превратится в груду ржавчины, покрытую золотой пленкой.

Автомобильный кузов подвергается воздействию как химической, так электрохимической коррозии. Но главная роль все же отводится электрохимическим процессам.

Ведь, чего греха таить, гальванических пар в автомобильном кузове воз и маленькая тележка: это и сварные швы, и контакты разнородных металлов, и посторонние включения в листовом прокате. Не хватает только электролита, чтобы «включить» эти гальванические элементы.

А электролит тоже найти легко — хотя бы влага, содержащаяся в атмосфере.

Кроме того, в реальных условиях эксплуатации оба вида коррозии усиливаются множеством других факторов. Поговорим о главных из них поподробнее.

Факторы, влияющие на коррозию автомобильного кузова

Металл: химический состав и структура

Конечно, если бы автомобильные кузова изготавливались из технически чистого железа, их коррозионная стойкость была бы безупречной. Но к сожалению, а может быть и к счастью, это невозможно. Во-первых, такое железо для автомобиля слишком дорого, во-вторых (что важнее) — недостаточно прочно.

Впрочем, не будем о высоких идеалах, а вернемся к тому, что имеем. Возьмем, к примеру, сталь марки 08КП, широко применяемую в России для штамповки кузовных элементов. При изучении под микроскопом эта сталь представляет собой следующее: мелкие зерна чистого железа перемешаны с зернами карбида железа и другими включениями.

Как вы уже догадались, подобная структура порождает множество микрогальванических элементов, и как только в системе появится электролит, коррозия потихоньку начнет свою разрушительную деятельность.

Интересно, что процесс коррозии железа ускоряется под действием серосодержащих примесей. Обычно она попадает в железо из каменного угля при доменной выплавке из руд. Кстати, в далеком прошлом для этой цели использовался не каменный, а древесный уголь, практически не содержащий серы.

В том числе и по этой причине некоторые металлические предметы древности за свою многовековую историю практически не пострадали от коррозии. Взгляните, к примеру, на эту железную колонну, которая находится во дворе минарета Кутуб-Минар в Дели.

Она стоит уже 1600 (!) лет, и хоть бы что. Наряду с низкой влажностью воздуха в Дели, одной из причин такой поразительной коррозионной стойкости индийского железа является, как раз-таки, низкое содержание в металле серы.

Так что в рассуждениях на манер «раньше металл был чище и кузов долго не ржавел», все-таки есть доля правды, и немалая.

Кстати, почему же тогда не ржавеют нержавеющие стали? А потому, что хром и никель, используемые в качестве легирующих компонентов этих сталей, стоят в электрохимическом ряду напряжений рядом с железом. Кроме того, при контакте с агрессивной средой они образуют на поверхности прочную оксидную пленку, предохраняющую сталь от дальнейшего корродирования.

Хромоникелевая сталь — наиболее типичная нержавейка, но кроме нее есть и другие марки нержавеющих сталей. Например, легкие нержавеющие сплавы могут включать алюминий или титан. Если вы были во Всероссийском выставочном центре, вы наверняка видели перед входом обелиск «Покорителям космоса». Он облицован пластинками из титанового сплава и на его блестящей поверхности нет ни единого пятнышка ржавчины.

Заводские кузовные технологии

Толщина листовой стали, из которой изготавливаются кузовные детали современного легкового автомобиля, составляет, как правило, менее 1 мм. А в некоторых местах кузова эта толщина — и того меньше.

Особенностью процесса штамповки кузовных панелей, да и вообще, любой пластической деформации металла, является возникновение в ходе деформации нежелательных остаточных напряжений. Эти напряжения незначительны, если шпамповочное оборудование не изношено, и скорости деформирования настроены правильно.

В противном случае в кузовную панель закладывается этакая «часовая бомба»: порядок расположения атомов в кристаллических зернах меняется, поэтому металл в состоянии механического напряжения корродирует интенсивнее, чем в нормальном состоянии. И, что характерно, разрушение металла происходит именно на деформированных участках (изгибах, отверстиях), играющих роль анода.

Кроме того, при сварке и сборке кузова на заводе в нем образуется множество щелей, нахлестов и полостей, в которых скапливается грязь и влага. Не говоря уже о сварных швах, образующих с основным металлом все те же гальванические пары.

Влияние окружающей среды при эксплуатации

Среда, в которой эксплуатируются металлические конструкции, в том числе и автомобили, с каждым годом становится все более агрессивной. В последние десятилетия в атмосфере повысилось содержание сернистого газа, оксидов азота и углерода. А значит, автомобили омываются уже не просто водичкой, а кислотными дождями.

Коль уж зашла речь о кислотных дождях, вернемся еще раз к электрохимическому ряду напряжений. Наблюдательный читатель подметил, что в него включен также и водород. Резонный вопрос: зачем? А вот зачем: его положение показывает, какие металлы вытесняют водород из растворов кислот, а какие — нет. Например, железо расположено левее водорода, а значит вытесняет его из растворов кислот, в то время как медь, стоящая правее, на подобный подвиг уже не способна.

Отсюда следует, что кислотные дожди для железа опасны, а для чистой меди — нет. А вот о бронзе и других сплавах на основе меди этого сказать нельзя: они содержат алюминий, олово и другие металлы, находящиеся в ряду левее водорода.

