Биологические и биохимические методы определения. Биохимические методы исследования

Биохимический метод считают основным способом качественной диагностики разнообразных заболеваний. Проанализируем особенности данной диагностики, области применения.

Объекты диагностирования

В настоящее время биохимический метод диагностики связан с изучением пота, мочи, иных биологических жидкостей. С его помощью можно выявить активность ферментов, выяснить количественное содержание продуктов метаболизма в разных биологических жидкостях.

Биохимический метод позволяет определять нарушения, возникающие в обмене веществ, обусловленные наследственными факторами.

История открытия

В начале двадцатого века английский врач А. Гаррод занимался изучением алкаптонурии. Ему удалось установить, что по отсутствию некоторых ферментов можно установить нарушения в обмене веществ, а также определить врожденный метаболизм.

Разные наследственные болезни обусловливаются различными мутациями в генах, приводящими к изменению скорость синтеза белковых молекул, изменению их структуры. В результате таких изменений наблюдается нарушение липидного, белкового, углеводного обмена.

Биохимический метод позволяет анализировать химический состав тканей и материалов.

В случае патологии могут возникать изменения концентрации, а также появляться какие-то дополнительные компоненты. Данный метод дает возможность определять ферменты, изучать гормональный баланс.

Классификация

Биохимический метод подразделяют на качественный и количественный варианты. Для качественного определения применяют свойства, которые характерны для применяемого вещества, могут проявляться при химических реакциях: нагревании, добавлении некоторых реагентов.

Количественный биохимический метод предполагает первоначальное обнаружение вещества, затем его количественное вычисление.

Медиаторы, гормоны, содержащиеся в человеческом организме в небольшом количестве, выявляют с помощью тест-объектов.

Биохимический метод исследования постоянно совершенствуется, что дает возможность получать результат максимальной точности о процессах обмена веществ, происходящих в клетках и органах. В настоящее время такие методики диагностики объединяют с иными способами исследования, например, гистологическими, иммунными, цитологическими анализами.

Чтобы использовать сложные методики, применяют специализированное оборудование.

Биохимические методы анализа дают возможность разрабатывать и применять быстрый и упрощенный метод, позволяющий за считаные минуты определить оценку конкретных биохимических показателей.

В настоящее время аналитические лаборатории располагают современным оборудованием, автоматическими приборами и системами, позволяющими с максимальной точностью выявить необходимый показатель.

Способы проведения

Биохимический метод исследования позволяет определять различными способами какое-либо вещество в биологических жидкостях. К примеру, можно выявить такой показатель, как холестеринэстеразу, используя современное оборудование. При выборе конкретной методики учитывают характер анализируемых биологических жидкостей.

Биохимический метод изучения применяют для выявления конкретного вещества в однократном варианте, а также для изучения динамики изменений. Данный показатель анализируют при определенной нагрузке, временном показателе, в процессе приема некоторых химических препаратов.

Специфика метода

Биохимический метод генетики гарантирует быстрое выполнение анализа биологического материала. Он подходит для многократного применения, дает возможность анализировать хромосомные структуры, выявлять их кариотип. Благодаря такой методике специалисты выявляют моногенные и наследственные заболевания, связанные с полиморфизмами и мутациями генов, а также их структур.

Современные биохимические методы применяют для нахождения новых форм мутантных аллелей в ДНК. Благодаря этой методике выявили тысячу заболеваний, связанных с обменными процессами. Многие из них являются проблемами, связанными с дефектами ферментов, а также с изменениями структурных белков.

Для диагностики нарушений в обмене веществ используют две стадии. Сначала производят отбор возможных случаев болезни. Затем уточняют первоначальный диагноз, вооружившись сложными и точными методиками и оборудованием.

Например, в пренатальный период осуществляют у новорожденных детей с помощью биохимического метода анализа диагностику наследственных болезней. Это дает возможность обнаруживать патологические изменения своевременно и незамедлительно начинать лечение.

Виды биохимического анализа

Как подразделяется биохимический метод? Определение различных химических веществ осуществляется различными способами. Суть методики заключается в выявлении определенных биохимических продуктов. Причина в том, что происходит изменение действия разных аллелей. Принцип определения заключается в выявлении измененных нуклеиновых кислот и белков с помощью гель-электрофореза вместе с иными методиками: авторадиографией, блот-гибридизацией.

Биохимический анализ дает возможность выявлять гетерозиготные носители разных заболеваний. Из-за мутационных процессов, происходящих в организме человека, появляются хромосомные перестройки, негативно влияющие на здоровье человека.

Кроме того, современные биохимические методики диагностики дают возможность определять разные полиморфизмы, а также вызывают мутации различных генов.

Среди распространенных методов современной биохимии выделим центрифугирование, диализ и хроматографию.

Оптические методы исследования

Абсорбционная спектроскопия основывается на принципе определения поглощенного света, который проходит через раствор анализируемого вещества в результате абсорбции.

Для измерения спектров применяют специальные спектральные аппараты. В них помещают пробу анализируемого препарата между фотоэлементом и источником света. У каждого биологического вещества есть определенный свет поглощения.

