Корковые центры слухового анализатора. Корковые центры слуха

Проводящие пути зрительного анализатора разделяются на периферические и центральные. Периферические пути начинаются в сетчатке глаза. Первый нейрон образован нейроэпителием (палочки и колбочки), второй нейрон - биполярными клетками ганглия сетчатки, третий нейрон - муль-типолярными клетками ганглия зрительного нерва. Их нейриты формируют зрительный нерв.

После зрительного перекреста - chiasma opticum - зрительные нервы обоих глаз переходят в зрительные тракты - tractus opticus, в составе которых имеются прямые проводящие пути из латеральных отделов сетчаток глазных яблок и перекрещенные пути из медиальных отделов сетчаток. Таким образом, каждый зрительный тракт содержит волокна из обоих глаз. Этим достигается лучшее качество зрения (стереоскопичность). Волокна зрительных трактов заканчиваются в трех первичных (подкорковых) зрительных центрах; а) в латеральных коленчатых телах; б) в каудальных

ядрах зрительных бугров - p"ulvyiar thalamis - и в) в назальных холмах четверохолмия.

Из перечисленных первичных центров происходят четвертые нейроны, образующие центральные проводящие пути зрительного анализатора (рис. 290). Из латерального коленчатого тела (и из каудальных ядер зрительных бугров) четвертые нейроны передают импульсы в корковые зрительные центры затылочной доли коры полушарий. Из назальных холмов четверохолмия четвертые нейроны формируют tractus tectospinalis, по которому импульсы передаются: а)

Рис. 290. Проводящие пути зрительного анализатора (по А^егбев): 1 --поле зрения; 2 - хрусталик; 3 - сетчатка; 4 - зрительный нерв; 5 - перекрест зрительных нервов; 6 - зрительный тракт; 7 - каудальное ядро зрительного бугра; 8 - латеральное коленчатое тело; 9 - ростральные холмы четверохолмия; 10 - центральный зрительный путь;И - кора затылочной доли плаща.

на моторные клетки вентральных столбов шейногрудной части спинного мозга (эти клетки представляют собой нейроны, через которые осуществляются рефлекторные движения головы и шеи) и б) на клетки ядер третьего, четвертого и шестого двигательных нервов глазных мышц. Назальными холмами четверохолмия при участии нейронов, заложенных в парасимпатическом ядре Якубовича (Эдингера - Вестфаля) и в ресничном узле, управляются также рефлекторные сокращения сфинктера зрачка и ресничного тела.

СТАТОАКУСТИЧЕСКИЙ АНАЛИЗАТОР

Статоакустический анализатор, или равновесный и слуховой анали* заторы, состоит из: 1) рецепторного аппарата, представленного преддверно-улитковым органом; 2) проводящих путей и 3) подкорковых и корковых центров.

Развитие статоакустического анализатора. Чувство равновесия обусловлено действием сил тяжести. В состав органа равновесия (статического органа) входят специализированные чувствительные клетки, снабженные упругими волосками, и известковые кристаллики - статолиты, которые давят на чувствительные волоски и раздражают чувствительные клетки. Статические органы лишь иногда располагаются на поверхности тела в виде ямок (рис. 291, 292-/3"), представляющих собой пузырьки- статоцис-ты; на их стенках размещены чувствительные клетки, а статолиты находятся в полости статоциста. При изменении положения тела статолиты раздражают различные группы клеток.

У хордовых, За исключением ланцетника, существуют парные стато-

I Ж Ж

Рис. 291. Схема развития головного мозга и рецепторов анализаторов (по А. Н. Север-

цову):

/, //, 111 - последовательные стадии развития; / - головной мозг; 2 - глазки Гессе в спинном мозге; 3 - первичные чувствительные клетки с их эфферентными отростками; 4 - двигательные нервы; 5 - непарная обонятельная плакода; 5" - первые обонятельные ямки; 6 - обонятельный нерв; 7 - передний мозг; Т - обонятельный мозг; 7" - промежуточный мозг; 8 - глазной пузырь с глазками Гессе; 8" - глазной бокал с чувствительными клетками и наружным пигментным слоем; 9 - прозрачная часть кожи; 9" - роговица; 10 - склера; 11 - хрусталик; 12 - зрительный нерв; 13 - чувствительные клетки органа боковой линяй;13" - слуховая ямка; 13"- слуховая плакода; 13"" - слуховой пузырек (статоцист); 14 - афферентные отростки чувствительных клеток; 14" - слуховой нерв; 15 - скелетная капсула; 16 - средний

Одним из отделов большого головного мозга является самая маленькая его часть – средний мозг (mesencephalon), представленный в виде четырех «холмиков», в которые заключены ядра, выполняющие функцию центров зрения и слуха, проводником их сигналов. «Холмики» mesencephalon являются ключевой частью в области переработки информации, воспринимаемой органами чувств.

Что такое средний мозг

Между мостом и промежуточным мозгом находится серое вещество, размером около 2 см длиной и 3 см шириной, представляет собой второй верхний (superius) зрительный проводной центр. Там же расположены ядра медиального слухового анализатора, который выделился, стал отдельной структурой уже у древнейших людей и необходим для более качественной передачи сигналов от органов чувств к конечным слуховым центрам.

Расположение

Ядра mesencephalon, варолиев мост и продолговатый мозг составляют важнейшую структуру – ствол большого головного мозга, являющийся продолжением спинного. Расположилась стволовая часть в канале первого, второго шейного позвонков и частично в затылочной ямке. Комплекс нейронов иногда рассматривают не как отдельную самостоятельную часть, а как некую продольную разделительную прослойку или бугор мозгового вещества между варолиевым мостом и промежуточным мозгом.