Замечено и доказано, что в условиях большого города кузова живут меньше. В этой связи показательны данные Шведского института коррозии (ШИК), установившего, что:

  • в сельской местности Швеции скорость разрушения стали составляет 8 мкм в год, цинка — 0,8 мкм в год;
  • для города эти цифры составляют 30 и 5 мкм в год соответственно.

Немаловажны и климатические условия, в которых эксплуатируется автомобиль. Так, в условиях морского климата коррозия активизируется примерно в два раза.

Влажность и температура

Насколько велико влияние влажности на коррозию мы можем понять на примере ранее упомянутой железной колонны в Дели (вспомним сухость воздуха, как одну из причин ее коррозионной стойкости).

Поговаривают, что один иностранец решил раскрыть тайну этого нержавеющего железа и каким-то образом отколол небольшой кусочек от колонны. Каково же было его удивление, когда еще на корабле по пути из Индии этот кусочек покрылся ржавчиной. Оказывается, на влажном морском воздухе нержавеющее индийское железо оказалось не таким уж и нержавеющим. Кроме того, аналогичную колонну из Конарака, расположенного поблизости моря, коррозия поразила очень сильно.

Скорость коррозии при относительной влажности до 65% сравнительно невелика, но когда влажность возрастает выше указанного значения — коррозия резко ускоряется, поскольку при такой влажности на металлической поверхности образуется слой влаги. И чем дольше поверхность остается влажной, тем быстрее распространяется коррозия.

Вот почему основные очаги коррозии всегда обнаруживаются в скрытых полостях кузова: cохнут-то они гораздо медленнее открытых частей. Как результат — в них образуются застойные зоны, — настоящий рай для коррозии.

Кстати, применение химических реагентов для борьбы с гололедом коррозии тоже на руку. Вперемешку с подтаявшими снегом и льдом антигололедные соли образуют очень сильный электролит, способный проникнуть куда угодно, в том числе и в скрытые полости.

Что касается температуры, то мы уже знаем, что ее повышение активизирует коррозию. По этой причине вблизи выхлопной системы следов коррозии всегда будет больше.

Доступ воздуха

Интересная все-таки вещь эта коррозия. Насколько интересна, настолько же и коварна. К примеру, не удивляйтесь, что блестящий стальной трос, с виду абсолютно не тронутый коррозией, внутри может оказаться проржавевшим. Так происходит из-за неравномерного доступа воздуха: в тех местах, где он затруднен, угроза коррозии больше. В теории коррозии это явление называется дифференциальной аэрацией.

Принцип дифференциальной аэрации: неравномерный доступ воздуха к разным участкам металлической поверхности приводит к образованию гальванического элемента. При этом участок, интенсивно снабжаемый кислородом, остается невредимым, а участок хуже снабжаемый им, корродирует.

Яркий пример: капля воды, попавшая на поверхность металла. Участок, находящийся под каплей и потому хуже снабжаемый кислородом, играет роль анода. Металл на этом участке окисляется, а роль катода выполняют края капли, более доступные влиянию кислорода. В результате на краях капли начинает осаждаться гидроксид железа — продукт взаимодействия железа, кислорода и влаги.

Кстати, гидроксид железа (Fe 2 O 3 ·nH 2 O) и является тем, что мы называем ржавчиной. Поверхность ржавчины, в отличие от патины на медной поверхности или оксидной пленки алюминия, не защищает железо от дальнейшего корродирования. Изначально ржавчина имеет структуру геля, но затем постепенно происходит ее кристаллизация.

Кристаллизация начинается внутри слоя ржавчины, при этом внешняя оболочка геля, который в сухом состоянии очень рыхлый и хрупкий, отслаивается, и воздействию подвергается следующий слой железа. И так до тех пор, пока все железо не будет уничтожено или в системе не закончится весь кислород с водой.

Возвращаясь к принципу дифференциальной аэрации, можно представить, сколько существует возможностей для развития коррозии в скрытых, плохо проветриваемых участках кузова.

Ржавеют… все!

Как говорится, статистика знает все. Ранее мы упоминали о таком известном центре борьбы с коррозией, как Шведский институт коррозии (ШИК) — одной из наиболее авторитетных организаций в данной области.

Раз в несколько лет ученые института проводят интересное исследование: берут кузова хорошо потрудившихся автомобилей, вырезают из них наиболее полюбившиеся коррозии «фрагменты» (участки порогов, колесных арок, кромок дверей и т.д.) и оценивают степень их коррозионного поражения.

Важно отметить, что среди исследуемых кузовов есть как защищенные (оцинковкой и/или антикором), так и кузова без какой либо дополнительной антикоррозионной защиты (просто окрашенные детали).

Так вот, ШИК утверждает, что наилучшей защитой автомобильного кузова является лишь сочетание «цинк плюс антикор». А вот все остальные варианты, включая «просто оцинковку» или «просто антикор», по словам ученых — плохи.

Оцинковка — не панацея

Сторонники отказа от дополнительной антикоррозионной обработки часто ссылаются на заводскую оцинковку: с ней, мол, никакая коррозия автомобилю не грозит. Но, как показали шведские ученые, это не совсем так.