Для проведения аналитических исследований применяют длину волны, которая соответствует максимуму поглощения анализируемого вещества.

Фотоэлектроколориметрия представляет собой определение окрашенными растворами видимого фрагмента спектра.

Спектрофотомерия, востребованная в современном анализе, представляет собой определение пропускания (поглощения) прозрачными жидкостями видимой, ультрафиолетовой и инфракрасной зон спектра.

Среди основных приборов, применяемых для измерения, выделим спектрофотометры и фотоэлектроколориметры. Эти технические приспособления позволяют проводить точные измерения в огромном диапазоне длин волн, начиная с ультрафиолета, заканчивая инфракрасной зоной спектра.

Электрофорез в современной медицине

Данное явление предполагает перемещение в электрическом поле заряженных частиц. Их поведение можно описать тремя базовыми характеристиками: скоростью движения частицы, электрофоретической подвижностью, электрокинетическим потенциалом.

Среди многочисленных методов, которые применяют для проведения аналитических исследований, именно электрофорез позволяет разделять смеси веществ на отдельные фракции, осуществлять их количественное и качественное определение. Например, подобной методикой можно провести разделение белка сыворотки крови на альбумин и четыре фракции глобулинов. Такая задача часто решается в клинической биохимии, поскольку от соотношения фракций зависит определение патологических процессов, протекающих в организме больного.

В настоящее время проводят свободный (фронтальный) электрофорез, связанный с жидкой средой, а также зональный вариант в поддерживающих средах. Ими могут выступать пористые инертные синтетические либо натуральные материалы: крахмал, ацетилцеллюлоза, бумага, синтетический полиакриламидный гель.

Задача такой среды заключается в стабилизации жидкости, снижении диффузии, создании дополнительного механизма разделения.

В последнее время стали использовать разделение по молекулярному весу совместно с электрофоретической подвижностью.

Разновидность современного анализа

Диск-электрофорез является высокоразрешающей разновидностью данного метода. Суть его заключается в том, что сначала движение молекул производится через крупнопористый концентрирующий гель, где осуществляется разделение смеси посредством движения между разными сортами ионов. Разрешающая способность метода достигается путем концентрации перед разложением пробы в небольшой стартовой зоне, разделяя при этом вещества, которые незначительно отличаются между собой по свойствам.

Хроматографические методы базируются на динамическом делении смеси биологических веществ. Суть их в том, что поток подвижной фазы, которая содержит анализируемое вещество, проходит через стационарную фазу, что сопровождается взаимодействием с компонентами образца. Фазы для данного анализа подбирают так, чтобы отличались коэффициенты распределения у компонентов смеси.

В зависимости от агрегатного состояния подвижной фазы существует подразделение хроматографических методов на жидкостный и газообразный виды. С учетом геометрической формы стационарной фазы выделяют плоскостную и колоночную хроматографию.

По механизму разделения биологических препаратов в настоящее время выделяют адсорбционную хроматографию, базирующуюся на разной адсорбционной способности компонентов разделяемой жидкости на границе раздела двух фаз.

Распределительная, или адсорбционная хроматография, базируется на разной способности поглощать объемом жидкой фазы компонентов анализируемой смеси.

Заключение

Биохимический анализ необходим для ранней диагностики серьезных заболеваний. Например, при аффинной хроматографии можно выделить определенный компонент из любой биологической смеси.

Подобная методика применяется для очистки антител и антигенов, рецепторов, ферментов, гормонов. Особая роль в биохимии принадлежит центрифугированию. Исследование и разделение веществ на основе данного метода базируется на различной скорости седиментации (оседания) в центробежном поле частичек, которые имеют различную плотность, размеры, форму. При правильном подборе скорости проведения центрифугирования можно осаждать митохондрии, рибосомы, лизосомы.

Радиоизотопные методы базируются на возможности нестабильных изотопов испускать электромагнитное излучение либо частицы, фиксируемые специальными электронными приборами.

Среди явных преимуществ всех современных методов, применяемых в медицине, выделим возможность анализировать метаболические превращения, выявлять возраст биологических препаратов. Такие исследования помогают своевременно лечить пациентов.

Для генетических исследований человек является неудобным объектом, так как у человека: невозможно экспериментальное скрещивание; большое количество хромосом; поздно наступает половая зрелость; малое число потомков в каждой семье; невозможно уравнивание условий жизни для потомства.

В генетике человека используется ряд методов исследования.

Генеалогический метод

Использование этого метода возможно в том случае, когда известны прямые родственники — предки обладателя наследственного признака (пробанда ) по материнской и отцовской линиям в ряду поколений или потомки пробанда также в нескольких поколениях. При составлении родословных в генетике используется определенная система обозначений. После составления родословной проводится ее анализ с целью установления характера наследования изучаемого признака.

Условные обозначения, принятые при составлении родословных:
1 — мужчина; 2 — женщина; 3 — пол не выяснен; 4 — обладатель изучаемого признака; 5 — гетерозиготный носитель изучаемого рецессивного гена; 6 — брак; 7 — брак мужчины с двумя женщинами; 8 — родственный брак; 9 — родители, дети и порядок их рождения; 10 — дизиготные близнецы; 11 — монозиготные близнецы.