Строение среднего мозга

Через стволовую часть проходят проводящие пути, связывающие кору больших полушарий с нейронами спинно-мозгового вещества и стволом, в которых выделяют:

  • подкорковые первичные центры зрительного анализатора;
  • подкорковые первичные центры слухового анализатора;
  • все проводящие пути, связывающие ядра больших полушарий со спинным мозгом;
  • комплексы (пучки) белого вещества, обеспечивающие прямое взаимодействие всех отделов головного мозга.

Исходя из этого, средний мозг (mesencephalon) состоит из двух основных частей: покрышки (или крыши), которой находятся первичные подкорковые центры слуха и зрения, ножки мозга с межножковым пространством, представляющих проводящие пути. Важнейшей составляющей является сильвиев водопровод – канал, соединяющий полость третьего желудочка с пазухой четвертого.

Водопровод со всех сторон окружает серое и белое центральное вещество. Серое вещество содержит ретикулярную формацию, ядра черепных нервов. В месте перехода водопровода в четвертый желудочек формируется мозговой парус (на латыни velum medullare). На боковых сечениях сильвиев водопровод имеет вид треугольника или узкой щели и выступает как ориентировочный элемент, который помогает отмечать местоположение мозговых отделов на рентгеновских снимках.

Крыша

Пластинка четверохолмия или крыша среднего мозга представляет собой две пары бугорков – верхние и нижние. Между ними пролегает большая щель –субпинеальный треугольник. От всех бугорков в направлении к нейронам больших полушарий отходят пучки волокон или коленчатых тел. Первая пара холмиков представляет собой первичные зрительные центры, а вторая – первичные слуховые.

Ножки

Два толстых тяжа, берущие свое начало из-под варолиева моста, называются ножками. В них размещены несколько групп нервных клеток чувствительного назначения вместе с нейронами двигательного. В мозговом веществе выделяют образования черного и красного цвета, которые регулируют произвольные, непроизвольные движения волокон поперечно-полосатой мышечной ткани.

Красные ядра

Структура, напрямую регулирующая координацию всех произвольных движений человека наравне с мозжечковыми нейронами. Красные ядра состоят из двух частей: мелкоклеточной, являющейся основой проводящих путей, а также крупноклеточной – образующей основу ядер. Располагаются в верхней покрышке рядом с черной субстанцией, представляют собой основные пирамидальные центры двигательной активности – основную часть мозга, контролирующую все осознанные и рефлекторные движения человеческого тела.

Черная субстанция

Местоположение черной субстанции в виде полумесяца – между покрышкой и ножками. В веществе содержится много пигмента меланина, который придает субстанции темный цвет. Принадлежит субстанция к экстрапирамидной двигательной системе, регулирует преимущественно тонус мышц и как будут выполняться автоматические движения. Особенность мозгового вещества состоит в том, что если черное вещество по каким-то причинам не выполняет свою функцию, то ее берут на себя красные ядра среднего мозга.

Функции среднего мозга

Долгое время сети ядер приписывали лишь одно назначение в анатомии – разделение ствола и больших полушарий. В ходе дальнейших исследований стало понятно, что они выполняют практически все функции, присущие высокодифференцированной нервной ткани, являются точкой пересечения большей части чувствительных нервных путей. Выделяют следующие функции среднего мозга человека:

  1. Регуляция физиологии двигательной реакции на сильный внешний раздражитель (боль, яркий свет, шум).
  2. Функция бинокулярного зрения – обеспечение способности видеть одновременно четкое изображение двумя глазами.
  3. Реакция в органах зрения, носящая вегетативный характер, проявляется аккомодацией.
  4. Рефлексы среднего мозга, обеспечивающие одновременный поворот глаз и головы на внешний раздражитель любой силы.
  5. Центр краткой обработки первичной сенсорного, чувствительного сигнала (зрение, слух, обоняние, осязание) и дальнейшее его направление в основные центры анализаторов).
  6. Регулировка осознанного и рефлекторного тонуса скелетной мускулатуры, позволяющая произвольные мышечные сокращения.

Видео

На его вентральной поверхности находятся два массивных пучка нервных волокон — ножки мозга, по которым проводятся сигналы из коры в нижележащие структуры мозга.

Рис. 1. Важнейшие структурные образования среднего мозга (поперечный срез)

В среднем мозге присутствуют различные структурные образования: четверохолмие, красное ядро, черная субстанция и ядра глазодвигательного и блокового нервов. Каждое образование выполняет определенную роль и способствует регуляции целого ряда приспособительных реакций. Через средний мозг проходят все восходящие пути, передающие импульсы к таламусу, большим полушариям и мозжечку, и нисходящие пути, проводящие импульсы к продолговатому и спинному мозгу. К нейронам среднего мозга поступают импульсы через спинной и продолговатый мозг от мышц, зрительных и слуховых рецепторов по афферентным нервам.

Передние бугры четверохолмия являются первичными зрительными центрами, и к ним поступает информация от зрительных рецепторов. При участии передних бугров осуществляются зрительные ориентировочные и сторожевые рефлексы путем движения глаз и поворота головы в сторону действия зрительных раздражителей. Нейроны задних бугров четверохолмия образуют первичные слуховые центры и при получении возбуждения от слуховых рецепторов обеспечивают осуществление слуховых ориентировочных и сторожевых рефлексов (у животного напрягаются ушные раковины, оно настораживается и поворачивает голову в сторону нового звука). Ядра задних бугров четверохолмия обеспечивают сторожевую приспособительную реакцию на новый звуковой раздражитель: перераспределение мышечного тонуса, усиление тонуса сгибателей, учащение сокращений сердца и дыхания, повышение артериального давления, т.е. животное подготавливается к защите, бегу, нападению.