Действительно, цинк может служить в качестве самостоятельной защиты, но только на ровных и плавных поверхностях, к тому же не подверженных механическим атакам. А на кромках, краях, стыках, а также местах, регулярно подвергающихся «обстрелу» песком и камнями, оцинковка перед коррозией пасует.

К тому же, далеко не у всех автомобилей кузова оцинкованы полностью. Чаще всего цинком покрыто лишь несколько панелей.

Ну и не нужно забывать, что цинк хоть и защищает сталь, но в процессе защиты неизбежно расходуется сам. Поэтому толщина цинкового «щита» со временем будет постепенно снижаться.

Так что легенды о долгожительстве оцинкованных кузовов правдивы лишь в тех случаях, когда цинк становится частью общего барьера, дополнением к регулярной дополнительной антикоррозионной обработке кузова.

Пора заканчивать, но на этом тема коррозии далеко не исчерпана. О борьбе с ней мы продолжим говорить в следующих статьях рубрики «Антикоррозионная защита».

2014-05-22
Коррозия является очень разрушительной формой окисления (т.е. реакцией с кислородом), происходящей в железе и металлах, содержащих железо. Ржавчина образуется в виде оранжевого вещества на железе, ослабляя его и металл в конце распадается. Другие металлы окисляются с образованием соединений. В этих случаях процесс известен как коррозия, а не ржавчина. Ржавчина конкретный тип коррозии, которая происходит только тогда, когда присутствует железо.

Ржавчина является общим названием для соединения железа называемого оксидом, который представляет собой сочетание железа и кислорода. Кислород есть в воздухе и не реагирует с железом, потому что он объединяется с другими частицами кислорода, но когда вода вступает в контакт с железом она сочетает с диоксидом углерода в воздухе с образованием кислоты, которая растворяет железо и расщепляет воду. Свободный кислород затем может взаимодействовать с железом с образованием оксида железа – ржавчины. Этот процесс освобождает электроны, позволяя им переходить в другой кусок металла или в другую точку, где происходит дальнейшая коррозия.

Железо ржавеет быстрее при воздействии морской воды или солей, чем когда она находится в контакте с чистой водой. Это из-за присутствия натрий-хлорид ионов, которые хорошо проводят ток и которые в свою очередь ускоряет процессы ржавчины.

Нанесение покрытий на металлы защитными красками может помочь предотвратить окисления, но ржавчина может появиться в любом месте что краска поцарапана. Процесс галаванизации цинком металлов, создает защитный слой и предотвращает коррозию путем замедления процесса коррозии, и коррозирует вместо него. Такая защита используется для предотвращения коррозии на судах и подземных труб. Магний похож цинка по восприимчивости к коррозии и часто используется таким же образом.

Интересные факты о ржавчине кратко изложенные в этой статье.

Интересные факты о коррозии металлов

Практически все сплавы и металлы медленно разрушаются под действием некоторых факторов окружающей среды. Когда металл взаимодействует с атмосферными осадками и веществами воздуха на его поверхности появляется пленка, которая состоит из карбонатов, оксидов, сульфидов и подобных соединений. Они обладают противоположными металлу свойствами. В повседневной жизни такой процесс мы называем «ржавчиной» и «ржавлением» когда видим налет коричнево-рыжего цвета на металлических изделиях. Научный термин ржавление – это коррозия железа.

Коррозия является самопроизвольным процессом разрушения металлов и его сплавов под воздействием факторов окружающей среды. С латыни термин «коррозия» обозначает «corrodere», то есть «разъедать». Действию коррозии подвергаются не только металлы, но и камни, дерево, полимеры и пластмассы.

Каждый год коррозия уничтожает от 10% до 20% всего выплавленного металла.

В Швейцарии ученые сконструировали прибор, который восстанавливает металл из ржавчины. В нем корродированная вещь или изделие «бомбардируются» молекулами водорода. В процессе водород объединяется с содержащимся кислородом в ржавчине. Спустя несколько часов происходит «омоложение» изделия и ему возвращается былой вид изделия, прочного и чистого. При этом его форма остается прежней. Конечно, металл, сильно поврежденный ржавчиной, возродить не удастся.

Скорость коррозии, как и всякой химической реакции, очень сильно зависит от температуры . Повышение температуры на 100 градусов может увеличить скорость коррозии на несколько порядков.

Ржавчина выступает в технике как и защитное средство. К примеру, люди освоили выплавку низколегированных сталей, содержащие в малом отношении хрома, никеля и меди. Такая сталь очень быстро ржавеет, но под слоем отпавшей ржавчины видно черную плотную пленку, которая защищает металл от дальнейшего воздействия коррозии. Единственный момент – для образования защитного слоя необходимо много времени, до 4-ех лет.

Ржавчина имеет хорошую сорбционную способность к органическим веществам. После того, как ржавое железо было выкопано с органическими веществами, его нагревали в горнах, после закаливали водой путем охлаждения. В поверхностном слое металла появлялись азот и углерод, которые упрочняли изделие и придавали ему особую твердость.

Римский бог Робигус является покровителем ржавчины.

Для того, чтобы изделия из железа не ржавели, следует из покрыть суриком (особой красной краской) или лаком. Чугун покрывают эмалью, а сталь другим металлом, например, цинком.