Благодаря генеалогическому методу были определены типы наследования многих признаков у человека. Так, по аутосомно-доминантному типу наследуются полидактилия (увеличенное количество пальцев), возможность свертывать язык в трубочку, брахидактилия (короткопалость, обусловленная отсутствием двух фаланг на пальцах), веснушки, раннее облысение, сросшиеся пальцы, заячья губа, волчья пасть, катаракта глаз, хрупкость костей и многие другие. Альбинизм, рыжие волосы, подверженность полиомиелиту, сахарный диабет, врожденная глухота и другие признаки наследуются как аутосомно-рецессивные.

Доминантный признак — способность свертывать язык в трубочку (1) и его рецессивный аллель — отсутствие этой способности (2).
3 — родословная по полидактилии (аутосомно-доминантное наследование).

Целый ряд признаков наследуется сцепленно с полом: Х -сцепленное наследование — гемофилия, дальтонизм; Y -сцепленное — гипертрихоз края ушной раковины, перепончатость пальцев ног. Имеется ряд генов, локализованных в гомологичных участках Х - и Y -хромосом, например общая цветовая слепота.

Использование генеалогического метода показало, что при родственном браке, по сравнению с неродственным, значительно возрастает вероятность появления уродств, мертворождений, ранней смертности в потомстве. В родственных браках рецессивные гены чаще переходят в гомозиготное состояние, в результате развиваются те или иные аномалии. Примером этого является наследование гемофилии в царских домах Европы.

— гемофилик; — женщина-носитель.

Близнецовый метод

1 — монозиготные близ-нецы; 2 — дизигот-ные близ-нецы.

Близнецами называют одновременно родившихся детей. Они бывают монозиготными (однояйцевыми) и дизиготными (разнояйцевыми).

Монозиготные близнецы развиваются из одной зиготы (1), которая на стадии дробления разделилась на две (или более) части. Поэтому такие близнецы генетически идентичны и всегда одного пола. Монозиготные близнецы характеризуются большой степенью сходства (конкордантностью ) по многим признакам.

Дизиготные близнецы развиваются из двух или более одновременно овулировавших и оплодотворенных разными сперматозоидами яйцеклеток (2). Поэтому они имеют различные генотипы и могут быть как одного, так и разного пола. В отличие от монозиготных, дизиготные близнецы характеризуются дискордантностью — несходством по многим признакам. Данные о конкордантности близнецов по некоторым признакам приведены в таблице.

Признаки Конкордантность, %
Монозиготные близнецы Дизиготные близнецы
Нормальные
Группа крови (АВ0) 100 46
Цвет глаз 99,5 28
Цвет волос 97 23
Патологические
Косолапость 32 3
«Заячья губа» 33 5
Бронхиальная астма 19 4,8
Корь 98 94
Туберкулез 37 15
Эпилепсия 67 3
Шизофрения 70 13

Как видно из таблицы, степень конкордантности монозиготных близнецов по всем приведенным признакам значительно выше, чем у дизиготных, однако она не является абсолютной. Как правило, дискордантность монозиготных близнецов возникает в результате нарушений внутриутробного развития одного из них или под влиянием внешней среды, если она была разной.

Благодаря близнецовому методу, была выяснена наследственная предрасположенность человека к ряду заболеваний: шизофрении, эпилепсии, сахарному диабету и другим.

Наблюдения за монозиготными близнецами дают материал для выяснения роли наследственности и среды в развитии признаков. Причем под внешней средой понимают не только физические факторы среды, но и социальные условия.

Цитогенетический метод

Основан на изучении хромосом человека в норме и при патологии. В норме кариотип человека включает 46 хромосом — 22 пары аутосом и две половые хромосомы. Использование данного метода позволило выявить группу болезней, связанных либо с изменением числа хромосом, либо с изменениями их структуры. Такие болезни получили название хромосомных .

Материалом для кариотипического анализа чаще всего являются лимфоциты крови. Кровь берется у взрослых из вены, у новорожденных — из пальца, мочки уха или пятки. Лимфоциты культивируются в особой питательной среде, в состав которой, в частности, добавлены вещества, «заставляющие» лимфоциты интенсивно делиться митозом. Через некоторое время в культуру клеток добавляют колхицин. Колхицин останавливает митоз на уровне метафазы. Именно во время метафазы хромосомы являются наиболее конденсированными. Далее клетки переносятся на предметные стекла, сушатся и окрашиваются различными красителями. Окраска может быть а) рутинной (хромосомы окрашиваются равномерно), б) дифференциальной (хромосомы приобретают поперечную исчерченность, причем каждая хромосома имеет индивидуальный рисунок). Рутинная окраска позволяет выявить геномные мутации, определить групповую принадлежность хромосомы, узнать, в какой группе изменилось число хромосом. Дифференциальная окраска позволяет выявить хромосомные мутации, определить хромосому до номера, выяснить вид хромосомной мутации.

В тех случаях, когда необходимо провести кариотипический анализ плода, для культивирования берутся клетки амниотической (околоплодной) жидкости — смесь фибробластоподобных и эпителиальных клеток.