Черная субстанция получает информацию с рецепторов мышц и тактильных рецепторов. Она связана с полосатым телом и бледным шаром. Нейроны черной субстанции участвуют в формировании программы действия, обеспечивающей координирование сложных актов жевания, глотания, а также тонуса мышц и двигательных реакций.

Красное ядро получает импульсы с рецепторов мышц, от коры больших полушарий, подкорковых ядер и мозжечка. Оказывает регулирующее влияние на мотонейроны спинного мозга через ядро Дейтерса и руброспиналъный тракт. Нейроны красного ядра имеют многочисленные связи с ретикулярной формацией ствола мозга и совместно с ней регулируют мышечный тонус. Красное ядро оказывает тормозное влияние на мышцы-разгибатели и активирующее влияние на мышцы-сгибатели.

Устранение связи красного ядра с ретикулярной формацией верхней части продолговатого мозга вызывает резкое повышение тонуса разгибательных мышц. Это явление называется децеребрационной ригидностью.

Основные ядра среднего мозга

Название

Функции среднего мозга

Ядра крыши верхнего и нижнего бугорков четверохолмия

Подкорковые центры зрения и слуха, от которых берет начало тектоспинальный путь, посредством которого осуществляются ориентировочные слуховые и зрительные рефлексы

Ядро продольного медиального пучка

Участвует в обеспечении сочетанного поворота головы и глаз на действие неожиданных зрительных раздражителей, а также при раздражении вестибулярного аппарата

Ядра III и IV пар черепно-мозговых нервов

Участвуют в сочетанием движении глаз за счет иннервации наружных мышц глаза, а волокна вегетативных ядер после переключения в цилиарном ганглии иннервируют мышцу, суживающую зрачок и мышцу ресничного тела

Красные ядра

Являются центральным звеном экстрапирамидной системы, поскольку на них заканчиваются пути от мозжечка (tr. cerebellotegmenlalis) и базальных ядер (tr. pallidorubralis) и от этих ядер начинается руброспинальный путь

Черная субстанция

Имеет связь с полосатым телом и корой, участвует в сложной координации движений, регуляции тонуса мышц и позы, а также в согласовании актов жевания и глотания, входит в состав экстрапирамидной системы

Ядра ретикулярной формации

Активирующие и тормозные влияния на ядра спинного мозга и различные зоны коры головною мозга

Серое центральное околоводопроводное вещество

Входит в состав антиноцицептивной системы

Структуры среднего мозга принимают непосредственное участие в интеграции разнородных сигналов, необходимых для координации движений. При непосредственном участии красного ядра, черной субстанции среднего мозга формируется нейронная сеть стволового генератора движений и, в частности, генератора движений глаз.

На основе анализа сигналов, поступающих в стволовые структуры от проприорецепторов, вестибулярной, слуховой, зрительной, тактильной, болевой и других сенсорных систем, в стволовом генераторе движений формируется поток эфферентных двигательных команд, посылаемых в спинной мозг по нисходящим путям: руброспинальному, реткулоспинальному, вестибулоспинальному, тектоспинальному. В соответствии с выработанными в стволе мозга командами становится возможным осуществление не просто сокращения отдельных мышц или мышечных групп, а формирование определенной позы тела, поддержание равновесия тела в различных позах, совершение рефлекторных и приспособительных движений при осуществлении различных видов перемещения тела в пространстве (рис. 2).

Рис. 2. Расположение некоторых ядер в стволе мозга и гипоталамусе (R. Schmidt, G. Thews, 1985): 1 — паравентрикулярное; 2 — дорсомедиальное: 3 — преоптическое; 4 — супраоптическое; 5 — заднее

Структуры стволового генератора движений могут активироваться произвольными командами, которые поступают из моторных областей коры больших полушарий. Их активность может усиливаться или тормозиться сигналами сенсорных систем и мозжечка. Эти сигналы могут модифицировать уже выполняемые моторные программы так, что их исполнение изменяется в соответствии с новыми требованиями. Так, например, приспособление позы к целенаправленным движениям (как и организация подобных движений) возможно только при участии моторных центров коры больших полушарий мозга.

Важную роль в интегративных процессах среднего мозга и его ствола играет красное ядро. Его нейроны непосредственно участвуют в регуляции, распределении тонуса скелетных мышц и движений, обеспечивающих сохранение нормального положения тела в пространстве и принятие позы, создающей готовность к выполнению определенных действий. Эти влияния красного ядра на спинной мозг реализуются через руброспинальный тракт, волокна которого оканчиваются на вставочных нейронах спинного мозга и оказывают возбуждающее влияние на а- и у-мотонейроны сгибателей и тормозят большинством ото нейронов мышц-разгибателей.

Роль красного ядра в распределении тонуса мышц и поддержании позы тела хорошо демонстрируется в условиях эксперимента на животных. При перерезке ствола головного мозга (децеребрации) на уровне среднего мозга ниже красного ядра развивается состояние, называемое децеребрационной ригидностью. Конечности животного становятся выпрямленными и напряженными, голова и хвост запрокинуты к спине. Это положение тела возникает вследствие нарушения баланса между тонусом мышц-антагонистов в сторону резкого преобладания тонуса разгибателей. После перерезки устраняется тормозное действие красного ядра и коры мозга на мышцы- разгибатели и сохраняется неизмененным возбуждающее действие на них ретикулярного и вестибулярного (Дейгерса) ядер.

Децеребрационная ригидность возникает немедленно после пересечения ствола мозга ниже уровня красного ядра. В происхождении ригидности важнейшее значение имеет у-петля. Ригидность исчезает после пересечения задних корешков и прекращения притока афферентных нервных импульсов к нейронам спинного мозга от мышечных веретен.