Ржавчина является одной из наиболее распространённых причин аварий мостов. Так как ржавчина имеет гораздо больший объём, чем исходная масса железа, её наращивание может привести к неравномерному прилеганию друг к другу конструкционных деталей. Это стало причиной разрушения моста через реку Мианус в 1983 году, когда подшипники подъёмного механизма проржавели внутри. 15 декабря 1967 года Серебряный мост, соединяющий Пойнт Плезант, штат Западная Виргиния, и Канауга, штат Огайо, неожиданно рухнул в реку Огайо. В момент обрушения 37 автомобилей двигались по мосту, и 31 из них упали вместе с мостом. 46 человек погибли, и 9 пострадали. Причиной обрушения стала коррозия.

Урок химии в 9 классе

Тема урока: Коррозия металлов

Тип урока: урок освоения новых знаний, умений, способов действий

Цели урока: создать условия для достижения планируемых результатов:

Личностных: формирование культуры, в том числе и экологической; умения решать экологические проблемы, связанные с коррозией; развитие умения управлять своей познавательной деятельностью; развитие межличностных отношений.

Метапредметные: уметь определять учебные задачи, планировать и организовывать свою деятельность; работать в режиме ограниченного времени; поддерживать коммуникативные навыки при индивидуальной работе, в парах, коллективной работе; осуществлять межпредметный перенос знаний; осуществлять самоконтроль, взаимоконтроль, взаимопомощь; создать условия для развития умений анализировать, синтезировать, обобщать информацию; делать выводы.

Предметные: повторить химические свойства металлов; зависимость свойств металлов от местоположения металла в ряду напряжения; познакомиться с понятием «коррозия»; создать условия для освоения понятия «коррозия», классификации коррозионных процессов; познакомиться с условиями понижения коррозии металлов; способов защиты металлов от коррозии; развитие умений составлять уравнения реакций.

Задачи урока :

Проверка знаний обучающихся о химических свойствах металлов, и зависимости свойств металлов от их местоположения в ряду напряжения;

Самостоятельная формулировка обучающимися темы урока, с помощью ТСО;

Частично-поисковый метод для освоения кейса и ответов на вопросы после прочтения текста;

Выступление каждого обучающихся от команд и распределение капитаном обязанностей между членами команд;

Совместный поиск решений учащимися, дискуссия о способах защиты металлов от коррозий;

Практическое значение коррозии и способов защиты в жизни человека;

Подведение итогов урока учителем;

Пояснение домашнего задания.

Подготовка к работе учащихся

За неделю до темы «Коррозия металлов», учитель выдаёт задание: найти в Интернете, научной литературе, СМИ и т.д. статьи о коррозии. На предыдущем уроке учитель рассказывает классу, что такое кейс. Выдаётся каждому учащемуся памятка о выступлении у доски. Правила работы в команде вывешиваются в кабинете химии и выдаются капитанам команд. Капитаны заранее знакомят с правилами членов своих команд. Команды группируются заранее учителем.

Памятка капитану команд и его группе

    Прочитайте внимательно кейс.

    Ответьте на вопросы в задании.

    Запишите уравнения всех возможных реакций, которые описаны в кейсе.

    Распределите выступление между всеми членами команды.

Напоминаем! Если кто-то из участников группы не выступал, то будет снижена отметка всей команде.

Этапы урока

Основные дидактические задачи этапа

Формы организации деятельности учащихся

Методы обучения и приёмы обучения

Средства обучения

Примерное время

Организационный

этап

Подготовка к работе:

Организационная;

Психологическая.

формирование групп для работы с кейсами

фронтальная

групповая

Словесно – наглядные

Учебная презентация

1 мин.

Установление правильности, полноты и осознанности выполнения д/з: повторение химических свойств металлов.

фронтальная

беседа

3 мин

Этап освоения новых знаний и умений:

1. Информационное введение учителя

Обеспечение мотивации и принятие цели урока;

Актуализация субъектного опыта (личностных смыслов, опорных знаний и способов действий, ценностных отношений).

групповая

Частично – поисковый, словесный: беседа – дискуссия, составления плана работы группы

ТСО: мультимедийный компьютер, проектор, экран;

Учебная презентация – Слайд. Коррозия металлов

2 мин

2. Работа учащихся с кейсом

Обеспечение восприятия, осмысления и первичного запоминания изучаемого материала;

Содействие усвоению способов, средств, которые привели к определённому выводу;

Создание условий для усвоения методики воспроизведения изучаемого материала.

фронтальная

1. Частично – поисковый, словесный: беседа о видах коррозии металлов

ТСО: мультимедийный компьютер, проектор, экран;

Учебная презентация – Слайд. Виды коррозии металлов

8 мин

Этап закрепления новых знаний и умений

Обеспечение закрепления в памяти знаний и способов деятельности, необходимых для самостоятельной работы;

Обеспечение повышения уровня осмысления изученного материала, глубины его понимания.

2. Работа с кейсом «Коррозия металлов» в малых группах

Кейс «Коррозия металлов»

15 мин

Этап обобщения и систематизации

Обеспечение формирования целостной системы знаний учащихся о коррозии металлов, способах защиты металлов от коррозии;

Обеспечение формирования у учащихся умений применять знания и способы действия на уровнях: репродуктивном, продуктивном и творческом.