К числу хромосомных заболеваний относятся: синдром Клайнфельтера, синдром Тернера-Шерешевского, синдром Дауна, синдром Патау, синдром Эдвардса и другие.

Больные с синдромом Клайнфельтера (47, ХХY ) всегда мужчины. Они характеризуются недоразвитием половых желез, дегенерацией семенных канальцев, часто умственной отсталостью, высоким ростом (за счет непропорционально длинных ног).

Синдром Тернера-Шерешевского (45, Х0 ) наблюдается у женщин. Он проявляется в замедлении полового созревания, недоразвитии половых желез, аменорее (отсутствии менструаций), бесплодии. Женщины с синдромом Тернера-Шерешевского имеют малый рост, тело диспропорционально — более развита верхняя часть тела, плечи широкие, таз узкий — нижние конечности укорочены, шея короткая со складками, «монголоидный» разрез глаз и ряд других признаков.

Синдром Дауна — одна из самых часто встречающихся хромосомных болезней. Она развивается в результате трисомии по 21 хромосоме (47; 21, 21, 21). Болезнь легко диагностируется, так как имеет ряд характерных признаков: укороченные конечности, маленький череп, плоское, широкое переносье, узкие глазные щели с косым разрезом, наличие складки верхнего века, психическая отсталость. Часто наблюдаются и нарушения строения внутренних органов.

Хромосомные болезни возникают и в результате изменения самих хромосом. Так, делеция р -плеча аутосомы №5 приводит к развитию синдрома «крик кошки». У детей с этим синдромом нарушается строение гортани, и они в раннем детстве имеют своеобразный «мяукающий» тембр голоса. Кроме того, наблюдается отсталость психомоторного развития и слабоумие.

Чаще всего хромосомные болезни являются результатом мутаций, произошедших в половых клетках одного из родителей.

Биохимический метод

Позволяет обнаружить нарушения в обмене веществ, вызванные изменением генов и, как следствие, изменением активности различных ферментов. Наследственные болезни обмена веществ подразделяются на болезни углеводного обмена (сахарный диабет), обмена аминокислот, липидов, минералов и др.

Фенилкетонурия относится к болезням аминокислотного обмена. Блокируется превращение незаменимой аминокислоты фенилаланин в тирозин, при этом фенилаланин превращается в фенилпировиноградную кислоту, которая выводится с мочой. Заболевание приводит к быстрому развитию слабоумия у детей. Ранняя диагностика и диета позволяют приостановить развитие заболевания.

Популяционно-статистический метод

Это метод изучения распространения наследственных признаков (наследственных заболеваний) в популяциях. Существенным моментом при использовании этого метода является статистическая обработка получаемых данных. Под популяцией понимают совокупность особей одного вида, длительное время обитающих на определенной территории, свободно скрещивающихся друг с другом, имеющих общее происхождение, определенную генетическую структуру и в той или иной степени изолированных от других таких совокупностей особей данного вида. Популяция является не только формой существования вида, но и единицей эволюции, поскольку в основе микроэволюционных процессов, завершающихся образованием вида, лежат генетические преобразования в популяциях.

Изучением генетической структуры популяций занимается особый раздел генетики — популяционная генетика . У человека выделяют три типа популяций: 1) панмиктические, 2) демы, 3) изоляты, которые отличаются друг от друга численностью, частотой внутригрупповых браков, долей иммигрантов, приростом населения. Население крупного города соответствует панмиктической популяции. В генетическую характеристику любой популяции входят следующие показатели: 1) генофонд (совокупность генотипов всех особей популяции), 2) частоты генов, 3) частоты генотипов, 4) частоты фенотипов, система браков, 5) факторы, изменяющие частоты генов.

Для выяснения частот встречаемости тех или иных генов и генотипов используется закон Харди-Вайнберга .

Закон Харди-Вайнберга

В идеальной популяции из поколения в поколение сохраняется строго определенное соотношение частот доминантных и рецессивных генов (1), а также соотношение частот генотипических классов особей (2).

p + q = 1, (1)
р 2 + 2pq + q 2 = 1, (2)

где p — частота встречаемости доминантного гена А ; q — частота встречаемости рецессивного гена а ; р 2 — частота встречаемости гомозигот по доминанте АА ; 2pq — частота встречаемости гетерозигот Аа ; q 2 — частота встречаемости гомозигот по рецессиву аа .

Идеальной популяцией является достаточно большая, панмиктическая (панмиксия — свободное скрещивание) популяция, в которой отсутствуют мутационный процесс, естественный отбор и другие факторы, нарушающие равновесие генов. Понятно, что идеальных популяций в природе не существует, в реальных популяциях закон Харди-Вайнберга используется с поправками.

Закон Харди-Вайнберга, в частности, используется для примерного подсчета носителей рецессивных генов наследственных заболеваний. Например, известно, что в данной популяции фенилкетонурия встречается с частотой 1:10000. Фенилкетонурия наследуется по аутосомно-рецессивному типу, следовательно, больные фенилкетонурией имеют генотип аа , то есть q 2 = 0,0001. Отсюда: q = 0,01; p = 1 - 0,01 = 0,99. Носители рецессивного гена имеют генотип Аа , то есть являются гетерозиготами. Частота встречаемости гетерозигот (2pq ) составляет 2 · 0,99 · 0,01 ≈ 0,02. Вывод: в данной популяции около 2% населения — носители гена фенилкетонурии. Заодно можно подсчитать частоту встречаемости гомозигот по доминанте (АА ): p 2 = 0,992, чуть меньше 98%.

