Нервная ткань. Нервная ткань: строение и функции

IV. Изложение лекционного материала

III. КОНТРОЛЬ ЗНАНИЙ СТУДЕНТОВ

II. МОТИВАЦИЯ УЧЕБНОЙ ДЕЯТЕЛЬНОСТИ

1. Знания о топографии, строении, видах и функциях нервной ткани необходимы на всех клинических дисциплинах, непосредственно при изучении нервных болезней.

2. Знания о топографии, строении, видах и функциях нервной ткани необходимы в вашей дальнейшей практической деятельности.

А. Вопросы студентам для устного ответа у доски.

1. Классификация соединительной ткани.

2. Собственно соединительная ткань.

3. Соединительная ткань со специальными свойствами – жировая, ретикулярная.

4. Соединительная ткань с опорными свойствами - хрящевая, костная ткань.

5. Классификация мышечной ткани; гладкая мышечная ткань.

6. Исчерченная скелетная мышечная ткань.

7. Сердечная мышечная ткань.

План:

1. Строение и функции нервной ткани

Нервная ткань является основным компонентом нервной системы. Нервная ткань состоит из нервных клеток и нейроглии (глиальные клетки). Нервные клетки способны под действием раздражения приходить в состояние возбуждения, вырабатывать импульсы и передавать их. Эти свойства определяют специфическую функцию нервной системы. Нейроглия органически связана с нервными клетками, имеет также клеточное строение и осуществляет трофическую, секреторную, изоляционную, защитную и опорную функции. Нервная ткань развивается из наружного зародышевого листа - эктодермы. Нервная ткань формирует центральную нервную систему (головной и спинной мозг) и периферическую (нервы, нервные узлы, ганглии и нервные сплетения).

Нервная клетка - это нейрон или нейроцит, представляет собой отросчатые клетки, размеры которых колеблются в значительных пределах (от 3 - 4 до 130 мкм). По форме нервные клетки очень различны.

Функциональной единицей нервной системы является нейрон.

Отростки нервных клеток проводят нервный импульс из одной части тела человека в другую. Длина отростков колеблется от нескольких микрон до 1 - 1,5 м. Различают два вида отростков нервной клетки:

1. Аксон - проводит импульсы от тела нервной клетки к другим клеткам или тканям рабочих органов, т.е. от нервной клетки к периферии. Аксон длинный, неветвящийся отросток. Нервная клетка имеет всегда только один аксон, который заканчивается концевым аппаратом на другом нейроне или в мышце, железе и др.

2. Дендрит (dendron - дерево) - они древовидно ветвятся. Их количество у разных нейронов различно. Они короткие, сильно ветвящиеся. Дендриты проводят нервные импульсы к телу нервной клетки. Дендриты чувствительных нейронов имеют на периферическом конце специальные воспринимающие аппараты - чувствительные нервные окончания - рецепторы.


По количеству отростков нейроны делятся на биполярные (двухполюсные) - с двумя отростками, мультиполярные (многополюсные) - с несколькими отростками, псевдоуниполярные (ложноднополюсные) - это нейроны, аксон и дендрит которых начинаются от общего выроста тела клетки с последующим Т - образным делением. Такая форма клеток характерна для чувствительных нейронов.

Нейрон - имеет одно ядро, которое содержит 2-3 ядрышка. Цитоплазма содержит органеллы, базофильное вещество (тигроидное вещество или вещество Ниссля) и нейрофибриллярный аппарат.

Тигроидное вещество представляет собой зернистость, образующую нерезко ограниченные глыбки, которые лежат в теле клетки и дендритах. Оно меняется в зависимости от функционального состояния клетки. В условиях перенапряжения, травмы (перерезка отростков, отравление, кислородное голодание и др.) глыбки распадаются и исчезают. Этот процесс называется тигролизом , т.е. растворения тигроидного вещества.

Нейрофибриллы - это тонкие нити. В отростках они лежат вдоль волокон параллельно друг другу, в теле клетки образуют сеть.

Нейроглия - клетки различной формы и величины. Делятся на две группы:

1. Глиоциты (макроглия);

2. Глиальные макрофаги (микроглия).

Глиоциты бывают :

1. Эпендимоциты;

2. Астроциты;

3. Олигодендроциты.

Эпендимоциты выстилают спинномозговой канал и желудочки головного мозга.

Астроциты образуют, опорный аппарат центральной части нервной системы.

Олигодендроциты окружают тела нейронов, образуют оболочки нервных волокон и входят в состав нервных окончаний. Клетки микроглии подвижны и способны фагоцитировать.

Нервные волокна бывают :

1. Безмиелиновые (безмякотные);

2. Миелиновые (мякотные).

Волокна различают в зависимости от строения оболочки. Миелиновые волокна толще безмиелиновых. Миелиновая оболочка прерывается через равные промежутки, образуя перехваты Ранвье. Снаружи миелиновая оболочка покрыта неэластической мембраной - неврилеммой. Безмиелиновые волокна встречаются в основном во внутренних органах. Пучки нервных волокон образуют нервы.

Нерв покрывает соединительнотканная оболочка - эпиневрий.

Эпиневрий проникает в толщу нерва и покрывает пучки нервных волокон - периневрий и отдельные волокна (эндоневрий ). В эпиневрии располагаются кровеносные и лимфатические сосуды, которые проникают в периневрий и эндоневрий. Нервные волокна заканчиваются концевыми аппаратами - нервными окончаниями. По функции они делятся на: 1. Чувствительные (рецепторы); 2. Двигательные (эффекторы).

Рецепторы - воспринимают раздражения из внешней и внутренней среды, превращая их в нервные импульсы, которые передают другим клеткам и органам.

Рецепторы бывают :

1. Эстерорецепторы (воспринимают раздражение из внешней среды);

2. Интерорецепторы (из внутренней);

3. Проприорецепторы (в тканях тела, заложенных в мышцах, связках, сухожилиях, костях и др.) с помощью них определяется положение тела в пространстве.

Эстерорецепторы бывают:

1. Терморецепторы (измерение температуры);

2. Механорецепторы (соприкасаются с кожей, сжимают ее);

3. Ноцирецепторы (воспринимают болевые раздражения).

Интерорецепторы бывают:

1. Хеморецепторы (изменение химического состава крови);

2. Осморецепторы (реагируют на изменение осматического давления крови);

3. Барорецепторы (на изменение давления);

4. Валюморецепторы (на наполнение сосудов кровью).

Эффекторы - передают нервные импульсы от нервных клеток к рабочему органу. Они являются концевыми разветвлениями нейронов двигательных клеток. Двигательные окончания в поперечнополосатых мышцах называются моторными бляшками.

Связь между нервными клетками осуществляется при помощи синапсов (synapsis - соединение). Синапс образован концевыми ветвлениями нейрона одной клетки на теле или дендритах другой.

Синапс - это образование, в котором происходит передача импульса с одной клетки на другую.