Групповая, коллективная

Частично – поисковый: дискуссия

12 мин

Этап рефлексии

Создание условий для осмысления и переосмысления:

Собственных знаний;

Собственных умений;

Собственной деятельности;

Взаимодействий с одноклассниками и учителем

индивидуальная

Частично – поисковый, практический: оценка собственных знаний, умений, собственной деятельности

анкеты для обучающихся

2 мин.

Этап подведения итогов

Дать качественную оценку работы класса и отдельных учащихся

Групповая

словесный

Устные вопросы учителя;

1 мин

Этап информации о домашнем задании

Обеспечение понимания учащимися целей, содержания и способов выполнения д/з;

Индивидуальный подбор содержания д/з с целью закрепления и коррекции знаний, умений и способов деятельности.

индивидуальная

Творческий: индивидуальное составление домашнего задания

1 мин

Ход урока.

    Организационный этап.

За неделю до урока учащимся было выдано задание – Найти интересные факты о коррозии металлов. Используя научную литературу, СМИ, Интернет. На основе полученной информации учителем был сформирован кейс «Коррозия металлов». На данном этапе урока формируются группы для работы с кейсом.

II . Этап проверки выполнения домашнего задания .

На предыдущем уроке учащиеся изучали тему «Химические свойства металлов». На данном этапе проверяется знание общих химических свойств металлов, электрохимического ряда напряжений металлов.

Обучающимся предлагается обсудить следующие вопросы:

1. Как условно делятся металлы в ряду активности?

2. Как это влияет на их взаимодействие?

3. С какими веществами металлы будут взаимодействовать?

4. С какими веществами не будут взаимодействовать металлы, расположенные в ряду активности после водорода?

    Этап освоения новых знаний и умений.

    Информационное введение учителя.

Учитель предлагает рассмотреть слайды с картинками коррозии металлов. Обучающимся предлагается обсудить явление коррозии металлов и сформулировать определение понятия «коррозия». А также обучающиеся вместе с учителем формулируют тему, определяют цели урока и составляют план урока. Учитель рассказывает обучающимся о видах коррозии: химической и электрохимической (Слайд. Виды коррозии). В беседе с обучающимися выясняются факторы, приводящие к химической и электрохимической коррозии.

2. Работа учащихся с кейсом.

Обучающиеся самостоятельно изучают содержимое кейса и выполняют задание по карточке, которая заранее выдаётся капитанам команд.

    Этап закрепления новых знаний и умений.

На данном этапе обучающимся предлагается работа с кейсом «Коррозия металлов» в малых группах (3-4 чел)

Кейс «Коррозия металлов»

Цель работы: закрепить знания о коррозии металлов, видах коррозии металлов, способах защиты металлов от коррозии.

Задание.

    Внимательно прочитайте интересные факты о коррозии металлов.

    Определите, в каких фактах говорится о химической коррозии. Аргументируйте свой выбор.

    Определите, в каких фактах говорится об электрохимической коррозии. Аргументируйте свой выбор.

    Выпишите химические формулы веществ, действие которых вызывает коррозию металлов.

    Составьте уравнения химических реакций.

    Предложите меры по предотвращению коррозии и способы защиты металлов от коррозии.

Кейс №1

ПРИЧИНЫ И АНАЛИЗ АВАРИЙ ИЗ-ЗА КОРРОЗИИ ОБОРУДОВАНИЯ И КОММУНИКАЦИЙ В ОАО "ОРЕНБУРГНЕФТЬ" ( _)

При рассмотрении нефтегазопромыслового оборудования коррозии , в первую очередь, подвергаются: обсадные колонны (обсадные трубы и муфтовые соединения); насосно-компрессорные трубы добывающих и нагнетательных скважин; глубинные насосы (в основном при эксплуатации скважин с помощью ШСНУ); насосные штанги при эксплуатации с помощью ШСНУ; система сбора и транспорта продукции скважин на промыслах (выкидные линии, нефте- и газопроводы); система подготовки нефти, газа и воды; оборудование системы М ИД и водоводы ; нефтепромысловые резервуары . Наибольшие проблемы, относящиеся к коррозии нефтегазопромыслового оборудования, связаны с системой сбора и транспорта продукции скважин. В ОАО "Оренбургнефть" в эксплуатации находится около 8 тыс. км трубопроводов различного назначения, в том числе: сборные нефтепроводы и выкидные линии -4925 км; нефтепроводы для транспорта нефти - 653,210 км; газопроводы для транспорта газа - 844 км; водоводы сточных вод высокого давления - 668 км; водоводы сточных вод низкого давления -1060 км. Основные трубопроводы, траспортирующие нефть и газ, имеют диаметры от 168 до 1020 мм и толщину стенок от 6 до 11 мм. Материалом труб является сталь марок СтЮ и Ст20, по ГОСТ 8731-74.

Анализ данных показывает, что треть всех трубопроводов находится в эксплуатации свыше 15 лет и две трети трубопроводов - свыше 10 лет. Многолетний срок эксплуатации коренным образом влияет на надежность трубопроводов. В 2012 г. в ОАО "Оренбургнефть" произошло 2875 порывов трубопроводов, из общего числа аварий которых приходится: на водоводы 43,5 %; на выкидные линии 28,8 %; на газопроводы 1,2 %. Около 90 % аварий на водоводах и 7 % отказов выкидных линий произошло по причине внутренней коррозии труб.