К происхождению ригидности имеет отношение вестибулярная система. Разрушение латерального вестибулярного ядра устраняет или снижает тонус экстензоров.

В осуществлении интегративных функций структур ствола мозга важную роль играет черная субстанция, которая участвует в регуляции тонуса мышц, позы и движений. Она участвует в интеграции сигналов, необходимых для координации работы множества мышц, участвующих в актах жевания и глотания, влияет на формирование дыхательных движений.

Через черную субстанцию на моторные процессы, инициируемые стволовым генератором движений, оказывают влияние базальные ганглии. Между черной субстанцией и базальными ганглиями существуют двусторонние связи. Имеется пучок волокон, проводящий нервные импульсы от полосатого тела к черной субстанции, и путь, проводящий импульсы в обратном направлении.

Черная субстанция посылает сигналы также к ядрам таламуса, и далее по аксонам нейронов таламуса эти потоки сигналов достигают коры. Таким образом, черная субстанция участвует в замыкании одного из нейронных кругов, по которым циркулируют сигналы между корой и подкорковыми образованиями.

Функционирование красного ядра, черной субстанции и других структур стволового генератора движений контролируется корой мозга. Ее влияние осуществляется как по прямым связям со многими ядрами ствола, так и опосредованно через мозжечок, который посылает пучки эфферентных волокон к красному ядру и другим стволовым ядрам.

В медиальном коленчатом теле метаталамуса заканчиваются волокна ядер латеральной (слуховой) петли, поэтому медиальное коленчатое тело вместе с нижним холмиком крыши среднего мозга является подкорковым центром слуха.

Медиальное коленчатое тело лежит спереди ручки нижнего холмика крыши среднего мозга под подушкой таламуса. Оно соединено с нижним холмиком при помощи ручки нижнего холмика. В медиальном коленчатом теле заканчиваются волокна ядер латеральной (слуховой) петли, поэтому медиальное коленчатое тело вместе с нижним холмиком крыши среднего мозга является подкорковым центром слуха.
Медиальное коленчатое тело, наряду с нижними холмиками пластинки крыши среднего мозга (четверохолмия), является подкорковым центром слухового анализатора
Таламус: ядро специфическое
Слуховая система центральная

Метаталамус образован парными медиальным коленчатым телом и латеральным коленчатым телом, лежащими позади каждого зрительного бугра. Обращенные друг к другу медиальные поверхности обоих зрительных бугров образуют боковые стенки полости промежуточного мозга - III желудочек.
В латеральной части дорсального таламуса существует два высокоспециализированных ядра таламуса, представляющих собой зоны переключения восходящих волокон слуховой системы в слуховую кору и восходящих зрительных волокон - в зрительную кору. Поскольку ядра сугубо специализированы и у человека отчетливо выражены как самостоятельные холмиковидные структуры, анатомы (Р.Д.Синельников, М.Р.Сапин) выделяют эти ядра в самостоятельный отдел дорсального таламуса - забугорную область (метаталамус).
Метаталамус, таким образом, включает в себя две пары коленчатых тел метаталамуса: латеральное коленчатое тело метаталамуса (corpus geniculatum laterale) и медиальное коленчатое тело метаталамуса (corpus geniculatum mediale).
Латеральное коленчатое тело находится сбоку от подушки таламуса. Оно соединено с верхним холмиком крыши среднего мозга при помощи ручки верхнего холмика крыши среднего мозга. В латеральном коленчатом теле оканчивается большая часть латерального корешка зрительного тракта (другая часть оканчивается в подушке), поэтому вместе с подушкой и верхним холмиком крыши среднего мозга латеральное коленчатое тело является подкорковым центром зрения.
Медиальное коленчатое тело лежит спереди ручки нижнего холмика крыши среднего мозга под подушкой таламуса. Оно соединено с нижним холмиком крыши среднего мозга при помощи ручки нижнего холмика. В медиальном коленчатом теле заканчиваются волокна ядер латеральной (слуховой) петли, поэтому медиальное коленчатое тело вместе с нижним холмиком крыши среднего мозга является подкорковым центром слуха.

15. КООРДИНАЦИЯ ДВИЖЕНИЙ. ТИПЫ ДВИЖЕНИЙ. ВЫРАБОТКА ДВИГАТЕЛЬНЫХ НАВЫКОВ.
Термин «координация» происходит от латинского coordinatio - взаимоупорядочение. Под координацией движений понимают процессы согласования активности мышц тела, направленные на успешное выполнение двигательной задачи.
Для центральной нервной системы объектом управления является опорно-двигательный аппарат. Своеобразие скелетно-мышечной системы заключается в том, что она состоит из большого числа звеньев, подвижно соединенных в суставах, допускающих поворот одного звена относительно другого.