Передача импульса осуществляется только в одном направлении (с нейрона на тело или дендриты другой клетки).

Возбуждение передается с помощью нейромедиаторов (ацетилхолин, норадреналин и др.)

В понятие синапс входит 3 образования :

1. Нервные окончания, заканчивающиеся множеством пузырьков;

2. Межсинаптическая щель;

3. Постсинаптическая мембрана.

Синаптическая бляшка - множество пузырьков, заполненных медиатором. Передача импульса по синапсу происходит в рефлекторной дуге. Рефлекторная дуга состоит из нейронов. Чем больше клеток входит в состав рефлекторной дуги, тем скорость проведения возбуждения длиннее.

Нервы, передающие импульсы в центральную нервную систему, называются афферентными (сенсорными), а от центральной нервной системы - эфферентными (моторными). Нервы со смешанной функцией передают импульсы в обоих направлениях.

Функции нервной ткани :

1. Обеспечивает проведение импульса в головной мозг;

2. Устанавливает взаимосвязь организма с внешней средой;

3. Координирует функции внутри организма, т.е. обеспечивает его целостность.

Свойства нервной ткани :

1. Возбудимость;

2. Раздражимость;

3. Выработка и передача импульса.

Ежедневные переживания, реакция на окружающий нас мир, предметы и явления, фильтр поступающей извне информации и попытка прислушаться к сигналам собственного организма происходит благодаря лишь одной из систем организма. Справиться со всем происходящим помогают удивительные клетки, которые эволюционировали, совершенствовались и приспосабливались на протяжении всей жизни человечества. Нервная ткань человека несколько отличается от животных восприятием, анализом и ответной реакцией. Как же работает эта сложная система, и какие функции в себе несет.

Нервная ткань представляет собой главную составляющую ЦНС человека, которая разделяется на два различные отдела: центральный, состоящий из мозговой системы, и периферический — из нервных узлов, нервов, сплетений.

Центральная нервная система подразделяется на два направления: соматическую систему, управление которой происходит осознанно, и вегетативную – которая не имеет контроля сознанием, но несет ответственность за регулирование работы систем жизнеобеспечения организма и органов, желез. Соматическая система передает сигналы в головной мозг, который в свою очередь сигнализирует органам чувств, мышцам, коже, суставам. Изучением этих процессов занимается специальная наука – гистология. Это наука, которая исследует строение и функции живых организмов.

Нервная ткань имеет клеточный состав – нейроны и межклеточное вещество – нейроглии. Помимо этого строение включает в себя рецепторные клетки.

Нейроны представляют собой нервные клетки, которые состоят из нескольких элементов: ядра, окруженных оболочкой цитоплазматических лент и органов клетки, отвечающих за транспорт веществ, деление, движение, синтез. Отростки, которые проводят импульсы к телу, имеющие короткую длину, называются дендриты. Другие отростки, имеющие строение тоньше – аксоны.

Клетки нейроглии занимают свободное пространство между составляющими нервной ткани и обеспечивают их бесперебойное и регулярное питание, синтез и пр. Они сконцентрированы в ЦНС, где количество нейронов превышает в десятки раз.

Классификация нейронов, исходя из количества находящихся в их составе отростков:

  • униполярные (имеющие всего один отросток). У человека данный вид не представлен;
  • псевдоуниполярные (представлены двумя ветвями одного дендрита);
  • биполярные (по одному дендриту и аксону);
  • мультиполярные (множество дендритов и аксон).

Общая характеристика

Нервная ткань является одним из видов тканей организма, которых множество в человеческой оболочке. Этот вид состоит лишь из двух основных компонентов: клеток и межклеточного вещества, занимающего все промежутки. Гистология уверяет, что характеристика определена ее физиологическими особенностями. Свойства нервной ткани в том, чтобы воспринимать раздражение, возбуждение, вырабатывать и передавать импульсы и сигналы к мозгу.

Источник развития – нейроэктодерма, представленная в виде дорзального утолщения эктодермы, которая называется нервной пластиной.

Свойства

В человеческом организме свойства нервной ткани представлены следующим образом:

  1. Возбудимость. Это свойство обуславливает ее способность, клетки и целой системы организма иметь ответную реакцию на провоцирующие факторы, раздражители и множественные воздействия различных сред организма.

Данное свойство может проявляется в двух процессах: первый — возбуждение, второй — торможение.

Первый процесс представляет собой отклик на действие раздражителя, которое демонстрируется в виде изменений процессов обмена веществ в клетках ткани.

Изменение метаболических процессов в нейронах сопровождается прохождением через плазматическую мембрану из белков и липидов по-разному заряженных ионов, которые меняют подвижность клетки.

В состоянии покоя существует значительная разница между характеристиками поля, выражающими напряженность, верхнего слоя нейрона и внутренней части, которая составляет приблизительно 60 мВ.

Такая разница появляется вследствие различной плотности ионов во внутренней среде клетки и за ее пределами.

Возбуждение способно на миграцию и может свободно перемещаться от клетки к клетке и внутри нее.

Второй процесс представлен в виде отклика на раздражитель, который противопоставляется возбуждению. Этот процесс прекращает, ослабляет или препятствует любой деятельности в нервных тканях и ее клетках.

Одни центры сопровождаются возбуждением, другие – торможением. Так обеспечивается гармоничное и согласованное взаимодействие систем жизнеобеспечения. И один, и другой процессы – это выражение единого нервного процесса, который происходит в одном нейроне, сменяясь. Изменения проходят в результате метаболических процессов, траты энергии, поэтому возбуждение и торможение – два процесса активного состояния нейрона.

  1. Проводимость. Данное свойство обусловлено способностью проводить импульсы. Сам процесс проводимости по нейронам представлен так: в одной из клеток появляется импульс, который может передвигаться в клетки по соседству, перемещаться в любой участок нервной системы. Появляясь в другом месте, меняется плотность ионов на смежном участке.
  2. Раздражимость. В ходе этого процесса ткани перетекают из покоя в абсолютно противоположное состояние – активность. Происходит это под действием провоцирующих факторов, поступающих из внешней среды и от внутренних раздражителей. К примеру, рецепторы глаз раздражаются от яркого света, слуховые рецепторы – от громкого звука, кожа – от прикосновения.

Если проводимость или возбудимость нарушиться, человек потеряет сознание и все процессы психики, происходящие в организме, прекратят свою работу. Чтобы понять, как это происходит, достаточно представить состояние организма во время наркоза. Именно в этот момент человек находится без сознания и его нервные импульсы не посылают никаких сигналов, они отсутствуют.