Степень воздействия нефтепромысловых сред на стальное оборудование зависит не только от самого корродирующего металла, но в основном и от состава и физико-химических свойств продукции скважин. При добыче нефти из продуктивного пласта на поверхность извлекается газожидкостная смесь, состоящая из нефти, газа и воды. К основным коррозионно-активным агентам относятся сероводород, кислород, диоксид углерода, низкомолекулярные компоненты нефти.

Нефть - неполярная жидкость, но некоторые ее компоненты: кислород, сероводород, диоксид углерода, тяжёлые металлы придают ей свойства, близкие к слабополярным диэлектрикам, которые способствуют ее коррозионной активности. Кроме состава и физико-химических свойств нефти на характер и степень коррозионного воздействия также влияют условия залегания нефти в залежи, системы и стадия разработки и способы эксплуатации скважин.

Пластовые воды нефтяных месторождений представляют собой концентрированные растворы солей и, как правило, обладают нейтральным рН.

Если в воде присутствует сероводород, диоксид углерода или кислород из различных источников, то коррозионная активность резко возрастает.

По степени агрессивности воздействия на коррозионный процесс наиболее сильное влияние оказывает сероводород и диоксид углерода, т. к. при растворении в воде в результате диссоциации, даёт кислую среду. В результате этого идет процесс разрушения металла. Практика эксплуатации водоводов системы ППД показала, что при перекачке агрессивных сточных вод срок службы водоводов до полной замены не превышает 5-6 лет, т.е. ниже нормативных сроков в два-три раза. При этом средняя за последние пять лет удельная частота порывов водоводов в два раза превышает этот показатель для нефтепроводов. При наличии в ОАО "Оренбургнефть" более 1700 км водоводов сточных вод высокого давления, по которым ежегодно перекачивается более 21000 тыс. м 3 агрессивной жидкости, проблема борьбы с коррозией водоводов принимает актуальное значение.

Ежегодно разрабатывается комплексная "Программа ингибиторной защиты нефтепромыслового оборудования и трубопроводов от коррозии", которая включает в себя: проведение научно-исследовательских работ по выбору способов борьбы с коррозией и поиску наиболее эффективных ингибиторов коррозии, применительно к условиям нефтяных месторождений Оренбургской области; проведение опытно-промысловых работ на скважинах; разработку нового оборудования и высокоэффективных технологий.

Кейс №2. Японский булат

Японский булат обладал каким-то необыкновенным качеством железа, которое после целого ряда проковок приобретало даже более высокую твердость и прочность, чем дамасская сталь. Мечи и сабли, приготовленные из этого железа, отличались удивительной вязкостью и необыкновенной остротой.

Уже в наше время был сделан химический анализ стали, из которой изготовлено японское оружие XI–XIII веков. И древнее оружие раскрыло свою тайну: в стали был найден молибден. Сегодня хорошо известно, что сталь, легированная молибденом, обладает высокой твердостью, прочностью и вязкостью. Молибден - один из немногих легирующих элементов, добавка которого в сталь вызывает повышение ее вязкости и твердости одновременно. Все другие элементы, увеличивающие твердость и прочность стали, способствуют повышению ее хрупкости.

Естественно, что в сравнении с дамасскими клинками, сделанными из железа и стали, содержащей 0,6–0,8 % углерода, японские мечи и сабли казались чудом. Но значит ли это, что японцы умели в то далекое время делать легированную сталь? Конечно, нет. Что такое легированная сталь, они даже не знали, так же как и не знали, что такое молибден. Металл молибден был открыт значительно позднее, в самом конце XVIII века шведским химиком К. В. Шееле.

По-видимому, дело обстояло так. Японские мастера получали кричное (восстановленное) железо из железистых песков рассыпных месторождений. Эти руды были бедны железом, и содержание вредных примесей в получаемой из них стали было довольно высокое. Но пески, кроме окислов железа, содержали легирующие элементы. Они-то и обеспечивали металлу высокий уровень свойств.

Очевидно, японские мастера случайно заметили: если брать руду в каком-то определенном месте, то сталь, сделанная из нее, обладает особым качеством, а клинки из такой стали получаются крепкими и острыми. Они и не подозревали, что это явление наблюдалось потому, что в железных рудах, которые они использовали, содержалась окись молибдена - молибденит - и примеси редкоземельных металлов.

Выплавленное из «песков» кричное железо проковывалось в прутья и закапывалось в болотистую землю. Время от времени прутья вынимали и снова зарывали, и так на протяжении 8–10 лет. Насыщенная солями и кислотами болотная вода разъедала пруток и делала его похожим на кусок сыра. Мастера именно к этому и стремились. Но зачем это им было надо?

Дело в том, что в процессе коррозии пористого железного прутка прежде всего разъедались и выпадали в виде ржавчины частички металла, содержащие вредные примеси. Железо с растворенными в нем легирующими добавками дольше противостояло коррозии и поэтому сохранялось. Кроме того, полученный ноздреватый пруток обладал развитой поверхностью и при последующем науглероживании обеспечивал еще до ковки сложное переплетение углеродистой стали и мягкого железа. Это переплетение еще больше усложнялось в процессе последующей многократной деформации в горячем состоянии.