Движения человека очень разнообразны, однако все это разнообразие можно свести к небольшому количеству основных типов активности: обеспечение позы и равновесия, локомоция (активное перемещение в пространстве на расстояния, значительно превышающие характерные размеры тела) и произвольные движения.
Поддержание позы у человека обеспечивается теми же физическими мышцами, что и движение, а специализированные тонические мышцы отсутствуют. При «позной» деятельности мышц сила их сокращения обычно невелика, режим близок к изометрическим показателям, а длительность сокращения значительна. В «позный», или постуральный, режим работы мышц вовлекаются преимущественно низкопороговые, медленные и устойчивые к утомлению двигательные единицы.
Одной из основных задач «позной» активности - удержание нужного положения звеньев тела в поле силы тяжести (удержание головы от свисания, голеностопных суставов от тыльного сгибания при стоянии и др.). «Позная» активность может быть направлена и на фиксацию суставов, не принимающих участия в осуществляемом движении. В трудовой деятельности удержание позы бывает связано с преодолением внешних сил.
Типичный пример позы - стояние человека. Сохранение равновесия при стоянии возможно в том случае, если проекция центра тяжести тела находится в пределах опорного контура. Обеспечение устойчивости достигается активной работой многих мышц туловища и ног, причем развиваемая этими мышцами сила невелика. Максимальное напряжение при стоянии развивают мышцы голеностопного сустава, а минимальное напряжение - мышцы коленного и тазобедренного суставов. У большинства мышц активность поддерживается на более или менее постоянном уровне. Другие мышцы активируются периодически. Эта активация связана с небольшими колебаниями центра тяжести тела как в сагиттальной, так и во фронтальной плоскости, постоянно происходящими при стоянии. Мышцы голени противодействуют отклонениям тела, возвращая его в вертикальное положение. Поддержание позы - это активный процесс, осуществляющийся, как и движение, с участием обратных связей от рецепторов. В поддержании вертикальной позы участвуют зрение и вестибулярный аппарат. Важную роль играет и проприорецепция. Поддержание равновесия при стоянии - только частный случай «позной» активности.
К понятию позы примыкает понятие мышечного тонуса. Термин «тонус» многозначен. В покое мышечные волокна обладают тургором, определяющим их сопротивление давлению и растяжению. Это составляет тот компонент тонуса, который не связан со специфической нервной активацией мышцы, обусловливающей ее сокращение. Однако в естественных условиях большинство мышц обычно в некоторой степени активируются нервной системой, в частности, для поддержания позы («позный» тонус). Другой важный компонент тонуса - рефлекторный, определяющийся рефлексом на растяжение. У человека он выявляется по сопротивлению растяжению мышцы при пассивном повороте звена конечности в суставе.
Наиболее распространенной формой локомоции человека является ходьба. Она относится к циклическим двигательным актам, при которых последовательные фазы движения периодически повторяются.
Бег отличается от ходьбы тем, что нога, которая находится позади, отталкивается от опоры раньше, чем другая нога опускается на нее. В результате в беге имеется безопорный период, период полета.
Произвольными движениями в широком смысле могут быть названы самые разные движения, совершаемые как в процессе труда, так и в повседневной жизни.

Двигательные навыки, которые осваивают дети, это, как правило, такие повседневные действия, как завязывание шнурков, пользование ножницами или выполнение различных прыжков. Овладение этими навыками позволяет ребенку непринужденно передвигаться, самому о себе заботиться и проявлять творческие способности. Некоторые из них пытаются освоить более сложные навыки, такие как выполнение гимнастических упражнений, игра на рояле и даже верховая езда.
Специалисты давно определили ряд существенных условий моторного научения. Это готовность, активность, внимание, мотивация компетент-ности и обратная связь. Формирование любого нового навыка требует, чтобы ребенок находился в состоянии готовности. Для того чтобы из-влечь пользу из упражнения, ребенок должен достичь определенного уровня развития (обусловленного в значительной степени процессами созревания) и обладать рядом предварительных знаний и умений. Не-смотря на то что достаточно сложно определить, когда дети достигают такого состояния готовности, классические исследования, проведенные в России и США, позволили сделать следующий вывод. Если начать навыко-обучать ребенка новым действиям в момент его наивысшей готовности, он освоит их быстро, с минимальными усилиями и без особого напряжения. Дети в таком состоянии хотят учиться, получают удовольствие от занятий и бурно радуются своим успехам. Их поведение является лучшим индикатором того, достигли ли они состояния готовности; они сами начинают подражать определенным действиям.
Активность необходима для моторного развития. Дети не научатся за-бираться по лестнице, если не будут пытаться это делать. Они не смогут бросать мяч, если не будут в этом практиковаться. Если ребенок живет в стесненных условиях, развитие его двигательных навыков будет проходить с отставанием. У детей, которым не удается проявить в полной мере свою активность при научении чему-либо (из-за недостатка игрушек, мест для обследования, людей, которым они могли бы подражать), возможны трудности в развитии двигательных навыков. С другой стороны, у тех, чье окружение активно влияет на них и отличается разнообразием, есть необходимая стимуляция для научения. Они копируют выполнение каких-либо действий, повторяя их много раз. Дети любят переливать воду из одного стакана в другой, что способствует усвоению понятий «полный» и «пустой», «быстро» и «медленно». Такой самостоятельно выбираемый и регулируемый режим научения часто более эффективен, чем программируемый взрослыми цикл занятий.
Моторное развитие осуществляется более эффективно благодаря вниманию, для которого требуется определенный уровень бодрствования и вовлеченности в ситуацию. Но как побудить ребенка быть более внимательным? Малышам нельзя просто сказать, что и как им нужно сделать. Например, 2-3-летние дети успешней овладевают физическими навыками, если их действия кто-то направляет. Для того чтобы научить ребенка каким-либо особым движениям рук и ног, полезно прибегать к играм и упражнениям. Такая методика показала, что детям в возрасте от 3 до 5 лет лучше удается концентрировать свое внимание в том случае, если они активно повторяют чьи-то действия. В возрасте 6-7 лет они уже могут уделять внимание словесным инструкциям и способны довольно точно их выполнять, по крайней мере в тех случаях, когда принимают участие в знакомой им деятельности.