Функции

Основные функции нервной ткани:

  1. Строительная. Благодаря своему строению нервная ткань участвует в формировании мозга, ЦНС, в частности волокон, узлов, отростков и соединяющих их элементах. Она способна образовать целую систему, и обеспечить ее гармоничное функционирование.
  2. Обработка информации. С помощью нейронов клеток наш организм воспринимает информацию, поступающую извне, обрабатывает ее, проводит анализ и далее трансформирует ее в конкретные импульсы, которые передаются мозгу и ЦНС. Гистология изучает именно способности нервной ткани вырабатывать сигналы, поступающие в мозг.
  3. Регулирование взаимодействия систем. Происходит адаптация к различным обстоятельствам и условиям. Она способна сплотить все системы обеспечения жизнедеятельности организма, грамотно управляя ими и регулируя их работу.

Нервная ткань


С нервной ткани (textus nervosus) построена центральная нервная система (головной и спинной мозг) и периферийная нервная система - нервы, нервные волокна с их конечными аппаратами, нервные узлы (ганглии). Нервная ткань состоит из нервных клеток - нейронов (нейроцитов) с особым строением и функцией и клеток нейроглии, выполняющих опорную, трофическую, защитную и разграничительную функции.
Нейроцитов, или нейрон (neurocytus, neuronum) является структурно-функциональной единицей нервной системы. Основными функциями нейрона являются: восприятие раздражения, анализ и трансформация этой информации в нервный (электрический) импульс или химический сигнал; передача и хранение этой информации, способность продуцировать биологически активные вещества. Благодаря таким функциям нейронов нервная ткань обеспечивает регуляцию и согласованную работу органов и систем организма, его адаптацию к условиям внутренней и внешней среды. Нейрон состоит из тела (перикариона), где информация обрабатывается, и отростков, отходящих от тела. Отростки является характерным структурным признаком нейронов, они обеспечивают проведение нервного импульса. Отростки есть двух видов - аксоны и дендриты. Аксон или нейрит (от греческого axis - ось), - это один длинный отросток длиной до 1,5 м, он заканчивается терминальным разветвлением. Этот отросток проводит нервный импульс от тела нейрона. Дендриты (от греческого dendron - дерево) - это короткие и многочисленные отростки, древовидные галузяться. Эти отростки проводят нервный импульс от окончаний к телу нейрона. Нервные клетки динамично поляризованные, то есть способны пропускать нервный импульс только в направлении от дендрита к аксона (рис. 1).
В зависимости от количества отростков нервные клетки делятся на: униполярные, имеющие только один отросток - аксон; биполярные, имеющих два отростки: аксон и дендрит; псевдоуниполярни нейроны имеют два отростки аксон и дендрит, но возле тела клетки эти два отростки настолько плотно прилегают друг к другу, что создается эффект одного отростка, но на определенном расстоянии эти отростки Т-образно расходятся. По функцией это чувствительные нейроны, в основном они расположены в чувствительных узлах спинномозговых и черепных нервов. Мультиполярные нейроны имеют многочисленные дендриты и один аксон, они преобладают в нервной ткани.
Размеры тела нервных клеток колеблются в пределах от 4-5 мкм до 130-140 мкм, а длина отростков колеблется от нескольких микрометров до 1 м и более. Форма тел нейронов, их размеры, число дендритов и степень их разветвления очень меняющимися в зависимости от локализации нейронов и выполняемой ими функции. Например, псевдоуниполярни нейроны имеют круглое тело, форма тел мультиполярные нейронов спинного мозга неправильная. Тела крупных пирамидных нейронов коры большого мозга имеют треугольную форму, а от них уходит много коротких дендритов. Аксон отходит от основания клетки. В отличие от дендритов, диаметр аксона не меняется. Грушевидные нейроны коры мозжечка имеют два крупных дендриты, интенсивно галузяться, а длинный аксон отходит от верхушки клетки.