Раскованный в полосу сплав мастер сгибал, складывал вдвое, расковывал в горячем состоянии и снова складывал, как слоеное тесто. В конечном счете число тончайших слоев в «слоеном пироге» достигало порой нескольких десятков тысяч. Мы уже знаем, насколько такая операция упрочняет металл за счет образования колоссального количества клубков дислокации и громадного увеличения их плотности. Последующая закалка клинков закрепляла высокие свойства, присущие молибденовой стали. Так на заре металлургии в Японии получали природно-легированную сталь, упрочненную пластической деформацией и термомеханической обработкой.

Кейс № 3 Эйфелева башня.

В 1889 году французский инженер А. Эйфель создал проект своей знаменитой башни в Париже, которую должны были соорудить из стальных ферм. Решение о ее строительстве долго не принималось, поскольку многие металлурги предсказывали, что она простоит всего 25 лет, а потом рухнет из-за коррозии стали. Эйфель же гарантировал прочность сооружения только на 40 лет. Как известно, Эйфелева башня в Париже стоит уже около 100 лет, но это только потому, что фермы ее постоянно покрыты толстым слоем краски. На покраску башни, которая производится раз в несколько лет, уходит 52 тонны краски. Стоимость ее давно превысила стоимость самого сооружения!

Покраска строительных конструкций, работающих в атмосферных условиях, - дорогое удовольствие и отвлекает много малопроизводительного рабочего времени. В то же время известны случаи, когда железные изделия очень долго служили без покраски и не подвергались никакой коррозии. О стальных балках церкви в уральском городе Катав-Ивановске мы уже рассказывали. Широко известны также перила лестниц на набережной реки Фонтанки в Ленинграде. Сделанные в 1776 году из русского сварочного железа, они простояли неокрашенными под открытым небом в условиях влажного климата более 160 лет. Академик А. А. Байков, который исследовал железные детали этих перил, пришел к выводу, что вероятной причиной высокой коррозионной стойкости металла является тонкий поверхностный слой окислов.

Аналогичное сварочное железо найдено в Свердловске. Крыша одного из зданий этого города, выложенная кровельным железом еще во времена Демидова, ни разу не обновлялась, а само железо длительное время почти не подвергалось коррозии. Химическим анализом было установлено, что ленинградские перила содержат повышенное содержание фосфора, а свердловская кровля - фосфора и меди!

Подобное железо находили и в Западной Европе. Так, в стокгольмском соборе Сторкиркан, построенном во второй половине XV века, бронзовое «семисвечье» поддерживает железный стержень. Длина его 3,5 м, поперечное сечение у основания 50Х50 мм. Стержень изготовлен из отдельных кусков кричного железа, сваренных горячей ковкой под силикатным шлаком. Исследованные образцы железа от этого стержня характеризовались высокой концентрацией фосфора (до 0,074 %). В областях с повышенной концентрацией фосфора обнаружена высокая твердость металла.

(Ю.Г. Гуревич. Загадка булатного узора)

Кейс № 4

Знаменитая железная колонна в Дели. Как известно, она создана индийскими металлургами в 415 году нашей эры в честь победы одного из императоров династии Гупта. Ее высота - 7,2 м, диаметр у основания - 420 мм и у вершины - 320 мм. Колонна стоит уже более 1500 лет, и следов коррозии (окисления) на ней не видно. Аналогичная колонна еще больших размеров, построенная в III веке, возвышается в индийском городе Дхар.

Каких только догадок ни делали металлурги, чтобы объяснить необыкновенную атмосферостойкость железа, из которого сделаны индийские колонны! Высказывалось предположение, что колонны изготовлены из цельных кусков метеоритного железа. Известно, что оно хорошо сопротивляется коррозии. Но в метеоритном железе всегда находили никель, а в железе индийских колонн никеля не обнаружили. Тогда предположили, что колонна сделана из чистейшего железа, полученного на особом топливе. Действительно, содержание железа в делийской колонне - 99,72 %, дхарской - гораздо меньше, но и она сотни лет не подвергается коррозии.

Высказывалось мнение, что стойкость индийских железных колонн объясняется сухим и чистым воздухом местности, где они установлены. Другие исследователи утверждали, что в атмосфере когда-то было повышенное содержание аммиака, которое в субтропическом климате Индии позволило получить на поверхности колонны защитный слой нитридов железа. Другими словами, колонны якобы азотированы самой природой.

Известны и более оригинальные точки зрения: поскольку колонны считались священными, их обливали благовонными маслами, и поэтому они не ржавели. Есть даже предположение, что на колонны испокон веков залезали голые индийские ребятишки, а позднее о них «терлись» туристы. Поэтому колонны постоянно смазывались кожным жиром!

По-видимому, все гораздо проще. В индийских колоннах найдено немного меди и повышенное содержание фосфора. В железе делийской колонны его 0,114–0,180 % а в дхарской еще больше - 0,280 %. В обычном сварочном железе фосфора бывает не более 0,05 %, в то время как атмосферостойкая фосфористая сталь (читатель уже знает) содержит до 0,15 % фосфора. Уж очень близко содержание фосфора в индийских колоннах к содержанию его в современной атмосферостойкой стали. Не этим ли объясняется тот факт, что на поверхности колонн образовались устойчивые окисные пленки, предохраняющие железо от дальнейшей коррозии?