Средний мозг (mesencephalon) (рис. 4.4.1, 4.1.24) развивается в процессе филогенеза под преимущественным влиянием зрительного ре­цептора. По этой причине его образования име­ют отношение к иннервации глаза. Здесь же образовались центры слуха, которые вместе с центрами зрения в дальнейшем разрослись в виде четырех холмиков крыши среднего мозга. С появлением у высших животных и челове­ка коркового конца слухового и зрительного анализаторов слуховые и зрительные центры среднего мозга попали в подчиненное положе­ние. При этом они стали промежуточными, подкорковыми.

С развитием у высших млекопитающих и человека переднего мозга через средний мозг стали проходить проводящие пути, связываю­щие кору конечного мозга со спинным мозгом


посредством ножек мозга. В результате в сред­нем мозге человека имеются :

1. Подкорковые центры зрения и ядра нер­
вов, иннервирующих мышцы глаза.

2. Подкорковые слуховые центры.

3. Все восходящие и нисходящие проводя­
щие пути, связывающие кору головного мозга
со спинным мозгом.

4. Пучки белого вещества, связывающие
средний мозг с другими отделами центральной
нервной системы.

Соответственно этому средний мозг имеет две основные части: крышу среднего мозга (tectum mesencephalicum), где располагаются подкорковые центры слуха и зрения, и ножки мозга (cms cerebri), где преимущественно про­ходят проводящие пути .

1. Крыша среднего мозга (рис. 4.1.24) скрыта под задним концом мозолистого тела и подразделяется посредством двух идущих крест-накрест канавок - продольной и попе­речной - на четыре холмика, располагающиеся попарно.

Верхние два холмика (colliculi superiores) являются подкорковыми центрами зрения, оба нижних (colliculi inferiores) - подкорковыми


Рис. 4.1.24.Стволовая часть мозга, включающая в свой состав средний мозг (mesencephalon), задний мозг

(metencephalon) и продолговатый мозг (myelencephalon):

а - вид спереди (/-двигательный корешок тройничного нерва; 2 - чувствительный корешок тройничного нерва; 3 - базальная борозда моста; 4 - преддверно-улитковый нерв; 5 - лицевой нерв; 6 - вентролатеральная борозда продолговатого мозга; 7 - олива; 8 - циркумоливарный пучок; 9 - пирамида продолговатого мозга; 10 - передняя срединная щель; // - перекрест пирамид­ных волокон); б - вид сзади (/ - шишковидная железа; 2 - верхние бугорки четверохолмия; 3 - нижние бугорки четверохолмия; 4 - ромбовидная ямка; 5 - колено лицевого нерва; 6 - срединная щель ромбовидной ямки; 7 - верхняя ножка мозжечка; 8 - средняя ножка мозжечка; 9 - нижняя ножка мозжечка; 10 - вестибулярная область; //-треугольник подъязычного нерва; 12 - треугольник блуждающего нерва; 13 - бугорок клиновидного пучка; 14 - бугорок нежного ядра; /5 - срединная борозда)


ватыи мозг

центрами слуха. В плоской канавке между верхними бугорками лежит шишковидное тело. Каждый холмик переходит в так называемую ручку холмика (brachium colliculum), направля­ющуюся латерально, кпереди и кверху к про­межуточному мозгу. Ручка верхнего холмика (brachium colliculum superiores) идет под по­душкой зрительного бугра к латеральному ко­ленчатому телу (corpus geniculatum laterale). Ручка нижнего холмика (brachium colliculum inferiores), проходя вдоль верхнего края trigo-пит lemnisci до sulcus lateralis mesencephali, исчезает под медиальным коленчатым телом (corpus geniculatum mediale). Названные ко­ленчатые тела относятся уже к промежуточ­ному мозгу.

2. Ножки мозга (pedunculi cerebri) содержат
все проводящие пути к переднему мозгу.
Ножки мозга имеют вид двух толстых полуци­
линдрических белых тяжей, которые расходят­
ся от края моста под углом и погружаются в
толщу полушарий большого мозга.

3. Полость среднего мозга, являющаяся ос­
татком первичной полости среднего мозгового
пузыря, имеет вид узкого канала и называется
водопроводом мозга (aqueductus cerebri). Он
представляет узкий, выстланный эпендимой ка­
нал 1,5-2,0 см длиной, соединяющий III и IV
желудочки. Дорзально водопровод ограничи­
вается крышей среднего мозга, а вентрально -
покрышкой ножек мозга.

На поперечном разрезе среднего мозга раз­личают три основные части:

1. Пластинку крыши (lamina tecti).

2. Покрышку (tegmentum), представляющую
верхний отдел ножек мозга.

3. Вентральный отдел ножек мозга, или ос­
нование ножки мозга (basis pedunculi cerebri).
Соответственно развитию среднего мозга под
влиянием зрительного рецептора в нем заложе­
ны различные ядра, имеющие отношение к ин­
нервации глаза (рис. 4.1.25).

Водопровод мозга окружен центральным се­рым веществом, имеющим по своей функции отношение к вегетативной системе. В нем, под вентральной стенкой водопровода, в покрышке ножки мозга заложены ядра двух двигательных черепных нервов - п. oculomotorius (III пара) на уровне верхнего двухолмия и п. trochlearis (IV пара) на уровне нижнего двухолмия. Ядро глазодвигательного нерва состоит из несколь­ких отделов соответственно иннервации не­скольких мышц глазного яблока. Медиально и кзади от него помещаются небольшое, тоже парное, вегетативное добавочное ядро (nucleus accessorius) и непарное срединное ядро.

Добавочное ядро и непарное срединное ядро иннервируют непроизвольные мышцы гла­за (т. ciliaris и т. sphincter pupillae). Выше (ростральнее) ядра глазодвигательного нерва в покрышке ножки мозга располагается ядро медиального продольного пучка.