Различают два типа мультиполярные нейронов: мультиполярные нейрон с длинным аксонов и большим количеством дендритов (клетка Гольджи 1-го типа) и мультиполярные нейрон с коротким аксоны, дендриты которого галузяться (клетки Гольджи II-го типа). Клетки 1-го типа расположены в симпатичных и парасимпатических нервных узлах. К нейронов 1-го типа также принадлежат крупные пирамидные нейроны коры большого мозга грушевидные нейроны коры мозжечка, двигательные нейроны спинного мозга. Эти нейроны передают нервные импульсы на большие расстояния. К нейронов II-го типа относятся клетки центральной нервной системы, передающие нервные импульсы соседним нейронам.
В сером веществе полушарий большого мозга и мозжечка нейроны располагаются слоями, а в других отделах нервной системы нервные клетки образуют скопления - ядра.
Нейроны - преимущественно одноядерные клетки. Два и больше ядер имеют некоторые нейроны, расположенные в нервных узлах автономной (вегетативной) нервной системы. Сферическое ядро диаметром около 17 мкм в большинстве нейронов занимает центральное положение (рис. 2). Гетерохроматин располагается равномерно по всему ядру, хорошо заметное базофильные ядрышко, в нейроплазми перикариону расположены многочисленные сферические или удлиненные митохондрии диаметром примерно 0,1 мкм. Часто в зоне комплекса Гольджи оказываются мультивезикулярни тельца.
Основными структурными признаками нейронов является наличие в нейроплазми многочисленных специальных органелл - нейрофибрил и скоплений хроматофильнои субстанции (вещество Ниссля, тигроид), состоящая из групп параллельных цистерн гранулярных эндоплазматической сетки и полирибосом, содержащие много РНК. Элементов агранулярный эндоплазматической сети в теле нейронов мало. Они есть только в аксонов и дендритах в виде трубочек, цистерн и пузырьков. Хроматофильна субстанция и свободные рибосомы располагаются по всей цитоплазме клетки и в дендритах, но она отсутствует в самом аксонов и его пригорке.
Между элементами эндоплазматической сети расположены многочисленные митохондрии, лизосомы, гранулы липофусцина. Митохондрии есть и в отростках нейрона. Центриолей в нейронах нет. Наружная поверхность цитолемы нейрона покрыта многочисленными синапсами и отростками астроцитов. Нейрофибрилы, переходящие в отростки, состоящие из микротрубочек диаметром около 20 нм и нейрофиламенты толщиной 7-10 нм. Нейрофибрилы формируют у перикариони густую трехмерную сетку, в которой расположены лизосомы и другие структуры. Нейрофибрилы обеспечивают прочность перикариону и отростков, осуществляют химическую интеграцию клетки.
РНК, синтезируемых в перикариони, транспортируются в отдаленные участки отростков. С помощью постоянного медленного транспорта макромолекул со скоростью 1-3 мм за сутки доставку делятся ферменты, принимающие участие в синтезе медиаторов в пресинаптические части синапсов, и белки цитоскелета. Быстрым антероградная транспортом поставляются пузырьки в синаптическую окончания со скоростью 400 мм за сутки Кроме того, существует ретроградный транспорт от окончаний аксона к перикари-она со скоростью 200-300 мм за сутки, с помощью которого крупные пузырьки переносят обломки структур и веществ, переваривают лизосомы. В дендритах проходит как медленное, так и быстрый транспорт.
В нейроплазми вдоль дендритов расположено много нейротрубочок, вытянутых митохондрий, а также есть небольшое количество цистерн агранулярный эндоплазматической сетки и нейрофиламенты. Вещество Ниссля есть и в крупных дендритах. Конечные отделы дендритов часто колбоподибно расширены.
Диаметр аксонов разных клеток (вместе с оболочками) колеблется в широких пределах от 1 до 20 мкм, но в одном отростке он всегда одинаков. Толстые аксоны проводят нервные импульсы быстрее, чем тонкие. Аксоны отходят от конического аксонного холма, вблизи которого от аксона ответвляются боковые ветки. Аксон заканчивается телодендроном - конечными разветвленными, образующих синапсы. Поверхность аксолемы (цитолемы) гладкая. Аксолема начального сегмента аксона и в области перетяжки Ранвье утолщенная. В аксоплазми являются тонкие удлиненные митохондрии, большое количество нейротрубочок и нейрофиламенты, пузырьки и трубочки агранулярный эндоплазматической сети, одинокие мультивезикулярни тельца. Рибосомы и элементы гранулярных эндоплазматической сети отсутствуют в аксоплазми, а есть только в цитоплазме бугорка аксона, где расположены пучки микротрубочек и немного нейрофиламенты.
Следовательно, нейроны воспринимают, проводят и передают электрические сигналы. Передача электрических сигналов обусловлена изменением мембранного потенциала, возникающее при перемещении через клеточную мембрану ионов натрия и калия благодаря функционированию натрий-калиевого насоса.
Нейроны, передающие информацию от места восприятия раздражение в центральную нервную систему, а затем до рабочего органа, связанные между собой с помощью многочисленных межклеточных контактов - синапсов (от греческого synapsis - связь), которые обеспечивают передачу нервного импульса от одного нейрона к другому. В синапсах происходит преобразование электрических сигналов в химические, а затем - химических сигналов в электрические. Нервный импульс вызывает, например, в парасимпатической окончании высвобождения посредника - нейромедиатора, который связывается с рецепторами постсинаптического полюса, и приводит к изменению его потенциала.
В зависимости от того, какие части нейронов спо-лучаються между собой, различают синапсы: Аксой-соматические, когда окончание аксона одного нейрона образует контакт с телом другого, Аксой-дендритные, когда аксоны вступают в контакт с дендриты, а также Аксой-аксонни, когда контактируют одноименные отростки. Такой синаптических устройство цепочек нейронов создает возможность для передачи информации в различные участки тела. При этом передача импульса осуществляется с помощью биологически активных веществ (химическая передача), а сами вещества, осуществляющие передачу, называются нейромедиаторами (от латинского mediator - посредник). Роль медиаторов выполняют две группы веществ: норадреналин, ацетилхолин, некоторые моноаминов (адреналин, серотонин, дофамин и аминокислоты - глицин, глутаминовая кислота) и нейропептиды (энкефалины, нейротензин, ангиотензин II, вазоактивный кишечный пептид, соматостатин, вещество II и т.п.). По функцией различают возбуждающие и тормозные синапсы.
В синапсе выделяют пресинаптические и постсинаптические части, которые разделены синаптической щели (рис. 3). Нервный импульс поступает по нервном окончанием в булавовидные пресинаптические часть, которая ограничена пресинаптических мембраной.
Цитоплазма пресинаптических части содержит большое количество круглых мембранных синаптических пузырьков диаметром от 4 до 20 нм с нейромедиатором. Когда нервный импульс достигает пресинаптических части, открываются кальциевые каналы. Ионы кальция проникают в цитоплазму пресинаптических части, их концентрация кратковременно возрастает. При увеличении содержания кальция синаптическую пузырьки, содержащие нейромедиатор, проникают в нейролему и нейромедиатор выделяется в синаптическую щель. Чем больше содержание ионов кальция, тем больше синаптических пузырьков выделяют нейромедиаторы. Постсинаптичниы потенциал возникает тогда, когда нейромедиатор связывается с рецепторами постсинаптические мембраны, а ее потенциал меняется. Таким образом, постсинаптические мембрана превращает химический стимул в электрический сигнал. Открываются Ка + - каналы и К + - каналы: ионы натрия поступают в постсинаптичниы полюс, а ионы калия выходят в синаптическую щель, в результате чего происходит деполяризация постсинаптические мембраны. Это приводит к изменению мембранного потенциала и возникновения электрического сигнала, величина которого прямо пропорциональна количеству нейромедиатора. Как только прекращается выделение нейромедиатора, пресинаптические окончания поглощает медиатор из синаптической щели. После этого рецепторы постсинаптические мембраны блокируются антагонистом и возвращаются в исходное состояние.
Нейроглии. Кроме нейронов, в нервной системе есть клетки нейроглии (neuroglia), выполняющих: опорную, трофическую, защитную, изолирующую, секреторную функции (рис. 4). Различают две группы нейроглии: глиоциты или макроглию (епендимоциты, астроциты и олигодендроциты), и микроглии.
Макроглия. Епендимоциты (ependymocytus) имеют кубическую или призматическую форму и одним слоем Выкладываем изнутри желудочки мозга и спинно-мозговой канал. Епендимоциты соединены между собой замыкающим (плотными) контактами и ленточными десмосомамы. От базальной поверхности некоторых епендимоцитив (таницитив) отходит отросток, проходящей между другими клетками, разветвляется и контактирует с базальной мембраной. Под слоем епендимоцитив лежит слой недифференцированных глиоцитив. Епендимоциты принимают участие в транспортных и обменных процессах, выполняют опорную и разграничительную функции.
Астроциты (astrocytus) являются основными глиальными элементами центральной нервной системы. Различают протоплазматичные и волокнистые астроциты. Протоплазматичные астроциты имеют звездчатые форму на их телах имеются многочисленные короткие выпячивания, которые служат опорой для отростков нейронов, а между ними и плазмолемою астроциты есть щель шириной около 20 нм. Многочисленные отростки протоплазматичных астроцитов заканчиваются на нейронах и в капиллярах. Отростки астроцитов образуют сетку, в которой расположены нейроны. Отростки таких астроцитов расширяются на концах, образуя широкие ножки, контактируют между собой. Эти ножки со всех сторон окружают нейроны и кровеносные капилляры, покрывая примерно 80% их поверхности (периваскулярная глиальная пограничная мембрана (membrana limitans gliae perivascularis). He покрываются этой мембраной лишь участки синапсов. Глиальная мембрана, которая образована расширенными концами отростков астроцитов, изолирует нейроны, создавая для них специфическое микроокружение. Отростки, достигающие расширенными окончаниями поверхности мозга, соединяясь между собой щель контактами (Нексус), образуют на ней сплошную поверхностную глиальную пограничную мембрану На этой пограничной мембране расположена базальная мембрана, которая отделяет ее от мягкой мозговой оболочки.
Волокнистые астроциты преобладают в белом веществе центральной нервной системы. Диаметр этих клеток равен примерно 10 мкм, они имеют многочисленные (20-40) разветвленные отростки. Отростки расположены между нервными волокнами, некоторые из них достигают кровеносных капилляров.
Олигодендроциты (oligodendrocytus) - это малые клетки овоиднои формы (6-8 мкм) с великим, богатым хроматином ядром, окруженным тонкой полоской цитоплазмы, в которой есть относительно мало органелл. Олигодендроциты располагаются вблизи нейронов и их отростков. От тел олигодендроцитов отходят многочисленные короткие конусообразные и широкие плоские трапециевидные миелин создающее отростки. Эти отростки формируют миелиновых слой нервных волокон, спирально накручуючись на них. Олигодендроциты, которые образуют миелиновую оболочку нервных волокон периферической нервной системы, называются лемоцитамы, нейролемоцитамы, или клетками Шванна.
Клетки микроглии (microglia), или клетки Гортега, составляют примерно 5% от клеток глии в белом веществе и 18% в сером веществе головного и спинного мозга. Это маленькие удлиненные клетки. От тела клетки отходят отростки, которые образуют вторичные и третичные короткие разветвления. Некоторые клетки микроглии контактируют с капиллярами. Эти клетки относятся к макрофагов, но они способны синтезировать иммуноглобулины.