Есть данные, что верхняя, не доступная человеку часть колонны имела бронзовый оттенок, благодаря чему некоторые наблюдатели принимали даже материал колонны за медный сплав. Другие говорят о синевато-коричневой или синевато-черной пленке окислов, покрывающих верх колонны. Таким образом, и окисные пленки по своему внешнему виду очень напоминают защитную оболочку атмосферостойкой стали "кор-тен".

Из приведенных фактов следует: японский булат - не единственная природно-легированная сталь, изготовлявшаяся в прошлом. Индийские и русские металлурги тоже находили железные руды, из которых получали природно-легированные чугуны и стали. Но отличаются ли механические свойства природно-легированной стали от современных сталей, легирующие элементы которых вносятся во время плавки путем добавки в жидкий металл необходимого количества твердых ферросплавов? Оказывается, отличаются. Свойства природно-легированных сталей гораздо выше.

(Ю.Г. Гуревич. Загадка булатного узора)

Кейс № 5

Морская вода – отличный электролит. Морская вода хорошо аэрирована (около 8 мг/л кислорода). Среда – нейтральная (рН = 7,2 – 8,6). В морской воде присутствуют соли кальция, калия, магния, сульфаты натрия, хлориды.

Именно из-за наличия в морской воде растворенных хлоридов (ионов-активаторов Cl - ) она обладает депассивирующим действием, по отношении к металлической поверхности (разрушает и предотвращает появление пассивных пленок на поверхности металла). Морской коррозии подвергаются: металлическая обивка днищ судов, подводные трубопроводы, морская авиация, различные металлоконструкции, находящиеся в воде, металлические конструкции в портах, прокатные валки на блюминге, которые охлаждаются морской водой и т.п.

Почти все книги, особенно популярные, по коррозии металлов описывают случай, произошедший в 20-х годах текущего столетия в США. Один из американских миллионеров, не жалея денег, решил построить самую шикарную яхту. Ее днище было обшито дорогим монель металлом (сплав 70% никеля и 30% меди), а киль, форштевень и раму руля изготовили из стали. В морской воде в подводной части яхты образовался гальванический элемент с катодом из монель металла, а анодом из стали. Он настолько энергично работал, что яхта еще до завершения отделочных работ вышла из строя, ни разу не побывав в море. Интересно, что яхте было дано имя «Зов моря».

Ватерлиния

Ватерлиния – зона периодического смачивания водой. Морская коррозия вблизи ватерлинии всегда носит усиленный характер. Это связано с облегченным доступом кислорода к поверхности (усиленной аэрацией поверхности металла); агрессивным влиянием брызг (на месте высохших брызг остаются кристаллики соли, которые препятствуют образованию защитных пленок); поверхностный слой морской воды более прогретый солнечными лучами и в условиях усиленной аэрации идет усиление .

(okorrozii.com Морская коррозия)

Кейс № 6

С точки зрения коррозии автомобиль - это некая субстанция, изготовленная из тонких листов железа невысокого . Конструкционные особенности данного сооружения таковы, что по окончании сборки в нем образуется большое количество скрытых, плохо проветриваемых полостей, способных прекрасно накапливать влагу, пыль, грязь - это раз! Вся машина сверху донизу насквозь испещрена сварными и вальцованными соединениями, крепежными и дренажными отверстиями - это два! При этом не стоит забывать и про тяжело нагруженные участки конструкции, испытывающие на себе постоянное воздействие знакопеременных и пульсирующих механических напряжений, приводящих к появлению в этих местах преждевременной усталости металла с неминуемым коррозионо-ржавым финалом - три! Ну разве можно не любить автомобиль за все это? Разумеется, ржавчине и исключительно в гастрономическом смысле этого слова.

Итак, из всего вышесказанного однозначно следует то, что, даже не принимая во внимание фактор агрессивной дорожной среды, кузов любого автомобиля изобилует «слабыми» с точки зрения коррозионной устойчивости местами и требует защиты. А после того, как он отправится в путь, где его встретят грязь, вода, соль, летящие из-под колес камни, выбоины на , когда он будет вынужден стойко переносить все экологические и климатические превратности того или иного региона, справляться со всевозможными механическими и температурными перегрузками, все это вместе взятое да с учетом фактора времени способно «укатать» абсолютно любую технику.

IV . Этап обобщения и систематизации знаний.

На данном этапе обсуждаются вопросы заданий. Группы выступают с предложениями по защите металлов от коррозии.

    Этап рефлексии.

Обучающиеся индивидуально отвечают на вопрос: Могут ли пригодиться знания, полученные сегодня на уроке в вашей жизни? Приведите примеры.

    Этап подведения итогов.

На данном этапе обучающиеся и учитель оценивают работу групп.

    Этап информации о домашнем задании.

Домашнее задание. Продолжите работу по расширению кейса «Коррозия металлов»: найдите в СМИ или в сети Интернет реальный факт, в котором описывается действие коррозии на металлы. Предложите действия по предупреждению коррозии и защите металлов от коррозии.