Изменение равновесия генотипов и аллелей в панмиктической популяции происходит под влиянием постоянно действующих факторов, к которым относятся: мутационный процесс, популяционные волны, изоляция, естественный отбор, дрейф генов, эмиграция, иммиграция, инбридинг. Именно благодаря этим явлениям возникает элементарное эволюционное явление — изменение генетического состава популяции, являющееся начальным этапом процесса видообразования.

Генетика человека — одна из наиболее интенсивно развивающихся отраслей науки. Она является теоретической основой медицины, раскрывает биологические основы наследственных заболеваний. Знание генетической природы заболеваний позволяет вовремя поставить точный диагноз и осуществить нужное лечение.

    Перейти к лекции №21 «Изменчивость»

Для определения врожденного гипотереоза в крови ребенка на 3 день жизни определяют уровень тироксина. Просеивающая программа массовой диагностики наследственных болезней применяются не только среди новорожденных. Они могут быть организованны для выявления тех болезней которые распространены в каких либо группах населения. Например с США организована просеивающая биохимическая программа по выявлению гетерозиготнвх носителей идиотии Тей-Сакса (она чаще встречается среди евреев-ашкенази). На Кипре и в Италии организовано биохимическое исследование гетерозиготных несителей талассемии .

Селективные диагностические программы предусматривают проверку биохимических аномалий обмена у пациентов с подозрением на генные наследственные болезни.

В селективных программах могут использоваться простые качественные реакции (например, тест с хлоридом железа для выявления фенилкетонурии или тест с динитрофенилгидрозином для выявления кетокислот в моче) или более точные методы. Например, с помощью тонкослойной хроматографии мочи и крови можно диагностировать наследственные нарушения обмена аминокислот и мукополисахаридов. С помощью электрофореза гемоглобинов диагностируется вся группа гемоглобинопатий .

На сегодняшний день в нашей стране внедрена программа обязательного селективного скрининга на определение наследственных болезней обмена веществ, с проведением 14ти тестов анализов мочи и крови: на белок, кетокислоты , цистин и т.д. На втором этапе, применяя методы тонкослойной хроматографии мочи и крови, можно выявить более 140 наследственных болезней обмена веществ, такие как болезни углеводного обмена, лизосомальные болезни накопления, болезни обмена металлов, аминоацидопатии и т.д.

Широкое применение нашел биохимический метод в пренатальной диагностике врожденных пороков развития. Биохимические методы включают определение уровня альфа- фетопротеина, хорионического ганадотропина в сыворотке крови беременной. Эти методы являются просеивающими для выявления врожденных пороков развития. Например, при дефектах невральной трубки повышается уровень альфа-фетопротеина.

Цитогенетический метод.

Цитогенетический метод, основанный на изучении количества и структуры хромосом в норме и при патологии.

Основными показаниями для цитогенетического исследования являются:

1) пренатальная диагностика пола плода в семьях, отягощенных заболеваниями, сцепленными с Х-хромосомой;

2) недифференцированная олигофрения (слабоумие);

3) привычные выкидыши и мертворождения;

4) множественные врожденные пороки развития у ребенка;

5) бесплодие у мужчин;

6) нарушение менструального цикла (первичная аменорея);

7) пренатальная диагностика при возрасте матери старше 35 лет.

Этот метод стал широко применяться в медицинской практике с 1956 года, когда Тио и Леван определили, что у человека 46 хромосом. Первая классификация хромосом человека, предложенная в Денвере заложила основу для последующих номенклатур хромосом.

Наиболее современной считается Международная система цитогенетической номенклатуры хромосом человека сокращенно ISCN , принятая в Вашингтоне в 1995 году.

Согласно последней номенклатуре в хромосоме длинное плечо обозначают q , а короткое p. В каждом районе хромосомы полосы и сегменты пронумерованы последовательно от центромеры к теломере. Использование метода дифференциального окрашивания хромосом позволяет выделять индивидуальный рисунок каждой хромосомы вследствие того, что в хромосоме участки эу- и гетерохроматина по-разному окрашиваются красителями.

Объектами для цитогенетического исследования служат метафазные хромосомы, которые можно изучать с помощью прямых и непрямых методов.

Прямые - это методы получения препаратов делящихся клеток без культивирования, их используют для изучения клеток костного мозга и клеток опухолей. Непрямые методы - это методы получения препаратов хромосом из культивированных в искусственных питательных средах, например, при культивировании лимфоцитов периферической крови человека.

С помощью непрямых методов возможно проводить: кариотипирование - определение количества и качества хромосом; генетический пол организма; диагностику геномных мутаций и хромосомных аберраций. Например, синдром Дауна (трисомия по 21-й хромосоме), синдром Патау (трисомия по 13-й хромосоме), синдром Эдвардса (трисомия по 18-й хромосоме), синдром «кошачьего крика» (делеция 5-й хромосомы), синдром Вольфа-Хиршхорна (частичная моносомия 4-й хромосомы).