Нервная ткань человека в организме имеет несколько мест преимущественной локализации. Это мозг (спинной и головной), вегетативные ганглии и вегетативная нервная система (метасимпатический отдел). Головной мозг человека складывается из совокупности нейронов, общее число которых составляет не один миллиард. Сам же нейрон состоит из сома - тела, а также отростков, которые получают информацию от остальных нейронов - дендритов, и аксона, являющегося удлиненной структурой, передающей информацию от тела к дендритам других нервных клеток.

Различные варианты отростков у нейронов

Нервная ткань включает в себя в общей совокупности до триллиона нейронов различной конфигурации. Они могут быть униполярными, мультиполярными или биполярными в зависимости от количества отростков. Униполярные варианты с одним отростком встречаются у человека нечасто. Они обладают только одним отростком - аксоном. Такая единица нервной системы распространена у беспозвоночных животных (тех, которых нельзя отнести к млекопитающим, гадам, птицам и рыбам). При этом стоит учитывать, что по современной классификации к числу беспозвоночных относится до 97% всех видов животных, описанных к настоящему времени, поэтому униполярные нейроны достаточно широко представлены в земной фауне.

Нервная ткань с псевдоуниполярными нейронами (имеют один отросток, но раздвоенный на кончике) встречается у высших позвоночных в черепно-мозговых и спинно-мозговых нервах. Но чаще у позвоночных имеются в наличии биполярные образцы нейронов (есть и аксон, и дендрит) или мультиполярные (аксон один, а дендритов - несколько).

Классификация нервных клеток

Какую еще классификацию имеет нервная ткань? Нейроны в ней могут выполнять разные функции, поэтому среди них выделяют ряд типов, в том числе:

  • Афферентные нервные клетки, они же чувствительные, центростремительные. Эти клетки имеют небольшие размеры (относительно других клеток такого же типа), обладают разветвленным дендритом, связаны с функциями рецепторов сенсорного типа. Они расположены вне центральной нервной системы, имеют один отросток, расположенный в контакте с каким-либо органом, и другой отросток, направленный в спинной мозг. Эти нейроны создают импульсы под воздействием на органы внешней среды или каких-либо изменений в самом теле человека. Особенности нервной ткани, сформированной за счет чувствительных нейронов, таковы, что в зависимости от подвида нейронов (моносенсорные, полисенсорные или бисенсорные) могут получаться реакции, как строго на один раздражитель (моно), так и на несколько (би-, поли-). К примеру, нервные клетки во вторичной зоне на коре больших полушарий (зрительная зона) могут обрабатывать как зрительные, так и звуковые раздражители. Информация идет от центра к периферии и обратно.
  • Двигательные (эфферентные, моторные) нейроны передают информацию от центральной нервной системы к периферии. У них длинный аксон. Нервная ткань образует здесь продолжение аксона в виде периферических нервов, которые подходят к органам, мышцам (гладким и скелетным) и ко всем железам. Скорость прохождения возбуждения через аксон в нейронах такого типа очень велика.
  • Нейроны вставочного типа (ассоциативные) отвечают за передачу информации от чувствительного нейрона на двигательный. Ученые предполагают, что нервная ткань человека состоит из таких нейронов на 97-99%. Их преимущественной дислокацией является серое вещество в центральной нервной системе, и они могут быть тормозными или возбуждающими в зависимости от выполняемых функций. Первые из них имеют возможность не только передать импульс, но и модифицировать его, усиливая эффективность.

Специфические группы клеток

Помимо вышеуказанных классификаций нейроны могут быть фоновоактивными (реакции проходят безо всякого внешнего воздействия), другие же дают импульс только при применении к ним какой-то силы. Отдельную группу нервных клеток составляют нейроны-детекторы, которые могут избирательно реагировать на какие-то сенсорные сигналы, которые имеют поведенческое значение, они нужны для распознавания образов. К примеру, в новой коре имеются клетки, которые особенно чувствительны к данным, описывающим что-то, схожее с лицом человека. Свойства нервной ткани здесь таковы, что нейрон дает сигнал при любом расположении, цвете, размере «лицевого раздражителя». В зрительной же системе есть нейроны, отвечающие за детекцию сложных физических явлений вроде приближения и удаления предметов, циклические движения и др.

Нервная ткань образует в ряде случаев комплексы, очень важные для работы головного мозга, поэтому некоторые нейроны имеют персональные имена в честь открывших их ученых. Это клетки Беца, очень крупные по размерам, обеспечивающие связь двигательного анализатора через корковый конец с моторными ядрами в стволах головного мозга и ряда отделов спинного мозга. Это и тормозные клетки Реншоу, наоборот, небольшие по размерам, помогающие стабилизировать мотонейроны при удержании нагрузки, к примеру, на руку и для поддержания расположения тела человека в пространстве и др.

На каждый нейрон приходится около пяти нейроглий

Строение нервных тканей включает в себя еще один элемент под названием «нейроглия». Эти клетки, которые называют еще глиальными или глиоцитами, по размерам в 3-4 раза меньше самих нейронов. В мозге человека нейроглий в пять раз больше, чем нейронов, что, возможно, обуславливается тем, что нейроглии поддерживают работу нейронов, выполняя различные функции. Свойства нервной ткани данного вида таковы, что у взрослых людей глиоциты являются возобновляющимися, в отличие от нейронов, которые не восстанавливаются. К функциональным «обязанностям» нейроглий относится создание гематоэнцефалического барьера с помощью глиоцитов-астроцитов, которые не дают проникнуть в мозг всем крупным молекулам, патологическим процессам и многим лекарствам. Глиоциты-олегодендроциты - мелкие по размерам, образуют вокруг аксонов у нейронов жироподобный миелиновый футляр, несущий защитную фукнцию. Также нейроглии обеспечивают опорную, трофическую, разграничительную и др. функции.