Рис. 4.1.25. Ядра и связи среднего мозга и его ствола (по Leigh, Zee, 1991):

1 - нижние бугорки; 2 - промежуточное ядро Кахала; 3 - ме­диальный продольный пучок; 4 - ретикулярная формация про­долговатого мозга; 5 - ядро Даркшевича; 6 - п. perihypoglos-sal; 7 - ростральный промежуточный медиальный продольный пучок; 8 -верхние бугорки; 9 -парамедианная ретикулярная формация моста; III, IV, VI - черепно-мозговые нервы

Латерально от водопровода мозга находится ядро среднемозгового тракта тройничного нер­ва (nucleus mesencephalicus n. trigemini).

Между основанием ножки мозга (basis pe­dunculi cerebralis) и покрышкой (tegmentum) располагается черное вещество (substantia nigra). В цитоплазме нейронов этой субстанции обнаруживается пигмент - меланин.

От покрышки среднего мозга (tegmentum mesencephali) отходит центральный покрышеч­ный путь (tractus tegmentalis centralis). Он представляет собой проекционный нисходящий путь, который содержит волокна, идущие от зрительного бугра, бледного шара, красного ядра, а также ретикулярной формации среднего мозга по направлению ретикулярной формации и оливы продолговатого мозга. Эти волокна и ядерные образования относятся к экстрапира­мидной системе. В функциональном отношении черное вещество также относится к экстрапи­рамидной системе.

Расположенное вентрально от черного веще­ства основание ножки мозга содержит продоль­ные нервные волокна, спускающиеся от коры полушария большого мозга ко всем нижеле­жащим отделам центральной нервной системы (tractus corticopontinus, corticonuclearis, cortico-spinalis и др.). Покрышка, находящаяся дор­зально от черного вещества, содержит преиму-


Анатомия головного мозга


Ядро VI -^

VI нерв

щественно восходящие волокна, в том числе медиальную и латеральную петли. В составе этих петель восходят к большому мозгу все чувствительные пути, за исключением зритель­ного и обонятельного.

Среди ядер серого вещества самым значи­тельным ядром является красное ядро (nucleus ruber). Это удлиненное образование простира­ется в покрышке ножки мозга от гипоталамуса промежуточного мозга до нижнего двухолмия, где от него начинается важный нисходящий путь (tractus rubrospinalis), соединяющий крас­ное ядро с передними рогами спинного мозга. Пучок нервных волокон после выхода из крас­ного ядра перекрещивается с аналогичным пуч­ком волокон противоположной стороны в вент­ральной части срединного шва - вентральный перекрест покрышки. Красное ядро является весьма важным координационным центром экс­трапирамидной системы. К нему проходят во­локна от мозжечка, после их перекреста под крышей среднего мозга. Благодаря этим связям мозжечок и экстрапирамидная система через посредство красного ядра и отходящего от него красноядерно-спинномозгового пути оказывают влияние на всю поперечнополосатую мускула­туру.

В покрышку среднего мозга продолжают­ся также ретикулярная формация (formatio reticularis) и продольный медиальный пучок. О строении ретикулярной формации излагается несколько ниже. Стоит более подробно остано­виться на медиальном продольном пучке, имею­щем большое значение в функционировании зрительной системы.

Медиальный продольный пучок (fasciculus longitudinalis medialis). Медиальный продоль­ный пучок состоит из волокон, идущих от ядер головного мозга различных уровней. Простира­ется он от ростральной части среднего мозга к спинному мозгу. На всех уровнях пучок распо­лагается вблизи срединной линии и несколько вентральней сильвиевого водопровода, четвер­того желудочка. Ниже уровня расположения ядра отводящего нерва большинство волокон нисходящие, а выше этого уровня преобладают восходящие волокна .

Медиальный продольный пучок соединяет ядра глазодвигательного, блокового и отводя­щего нервов (рис. 4.1.26).

Медиальный продольный пучок координи­рует деятельность двигательных и четырех вес­тибулярных ядер . Он также обеспечивает межсегментарную интеграцию движений, со­путствующих зрению и слуху.

Посредством вестибулярных ядер медиаль­ный пучок имеет обширные связи с клочково-узелковой долей мозжечка (lobus flocculonodu-laris), в которой обеспечивается координация сложных функций восьми черепно-мозговых и спинных нервов (зрительный, глазодвига­тельный, блоковый, тройничный, отводящий,


Рис. 4.1.26. Связь между ядрами глазодвигательного, блокового и отводящего нервов при помощи медиаль­ного продольного пучка

лицевой, преддверно-улитковый нервы) .

Нисходящие волокна формируются, глав­ным образом, в медиальном вестибулярном ядре (nucleus vestibularis medialis), ретикуляр­ной формации, верхних холмиках четверохол­мия и промежуточном ядре Кахала.

Нисходящие волокна от медиального вес­тибулярного ядра (перекрещенные и непере-крещенные) обеспечивают моносинаптическое торможение верхних шейных нейронов в лаби­ринтной регуляции положения головы относи­тельно туловища .

Восходящие волокна исходят из вестибуляр­ных ядер. Проецируются они на ядра глазо­двигательных нервов . Проекция от верхнего вестибулярного ядра проходит в меди­альном продольном пучке к блоковому и дор-зальному глазодвигательному ядру с этой же стороны (нейроны двигателя нижней прямой мышцы глаза).

Вентральные части латерального вестибу­лярного ядра (nucleus vestibularis lateralis) проецируются на противоположные ядра отво­дящего и блокового нервов, а также на часть ядер глазодвигательного комплекса.