Для изучения половых хромосом, в частности Y-хромосомы, используют специальную окраску акрихиниприт (флюоресцирующая) и исследование проводят в ультрафиолетовом свете. Y-хроматин - это сильно светящаяся точка, обнаруживается в ядрах клеток мужского организма, и число Y-телец соответствует числу Y-хромосом в кариотипе. Окончательный диагноз хромосомной болезни выставляется только после исследования кариотипа.

Чтобы быстро определить изменения числа половых хромосом применяют экспресс-метод определения полового хроматина. Половой хроматин или тельце Барра представляет собой одну из двух X-хромосом, причем в инактивированном виде. Оно выявляется в виде сгустка треугольной или овальной формы около внутренней мембраны ядерной оболочки. В норме половой хроматин обнаруживается только у женщин. При увеличении числа Х-хромосом увеличивается и количество телец Барра. При уменьшении числа Х-хромосом (синдром Шерешевского-Тернера, кариотип 45 ХО) тельце Барра отсутствует. В норме у мужчин половой хроматин не обнаруживается, его наличие может свидетельствовать о синдроме Клайнфельтера (кариотип 47 ХХY).

Цитогенетический метод применяют для пренатальной диагностики наследственных заболеваний. Для этого проводят амниоцентез, получают амниотическую жидкость с клетками кожи плода, затем клеточный материал исследуют для дородовой диагностики хромосомных аберраций и геномных мутаций, а также пола плода. Обнаружение изменение количества и структуры хромосом дает возможность своевременного прерывания беременности с целью предупреждения потомства с грубейшими аномалиями развития.

Биохимический метод

Биохимические методы исследования применяют при подозрении на врожденные дефекты обмена. Они достаточно сложные и дорогостоящие, поэтому исследование проводится в два этапа. На первом этапе используют более дешевые и быстрые исследования. Это так называемые скринирующие (просеивающие) экспресс-методы, позволяющие обследовать большие группы населения. Сюда относится, например, микробиологический тест Гатри для обследования всех новорожденных на фенилкетонурию. Экспресс - методом диагностики фенилкетонурии можно считать также тест Феллинга. Таким тестом на галактоземию и фруктоземию является проба Бенедикта. Для проведения подобных тестов используют кровь и мочу.

На втором этапе диагностики пользуются более сложными методами биохимии и молекулярной биологии: методами фракционирования и количественного анализа, жидкостной и газовой хроматографией, иммунохимическими методами, изучают электрофоретическую подвижность белков. Возможно прямое измерение ферментативной активности. Применяются исследования мутантных белков с помощью меченых субстратов.

Популяционно-генетический метод

Данные, полученные при клинико-генеалогическом и близнецовом методах исследования, сравниваются с данными о частоте встречаемости признака (заболевания) в общей популяции. Частота того или иного гена в конкретной популяции определяет и особенности накопления больных в семьях.

Изучение генетической структуры популяции является необходимым этапом изучения распределения наследственных болезней в семьях.

Под популяцией в генетике понимается часть населения, занимающая одну территорию на протяжении многих поколений и свободно вступающая в брак между собой. В этой группе выполняется условие панмиксии, и нет изоляционных барьеров, препятствующих свободным бракам. В такой популяции соотношение частот доминантных и рецессивных аллелей при достаточно большом размере популяции сохраняется в ряду поколений без изменений. Закон генетической стабильности выражается формулой Харди-Вайнберга:

р 2АА: 2pqAa: q2aa, или + q)2 =1, тогда (p+q)=1,

т.е. частоты доминантного А и рецессивного гена а в сумме составляют единицу и являются постоянной величиной, а соотношение доминантных гомозигот, гетерозигот и рецессивных гомозигот определяется как квадрат встречаемости доминантного аллеля, произведение доминантного и рецессивного аллелей и квадрат встречаемости рецессивного аллеля соответственно.

Популяций, полностью отвечающих требованиям идеальной генетической стабильности по Харди - Вайнбергу, в природе не существует, т.к. для выполнения выше указанных условий должны отсутствовать мутационный процесс, естественный отбор и миграция. Однако как рабочая формула закон Харди - Вайнберга с успехом используется в популяционно-генетических исследованиях, ибо в больших популяциях перечисленные процессы протекают достаточно медленно (в отсутствие войн и гуманитарных катастроф) и не вызывают сколько-нибудь значительных изменений соотношения частот аллелей.

Популяционно-генетический метод позволяет установить частоты генов болезней в популяции и частоту гетерозиготного носительства. Встречаемость гетерозиготного носительства при некоторых врожденных нарушениях обмена с аутосомно-рецессивным типом наследования показана в табл. 3.

Таблuца 3.Встречаемость гетерозиготного носительства

По распространенности частот генов и связанных с ними фенотипов можно судить об адаптивной ценности отдельных генотипов.