Другие элементы нервной системы

Некоторые ученые в строение нервных тканей включают и эпендиму - тонкий слой клеток, которые выстилают центральный канал спинного мозга и стенки желудочков мозга. В массе своей эпендима однослойна, состоит из клеток цилиндрической формы, в третьем и четвертом желудочках мозга она имеет несколько слоев. Составляющие эпендиму клетки, эпендимоциты, выполняют секреторную, разграничительную и опорную функции. Их тела вытянуты по форме и имеют на концах «реснички», за счет движения которых производится перемещение спинномозговой жидкости. В третьем желудочке головного мозга находятся особенные эпендимные клетки (танициты), которые, как полагается, передают данные о составе спинномозговой жидкости в специальный отдел гипофиза.

«Бессмертные» клетки с возрастом исчезают

Органы нервной ткани, по широко распространенному определению, включают в себя также стволовые клетки. К ним относят незрелые образования, которые могут становиться клетками разных органов и тканей (потентность), проходить процесс самообновления. По сути, развитие любого многоклеточного организма начинается со стволовой клетки (зиготы), из которой делением и дифференцировкой получаются все остальные виды клеток (у человека их более двухсот двадцати). Зигота представляет собой тотипотентную стволовую клетку, которая дает начало полноценному живому организму за счет трехмерной дифференцировки в единицы экстраэмбриональных и эмбриональных тканей (через 11 дней после оплодотворения у человека). Потомками тотипотентных клеток являются плюрипотетные, которые дают начало элементам зародыша - энтодерме, мезодерме и эктодерме. Из последней как раз и развивается нервная ткань, кожный эпителий, отделы кишечной трубки и органы чувств, поэтому стволовые клетки - это неотъемлемая и важная часть нервной системы.

Стволовых клеток в организме человека очень мало. К примеру, у эмбриона имеется одна такая клетка на 10 тысяч, а у пожилого человека в возрасте около 70 лет - одна на пять-восемь миллионов. Стволовые клетки обладают, помимо вышеуказанной потентности, такими свойствами, как «хоуминг» - способность клетки после введения прибывать в зону повреждения и исправлять сбои, выполняя утраченные функции и сохраняя теломер клетки. В других клетках при делении теломер в части своей утрачивается, а в опухолевых, половых и стволовых есть так называемая телоразмерная активность, в ходе которой концы хромосом автоматически надстраиваются, что дает бесконечную возможность клеточных делений, то есть бессмертие. Стволовые клетки, как своеобразные органы нервной ткани, обладают таким высоким потенциалом за счет избытка информационной рибонуклеиновой кислоты для всех трех тысяч генов, которые участвую в первых этапах развития зародыша.

Основными источниками стволовых клеток выступают эмбрионы, плодный материал после аборта, пуповинная кровь, костный мозг, поэтому с октября 2011 года решением Европейского суда запрещены манипуляции с эмбриональными стволовыми клетками, так как эмбрион признан человеком с момента оплодотворения. В России допущено лечение собственными стволовыми клетками и донорскими для ряда заболеваний.

Вегетативная и соматическая нервная система

Ткани нервной системы пронизывают весь наш организм. От центральной нервной системы (головной, спиной мозг) отходят многочисленные периферические нервы, соединяющие органы тела с ЦНС. Отличием периферической системы от центральной является то, что она не защищена костями и поэтому легче подвергается различным повреждениям. По функциям нервная система подразделяется на вегетативную нервную систему (отвечает за внутреннее состояние человека) и соматическую, которая осуществляет контакты с раздражителями внешней среды, получает сигналы без перехода на подобные волокна, контролируется осознанно.

Вегетативная же дает, скорее, автоматическую, непроизвольную обработку поступающих сигналов. К примеру, симпатический отдел вегетативной системы при надвигающейся опасности повышает давление человека, увеличивает пульс и уровень адреналина. Парасимпатический отдел задействован, когда человек отдыхает, - зрачки у него сужаются, сердцебиение замедляется, кровеносные сосуды расширяются, стимулируется работа половой и пищеварительной систем. Функции нервных тканей энтерального отдела вегетативной нервной системы включают в себя ответственность за все процессы пищеварения. Самым главным органом вегетативной нервной системы является гипотоламус, который связан с эмоциональными реакциями. Стоит помнить, что импульсы в вегетативных нервах могут расходиться на находящиеся рядом волокна такого же типа. Поэтому эмоции способны отчетливо влиять на состояние самых разных органов.

Нервы контролируют мышцы и не только

Нервная и мышечная ткань в теле человека тесно взаимодействуют между собой. Так, основные спинномозговые нервы (отходят от спинного мозга) шейного отдела отвечают за движение мышц у основания шеи (первый нерв), обеспечивают двигательный и сенсорный контроль (2-й и 3-й нерв). Грудобрюшной нерв, продолжающийся от пятого, третьего и второго спинномозговых нервов, управляет диафрагмой, поддерживая процессы самопроизвольного дыхания.

Спинномозговые нервы (с пятого по восьмой) в совокупности с нервом грудинной области создают плечевое нервное сплетение, которое позволяет функционировать рукам и верхней части спины. Строение нервных тканей здесь кажется сложным, однако оно высокоорганизованно и немного различается у разных людей.

В общей сложности у человека 31 пара спинномозговых нервных выходов, восемь из которых находятся в шейном отделе, 12 в грудном, по пять в поясничном и крестцовом отделах и один в копчиковом. Кроме того, выделяют двенадцать черепно-мозговых нервов, идущих от мозгового ствола (отдел мозга, продолжающий спинной мозг). Они отвечают за обоняние, зрение, движение глазного яблока, движение языка, мимику лица и др. Кроме того, десятый нерв здесь отвечает за информацию от груди и живота, а одиннадцатый за работу трапециевидной и кивательной мышц, которые находятся частично вне головы. Из крупных элементов нервной системы стоит упомянуть крестцовое сплетение нервов, поясничное, межреберные нервы, бедренные нервы и симпатический нервный ствол.

Нервная система в животном мире представлена самыми различными образцами

Нервная ткань животных зависит от того, к какому классу относится рассматриваемое живое существо, хотя в основе всего лежат опять же нейроны. В биологической систематике животным считается создание, имеющее в клетках ядро (эукариот), способное к движению и питающееся готовыми органическими соединениями (гетеротрофность). А это значит, что можно рассматривать как нервную систему кита, так и, к примеру, червя. Мозг некоторых из последних, в отличие от человеческого, содержит не более трех сотен нейронов, а остальная система представляет собой комплекс нервов вокруг пищевода. Нервные окончания, выходящие к глазам, в ряде случаев отсутствуют, так как у живущих под землей червей нет зачастую самих глаз.