Взаимные связи медиального продольного пучка представляют собой аксоны вставочных нейронов в ядрах глазодвигательного и отводя­щего нервов. Пересечение волокон происходит на уровне ядра отводящего нерва. Имеется так­же двусторонняя проекция глазодвигательного ядра на ядро отводящего нерва.

Вставочные нейроны глазодвигательных не­рвов и нейроны верхних холмиков четверохол­мия проецируются на ретикулярную форма­цию. Последние, в свою очередь, проецируются на червь мозжечка . В ретикулярной

Глава 4. ГОЛОВНОЙ МОЗГ И ГЛАЗ

Формации происходит переключение волокон, направляющихся от надъядерных структур к коре мозга.

Отводящие межъядерные нейроны проеци­руются, главным образом, на контрлатераль­ные глазодвигательные нейроны внутренней и нижней прямых мышц .

Верхние бугорки (холмики) четверохол­мия (collicilus superior) (рис. 4.1.24-4.1.27).

Верхние холмики четверохолмия представ­ляют собой два округлых возвышения, располо­женных на дорзальной поверхности среднего мозга. Отделены они друг от друга вертикаль­ной бороздой, содержащей эпифиз. Поперечная борозда отделяет верхние холмики от нижних холмиков. Выше верхних холмиков располага­ется зрительный бугор. Сверху по срединной линии лежит большая вена мозга.

Верхние холмики четверохолмия имеют мно­гослойное клеточное строение (см. «Зрительный путь»). К ним подходят и из них выходят многочисленные нервные тракты .

Каждый холмик получает точную топогра­фическую проекцию сетчатки (рис. 4.1.27). Дор-зальная часть четверохолмия в большей степе­ни является сенсорной. Проецируется она на наружное коленчатое тело и подушку.

Подушка зрительно­го бугра

Претек-тальная область

Рис. 4.1.27. Схематическое изображение основных свя­зей верхних бугорков четверохолмия

Вентральная часть является двигательной и проецируется на моторные субталамические области и ствол мозга .

Поверхностные слои четверохолмия осуще­ствляют обработку зрительной информации и совместно с глубокими слоями обеспечивают ориентацию головы и глаз в процессе определе­ния новых зрительных стимулов.

Стимуляция верхних холмиков у обезьяны вызывает саккадические движения, амплитуда и направление которых зависят от местополо­жения стимула. Вертикальные саккады встре­чаются при двусторонней стимуляции .

Поверхностные клетки отвечают на стацио­нарные и перемещающиеся зрительные стиму­лы. Глубокие клетки обычно возбуждаются перед саккадой.

Третий тип клеток объединяет информацию о положении глаза с информацией, получаемой от сетчатки. Благодаря этому контролируется и уточняется необходимое положение глаза отно­сительно головы. Этот сигнал используется для


воспроизведения саккады, направление которой обращено к зрительной цели . Поверхностные и глубокие слои могут функ­ционировать независимо .

Нижние холмики являются частью слухо­вого пути.

Покрышка среднего мозга расположена кпе­реди или вентральней холмиков. В продольном направлении между крышей и покрышкой сред­него мозга проходит сильвиев водопровод. По­крышка среднего мозга содержит многочислен­ные нисходящие и восходящие волокна, имею­щие отношение к соматосенсорной и двига­тельной системам. Помимо этого, в покрышке находятся несколько ядерных групп, среди ко­торых ядра III и IV пар черепно-мозговых не­рвов, красное ядро, а также скопление ней­ронов, относящихся к ретикулярной формации. Покрышку среднего мозга рассматривают как центральное скопление двигательных и ретику­лярных волокон, которые идут от промежуточ­ного мозга к продолговатому мозгу.

Вентрально или кпереди от покрышки сред­него мозга находится крупный парный пучок волокон - ножка мозга, которая содержит главным образом толстые нисходящие двига­тельные волокна, берущие свое начало в коре мозга. По ним передаются двигательные эф­ферентные импульсы из коры к ядрам череп­но-мозговых нервов и ядрам моста (tractus corticobulbaris sen corticinuclearis), а также к двигательным ядрам спинного мозга (tractus corticispinalis). Между этими важнейшими пуч­ками волокон на передней поверхности средне­го мозга и его покрышки находится большое ядро из пигментированных нервных клеток, содержащих меланин.

Претектальная область получает приво­дящие волокна от зрительного тракта (см. рис. 4.1.27). Она также получает затылочные и лобные кортикотектальные волокна, содейству­ющие вертикальному взгляду, вергентным дви­жениям глаза и его аккомодации . Нейроны этой области избирательно реа­гируют на зрительную информацию, причем с учетом изменения локализации изображения объекта на обеих сетчатках .

В претектальной области содержатся также синапсы зрачкового рефлекса. Некоторые из отводящих волокон пересекаются в области се­рого вещества, располагающегося вокруг силь-виевого водопровода. Направляются волокна к мелкоклеточным ядрам глазодвигательного нерва, управляющим пупилломоторными во­локнами.

Необходимо указать и на наличие трех по­крышечных путей, имеющих большое функцио­нальное значение. Это латеральный спиннотала-мический путь (tractus spinothalamicus late-ralis), медиальный лемнисковый путь (медиаль­ный лемниск; lemniscus medialis) и медиаль-


Анатомия головного мозга

Ный продольный пучок. Латеральный спинно-таламический путь несет афферентные болевые волокна и располагается в покрышке среднего мозга снаружи. Медиальный лемниск обеспечи­вает передачу сенсорной и тактильной инфор­мации, а также информацию о положении тела. Он располагается в области моста медиально, но смещается латерально в среднем мозге. Яв­ляется он продолжением медиальных петель. Соединяет лемниск тонкое и клиновидное ядра с ядрами зрительного бугра.