Благодаря бракам внутри отдельных популяций определенные гены могут ограничиваться пределами конкретных популяций либо распределяться неравномерно между различными популяциями. Если вступление в брак для любых членов популяции равновероятно, то такая популяция называется панмиксной. Если имеются препятствия (этнические, социальные, религиозные), то группы населения, различающиеся по этим параметрам, могут образовывать изоляты внутри популяции. Неизбирательные по указанным признакам браки (аутбридинг) предполагают случайный подбор супругов. Отклонения от панмиксии возникают, когда браки ассортативны, т.е. супруги подбираются по какому-либо признаку, например, по общим дефектам сенсорной сферы, опорно-двигательного аппарата или по психическому недоразвитию.

В наше время браки между индивидами, страдающими нарушениями слуха или зрения, являются скорее правилом, чем исключением. Отклонения от панмиксии происходят и тогда, когда в брак вступают родственники. Такой брак называется кровнородственным (инбридинг). Близкородственные браки между родственниками 1 степени родства (между родителями и детьми и родными братьями и сестрами) называются инцестными. Примеры таких браков можно привести лишь из истории. Так, царица Египта Клеопатра родилась от инцестного брака и состояла в браках с родными братьями. Это было связано со стремлением сохранить свою "голубую" кровь. В настоящее время такие браки повсеместно, запрещены. Запрет связан с повышенным риском выявления рецессивной и полигенной патологии. Браки между родственниками П степени родства (дядя - племянница, тетя племянник) распространены, в частности, в арабских странах, что обусловлено экономическими соображениями. В России частота кровнородственных браков не превышает 1 % и в основном в такой брак вступают двоюродные сибсы либо родственники более отдаленных степеней родства. Таким образом, степень родства между индивидуумами в различных популяциях неодинакова. Для ее оценки пользуются коэффициентом инбридинга F (Райт, 1885), определяющим вероятность идентичности по происхождению двух любых аллелей данного локуса. Например, нужно установить вероятность того, что у супругов - дяди и племянницы имеется по одному рецессивному гену фенилкетонурии, полученному от общего предка. Таким общим предком для них является бабушка или дедушка племянницы. Вероятность того, что бабушка (дедушка) передали свой ген (ФКУ) одному из своих детей, составляет 1/2. Вероятность того, что оба ребенка бабушки (дедушки) получили этот ген, составляет 1/2 х 1/2 = 1/4. Вероятность двух независимых событий равна произведению их вероятностей. Вероятность того, что один из детей бабушки передал этот ген своему ребенку, составляет также 1/2. Следовательно, коэффициент инбридинга составит 1/4 х 1/2 = 1/8. Рассуждая так, можно рассчитать, что коэффициент инбридинга для браков двоюродных сибсов составит 1/16, троюродных - 1/32, четвероюродных -1/64.

В небольших популяциях в связи с ограниченностью выбора нарастает инбредность, возникает явление "инбредной депрессии": число гетерозигот по рецессивной болезни снижается, а гомозигот (больных) повышается. Коэффициент инбридинга может быть рассчитан как для популяций, так и для пары индивидов. Еще один близкий показатель, называемый коэффициентом родства (Ф), можно рассчитать только для двух индивидов. Коэффициент родства Фху - это вероятность того, что любой ген, принадлежащий индивиду Х, идентичен гену того же локуса, у индивида У. Коэффициент родства определяет долю общих генов у пары родственников. Так, у монозиготных близнецов 100% общих генов, у родственников 1 степени родства (родитель-ребенок, родные сибсы) - 50% общих генов, у родственников 11 степени родства (дяди, тети, племянники, бабушки (дедушки), внуки) - 25% общих генов у родственников 111 степени родства (двоюродные сибсы, прадедушки (прабабушки), правнуки) - 12,5% общих генов. Таким образом, долю общих генов у родственников можно определить по формуле (1j2n), где п - степень родства.

Причиной многих врожденных на­рушений метаболизма являются различные дефекты ферментов, возника­ющие вследствие изменяющих их структуру мутаций. Биохимичские по­казатели (первичный продукт гена, на­копление патологических метаболитов внутри клетки и во всех клеточных жидкостях больного) более точно от­ражают сущность болезни по сравне­нию с показателями клиническими, поэтому их значение в диагностике на­следственных болезней постоянно воз­растает. Использование современных биохимических методов (электрофо­реза, хроматографии, спектроскопии и др.) позволяют определять любые ме­таболиты, специфические для кон­кретной наследственной болезни.

Предметом современной биохими­ческой диагностики являются специ­фические метаболиты, энзимопатии, различные белки.

Объектами биохимического анализа могут служить моча, пот, плазма и сы­воротка крови, форменные элементы крови, культуры клеток (фибробласты, лимфоциты).

Для биохимической диагностики ис­пользуются как простые качественные реакции (например, хлорид железа для выявления фенилкетонурии или динитрофенилгидразин для выявления кетокислот), так и более точные методы

Например, с помощью тонкослойной хроматографии мочи и крови можно диагностировать нарушение обмена аминокислот, олигосахаридов, мукополисахаридов. Газовая хроматография применяется для выявления наруше­ний обмена органических кислот и т.д.

Показаниями для использования биохимических методов у больных с наследственным нарушением обмена веществ являются такие симптомы, как судороги, кома, рвота, желтуха, специфический запах мочи и пота, ос­тановка роста, нарушение физического развития, непереносимость некото­рых продуктов и лекарств.