Вопросы для размышлений

Функции нервных тканей в животном мире ориентированы в основном на то, чтобы их владелец успешно выживал в окружающей среде. При этом природа таит множество загадок. К примеру, зачем пиявке мозг с 32 нервными узлами, каждый из которых сам по себе мини-мозг? Почему у самого маленького в мире паука этот орган занимает до 80% полости всего тела? Встречаются и явные диспропорции в размерах самого животного и частей его нервной системы. Гигантские кальмары располагают главным «органом для размышлений» в виде «пончика» с дыркой посредине и весом около 150 грамм (при общем весе до 1,5 центнеров). И это все может быть предметом размышлений для мозга человека.

Нервная ткань человека в организме имеет несколько мест преимущественной локализации. Это мозг (спинной и головной), вегетативные ганглии и вегетативная нервная система (метасимпатический отдел). Головной мозг человека складывается из совокупности нейронов, общее число которых составляет не один миллиард. Сам же нейрон состоит из сома - тела, а также отростков, которые получают информацию от остальных нейронов - дендритов, и аксона, являющегося удлиненной структурой, передающей информацию от тела к дендритам других нервных клеток.

Различные варианты отростков у нейронов

Нервная ткань включает в себя в общей совокупности до триллиона нейронов различной конфигурации. Они могут быть униполярными, мультиполярными или биполярными в зависимости от количества отростков. Униполярные варианты с одним отростком встречаются у человека нечасто. Они обладают только одним отростком - аксоном. Такая единица нервной системы распространена у беспозвоночных животных (тех, которых нельзя отнести к млекопитающим, гадам, птицам и рыбам). При этом стоит учитывать, что по современной классификации к числу беспозвоночных относится до 97% всех видов животных, описанных к настоящему времени, поэтому униполярные нейроны достаточно широко представлены в земной фауне.

Нервная ткань с псевдоуниполярными нейронами (имеют один отросток, но раздвоенный на кончике) встречается у высших позвоночных в черепно-мозговых и спинно-мозговых нервах. Но чаще у позвоночных имеются в наличии биполярные образцы нейронов (есть и аксон, и дендрит) или мультиполярные (аксон один, а дендритов - несколько).

Классификация нервных клеток

Какую еще классификацию имеет нервная ткань? Нейроны в ней могут выполнять разные функции, поэтому среди них выделяют ряд типов, в том числе:

  • Афферентные нервные клетки, они же чувствительные, центростремительные. Эти клетки имеют небольшие размеры (относительно других клеток такого же типа), обладают разветвленным дендритом, связаны с функциями рецепторов сенсорного типа. Они расположены вне центральной нервной системы, имеют один отросток, расположенный в контакте с каким-либо органом, и другой отросток, направленный в спинной мозг. Эти нейроны создают импульсы под воздействием на органы внешней среды или каких-либо изменений в самом теле человека. Особенности нервной ткани, сформированной за счет чувствительных нейронов, таковы, что в зависимости от подвида нейронов (моносенсорные, полисенсорные или бисенсорные) могут получаться реакции, как строго на один раздражитель (моно), так и на несколько (би-, поли-). К примеру, нервные клетки во вторичной зоне на коре больших полушарий (зрительная зона) могут обрабатывать как зрительные, так и звуковые раздражители. Информация идет от центра к периферии и обратно.
  • Двигательные (эфферентные, моторные) нейроны передают информацию от центральной нервной системы к периферии. У них длинный аксон. Нервная ткань образует здесь продолжение аксона в виде периферических нервов, которые подходят к органам, мышцам (гладким и скелетным) и ко всем железам. Скорость прохождения возбуждения через аксон в нейронах такого типа очень велика.
  • Нейроны вставочного типа (ассоциативные) отвечают за передачу информации от чувствительного нейрона на двигательный. Ученые предполагают, что нервная ткань человека состоит из таких нейронов на 97-99%. Их преимущественной дислокацией является серое вещество в центральной нервной системе, и они могут быть тормозными или возбуждающими в зависимости от выполняемых функций. Первые из них имеют возможность не только передать импульс, но и модифицировать его, усиливая эффективность.

Специфические группы клеток

Помимо вышеуказанных классификаций нейроны могут быть фоновоактивными (реакции проходят безо всякого внешнего воздействия), другие же дают импульс только при применении к ним какой-то силы. Отдельную группу нервных клеток составляют нейроны-детекторы, которые могут избирательно реагировать на какие-то сенсорные сигналы, которые имеют поведенческое значение, они нужны для распознавания образов. К примеру, в новой коре имеются клетки, которые особенно чувствительны к данным, описывающим что-то, схожее с лицом человека. Свойства нервной ткани здесь таковы, что нейрон дает сигнал при любом расположении, цвете, размере «лицевого раздражителя». В зрительной же системе есть нейроны, отвечающие за детекцию сложных физических явлений вроде приближения и удаления предметов, циклические движения и др.

Нервная ткань образует в ряде случаев комплексы, очень важные для работы головного мозга, поэтому некоторые нейроны имеют персональные имена в честь открывших их ученых. Это клетки Беца, очень крупные по размерам, обеспечивающие связь двигательного анализатора через корковый конец с моторными ядрами в стволах головного мозга и ряда отделов спинного мозга. Это и тормозные клетки Реншоу, наоборот, небольшие по размерам, помогающие стабилизировать мотонейроны при удержании нагрузки, к примеру, на руку и для поддержания расположения тела человека в пространстве и др.

На каждый нейрон приходится около пяти нейроглий

Строение нервных тканей включает в себя еще один элемент под названием «нейроглия». Эти клетки, которые называют еще глиальными или глиоцитами, по размерам в 3-4 раза меньше самих нейронов. В мозге человека нейроглий в пять раз больше, чем нейронов, что, возможно, обуславливается тем, что нейроглии поддерживают работу нейронов, выполняя различные функции. Свойства нервной ткани данного вида таковы, что у взрослых людей глиоциты являются возобновляющимися, в отличие от нейронов, которые не восстанавливаются. К функциональным «обязанностям» нейроглий относится создание гематоэнцефалического барьера с помощью глиоцитов-астроцитов, которые не дают проникнуть в мозг всем крупным молекулам, патологическим процессам и многим лекарствам. Глиоциты-олегодендроциты - мелкие по размерам, образуют вокруг аксонов у нейронов жироподобный миелиновый футляр, несущий защитную фукнцию. Также нейроглии обеспечивают опорную, трофическую, разграничительную и др. функции.

Другие элементы нервной системы

Некоторые ученые в строение нервных тканей включают и эпендиму - тонкий слой клеток, которые выстилают центральный канал спинного мозга и стенки желудочков мозга. В массе своей эпендима однослойна, состоит из клеток цилиндрической формы, в третьем и четвертом желудочках мозга она имеет несколько слоев. Составляющие эпендиму клетки, эпендимоциты, выполняют секреторную, разграничительную и опорную функции. Их тела вытянуты по форме и имеют на концах «реснички», за счет движения которых производится перемещение спинномозговой жидкости. В третьем желудочке головного мозга находятся особенные эпендимные клетки (танициты), которые, как полагается, передают данные о составе спинномозговой жидкости в специальный отдел гипофиза.