Биохимические методы применя­ются и для диагностики гетерозигот­ных состояний у взрослых. Известно, что среди здоровых людей всегда име­ется большое число так называемых носителей патологического гена (ге­терозиготное носительство). Хотя та­кие люди внешне здоровы, вероят­ность появления заболевания у их ре­бенка всегда существует. В связи с этим, выявление гетерозиготного носительства - важная задача медицин­ской генетики.

Понятно, что если в брак вступают гетерозиготные носители какого-либо заболевания, то риск рождения боль­ного ребенка в такой семье составит 25%

Шансы на встречу двух носите­лей одинакового патологического гена выше, если в брак вступают родствен­ники, т.к. они могут унаследовать один и тот же рецессивный ген от своего об­щего предка.

Предположить гетерозиготное но­сительство у женщины можно, если:

Ее отец поражен наследственной болезнью;

У женщины родились больные сы­новья;

Женщина имеет больного брата или братьев;

У двух дочерей женщины роди­лись больные сыновья (или сын);

У здоровых родителей родился больной сын, а у матери в родословной есть больные мужчины.

Выявление гетерозиготных носите­лей того или иного заболевания воз­можно путем использования биохими­ческих тестов (прием фенилаланина для выявления фенилкетонурии, при­ем сахара - сахарного диабета и.т.д.), микроскопического исследования кле­ток крови и тканей, определения активности фермента, измененного в ре­зультата мутации.

Известно, что заболевания, в основе которых лежит нарушение обмена ве­ществ, составляют значительную часть наследственной патологии (фенилкетонурия, галактоземия, алкаптонурия, альбинизм и др.). Так, гетерозиготные носители фенилкетонурии реагируют на введение фенилаланина более силь­ным повышением содержания амино­кислоты в плазме, чем нормальные го­мозиготы (болезнь обусловлена рецес­сивным аллелем).

Биохимический метод широко при­меняется в медико-генетическом кон­сультировании для определения риска рождения больного ребенка. Успехи в области биохимической генетики спо­собствуют более широкому внедре­нию диагностики гетерозиготного носительства в практику. Еще недавно можно было диагностировать не более 10-15 гетерозиготных состояний, в на­стоящее время - более 200. Однако следует отметить, что до сих пор име­ется немало наследственных заболева­ний, для которых методы гетерозигот­ной диагностики еще не разработаны.

56. Пренатальная диагностика хромосомных болезней. Амниоцентез. Медико - генетическое консультирование. Значение для медицины. Пренатальная диагностика хромосомных заболеваний (ПД) - представляет собой комплекс врачебных мероприятий и диагностических методов, направленных на выявление морфологических, структурных, функциональных или молекулярных нарушений внутриутробного развития человека. Методы: 1. Биопсия хорионов - может определить врожденные дефекты плода на очень ранних сроках беременности 9 -11 неделя. Проводится цитогенетическими, молекулярно - генетическими методами. Позволяет выявить синдром Тай-Сакса, серповидно-клеточную анемию, большинство видов муковисцидоза, талассемию и синдром Дауна.

2. Амниоцентез - инвазивная процедура, заключающаяся в пункции амниотической оболочки с целью получения околоплодных вод для последующего лабораторного исследования, амниоредукции или введения в амниотическую полость лекарственных средств. Амниоцентез можно выполнять в первом, втором и третьем триместрах беременности оптимально - в 16-20 недель беременности.

Показания к амниоцентезу: Пренатальная диагностика врождённых и наследственных заболеваний. Лабораторная диагностика врождённых и наследственных заболеваний основана на цитогенетическом и молекулярном анализе амниоцитов. Амниоредукция при многоводии. Интраамниальное введение препаратов для прерывания беременности во втором триместре. Оценка состояния плода во втором и третьем триместрах беременности степень тяжести гемолитической болезни, зрелость сурфактантов лёгких, диагностика внутриутробных инфекций. Фетотерапия. Фетохирургия.

3. Кордоцентез - метод получения кордовой пуповинной крови плода для дальнейшего исследования. Обычно производится параллельно амниоцентезу взятию околоплодных вод. Производится не ранее 18 недель гестации. Через переднюю брюшную стенку беременной после инфильтрационной анестезии под контролем ультразвукового аппарата производят прокол тонкой пункционной иглой, попадают в сосуд пуповины, получают до 5 мл. крови. Метод применим для диагностики хромосомных и наследственных заболеваний, резус - конфликта, гемолитической болезни плода и т.д.

4. УЗИ. Медико-генетическое консультирование - это система оказания специализированной медико-генетической помощи в виде неонатального скрининга на фенилкетонурию и врожденный гипотиреоз; собственно генетического консультирования семей, в которых отмечаются случаи врожденных и наследственных заболеваний ВНЗ; пренатальной диагностики состояния плода в случае следующей беременности, а также пренатального скрининга беременных исследования сывороточных материнских маркеров - альфа-фетопротеина АФП, хорионического гонадотропина ХГ, неэстерифицированного эстриола НЭ и других маркеров.