«Бессмертные» клетки с возрастом исчезают

Органы нервной ткани, по широко распространенному определению, включают в себя также стволовые клетки. К ним относят незрелые образования, которые могут становиться клетками разных органов и тканей (потентность), проходить процесс самообновления. По сути, развитие любого многоклеточного организма начинается со стволовой клетки (зиготы), из которой делением и дифференцировкой получаются все остальные виды клеток (у человека их более двухсот двадцати). Зигота представляет собой тотипотентную стволовую клетку, которая дает начало полноценному живому организму за счет трехмерной дифференцировки в единицы экстраэмбриональных и эмбриональных тканей (через 11 дней после оплодотворения у человека). Потомками тотипотентных клеток являются плюрипотетные, которые дают начало элементам зародыша - энтодерме, мезодерме и эктодерме. Из последней как раз и развивается нервная ткань, кожный эпителий, отделы кишечной трубки и органы чувств, поэтому стволовые клетки - это неотъемлемая и важная часть нервной системы.

Стволовых клеток в организме человека очень мало. К примеру, у эмбриона имеется одна такая клетка на 10 тысяч, а у пожилого человека в возрасте около 70 лет - одна на пять-восемь миллионов. Стволовые клетки обладают, помимо вышеуказанной потентности, такими свойствами, как «хоуминг» - способность клетки после введения прибывать в зону повреждения и исправлять сбои, выполняя утраченные функции и сохраняя теломер клетки. В других клетках при делении теломер в части своей утрачивается, а в опухолевых, половых и стволовых есть так называемая телоразмерная активность, в ходе которой концы хромосом автоматически надстраиваются, что дает бесконечную возможность клеточных делений, то есть бессмертие. Стволовые клетки, как своеобразные органы нервной ткани, обладают таким высоким потенциалом за счет избытка информационной рибонуклеиновой кислоты для всех трех тысяч генов, которые участвую в первых этапах развития зародыша.

Основными источниками стволовых клеток выступают эмбрионы, плодный материал после аборта, пуповинная кровь, костный мозг, поэтому с октября 2011 года решением Европейского суда запрещены манипуляции с эмбриональными стволовыми клетками, так как эмбрион признан человеком с момента оплодотворения. В России допущено лечение собственными стволовыми клетками и донорскими для ряда заболеваний.

Вегетативная и соматическая нервная система

Ткани нервной системы пронизывают весь наш организм. От центральной нервной системы (головной, спиной мозг) отходят многочисленные периферические нервы, соединяющие органы тела с ЦНС. Отличием периферической системы от центральной является то, что она не защищена костями и поэтому легче подвергается различным повреждениям. По функциям нервная система подразделяется на вегетативную нервную систему (отвечает за внутреннее состояние человека) и соматическую, которая осуществляет контакты с раздражителями внешней среды, получает сигналы без перехода на подобные волокна, контролируется осознанно.

Вегетативная же дает, скорее, автоматическую, непроизвольную обработку поступающих сигналов. К примеру, симпатический отдел вегетативной системы при надвигающейся опасности повышает давление человека, увеличивает пульс и уровень адреналина. Парасимпатический отдел задействован, когда человек отдыхает, - зрачки у него сужаются, сердцебиение замедляется, кровеносные сосуды расширяются, стимулируется работа половой и пищеварительной систем. Функции нервных тканей энтерального отдела вегетативной нервной системы включают в себя ответственность за все процессы пищеварения. Самым главным органом вегетативной нервной системы является гипотоламус, который связан с эмоциональными реакциями. Стоит помнить, что импульсы в вегетативных нервах могут расходиться на находящиеся рядом волокна такого же типа. Поэтому эмоции способны отчетливо влиять на состояние самых разных органов.

Нервы контролируют мышцы и не только

Нервная и мышечная ткань в теле человека тесно взаимодействуют между собой. Так, основные спинномозговые нервы (отходят от спинного мозга) шейного отдела отвечают за движение мышц у основания шеи (первый нерв), обеспечивают двигательный и сенсорный контроль (2-й и 3-й нерв). Грудобрюшной нерв, продолжающийся от пятого, третьего и второго спинномозговых нервов, управляет диафрагмой, поддерживая процессы самопроизвольного дыхания.

Спинномозговые нервы (с пятого по восьмой) в совокупности с нервом грудинной области создают плечевое нервное сплетение, которое позволяет функционировать рукам и верхней части спины. Строение нервных тканей здесь кажется сложным, однако оно высокоорганизованно и немного различается у разных людей.

В общей сложности у человека 31 пара спинномозговых нервных выходов, восемь из которых находятся в шейном отделе, 12 в грудном, по пять в поясничном и крестцовом отделах и один в копчиковом. Кроме того, выделяют двенадцать черепно-мозговых нервов, идущих от мозгового ствола (отдел мозга, продолжающий спинной мозг). Они отвечают за обоняние, зрение, движение глазного яблока, движение языка, мимику лица и др. Кроме того, десятый нерв здесь отвечает за информацию от груди и живота, а одиннадцатый за работу трапециевидной и кивательной мышц, которые находятся частично вне головы. Из крупных элементов нервной системы стоит упомянуть крестцовое сплетение нервов, поясничное, межреберные нервы, бедренные нервы и симпатический нервный ствол.

Нервная система в животном мире представлена самыми различными образцами

Нервная ткань животных зависит от того, к какому классу относится рассматриваемое живое существо, хотя в основе всего лежат опять же нейроны. В биологической систематике животным считается создание, имеющее в клетках ядро (эукариот), способное к движению и питающееся готовыми органическими соединениями (гетеротрофность). А это значит, что можно рассматривать как нервную систему кита, так и, к примеру, червя. Мозг некоторых из последних, в отличие от человеческого, содержит не более трех сотен нейронов, а остальная система представляет собой комплекс нервов вокруг пищевода. Нервные окончания, выходящие к глазам, в ряде случаев отсутствуют, так как у живущих под землей червей нет зачастую самих глаз.

Вопросы для размышлений

Функции нервных тканей в животном мире ориентированы в основном на то, чтобы их владелец успешно выживал в окружающей среде. При этом природа таит множество загадок. К примеру, зачем пиявке мозг с 32 нервными узлами, каждый из которых сам по себе мини-мозг? Почему у самого маленького в мире паука этот орган занимает до 80% полости всего тела? Встречаются и явные диспропорции в размерах самого животного и частей его нервной системы. Гигантские кальмары располагают главным «органом для размышлений» в виде «пончика» с дыркой посредине и весом около 150 грамм (при общем весе до 1,5 центнеров). И это все может быть предметом размышлений для мозга человека.