Нервная система. Нервная система человека Основным элементом нервной системы является

Нервные окончания расположены во всем человеческом теле. Они несут важнейшую функцию и являются составной частью всей системы. Строение нервной системы человека представляет сложную разветвленную структуру, которая проходит через весь организм.

Физиология нервной системы является сложной составной структурой.

Нейрон считается основной структурной и функциональной единицей нервной системы. Его отростки формируют волокна, которые возбуждаются при воздействии и передают импульс. Импульсы достигают центров, где подвергаются анализу. Проанализировав полученный сигнал, мозг передает необходимую реакцию на раздражитель соответствующим органам или частям тела. Нервная система человека кратко описывается следующими функциями:

  • обеспечение рефлексов;
  • регуляция внутренних органов;
  • обеспечение взаимодействия организма с внешней средой, путем приспособления тела к изменяющимся внешним условиям и раздражителям;
  • взаимодействие всех органов.

Значение нервной системы заключается в обеспечении жизнедеятельности всех частей организма, а также взаимодействии человека с окружающим миром. Строение и функции нервной системы изучаются неврологией.

Структура ЦНС

Анатомия центральной нервной системы (ЦНС) является скоплением нейронных клеток и нейронных отростков спинномозгового отдела и головного мозга. Нейрон – это единица нервной системы.

Функция ЦНС – это обеспечение рефлекторной деятельности и обработка импульсов, поступающих от ПНС.

Анатомия центральной нервной системы, основным узлом которой является головной мозг, представляет собой сложную структуру из разветвленных волокон.

В больших полушариях сосредоточены высшие нервные центры. Это – сознание человека, его личность, его интеллектуальные способности и речь. Основная функция мозжечка – это обеспечение координации движений. Ствол мозга неразрывно связан с полушариями и мозжечком. В этом отделе находятся основные узлы двигательных и чувствительных проводящих путей, благодаря чему обеспечиваются такие жизненно важные функции организма, как регуляция кровообращения и обеспечение дыхания. Спинной мозг является распределительной структурой ЦНС, он обеспечивает разветвление волокон, образующих ПНС.

Спинномозговой узел (ганглий) является местом сосредоточения чувствительных клеток. С помощью спинномозгового ганглия осуществляется деятельность вегетативного отдела периферической нервной системы. Ганглии или нервные узлы в нервной системе человека относят к ПНС, они выполняют функцию анализаторов. Ганглии не относятся к центральной нервной системе человека.

Особенности строения ПНС

Благодаря ПНС происходит регулирование деятельности всего организма человека. ПНС состоит из черепных и спинномозговых нейронов и волокон, образующих ганглии.

У периферической нервной системы человека строение и функции очень сложные, поэтому любое малейшее повреждение, например, повреждение сосудов на ногах, может вызвать серьезные нарушения ее работы. Благодаря ПНС осуществляется контроль за всеми частями организма и обеспечивается жизнедеятельность всех органов. Значение этой нервной системы для организма переоценить невозможно.

ПНС делится на два подразделения – это соматическая и вегетативная системы ПНС.

Соматическая нервная система выполняет двойную работу – сбор информации от органов чувств, и дальнейшая передача этих данных в ЦНС, а также обеспечение двигательной активности организма, путем передачи импульсов от ЦНС в мышцы. Таким образом, именно нервная система соматическая является инструментом взаимодействия человека с окружающим миром, так как она обрабатывает сигналы, получаемые от органов зрения, слуха и вкусовых рецепторов.

Вегетативная нервная система обеспечивает выполнение функций всех органов. Она контролирует сердцебиение, кровоснабжение, дыхательную деятельность. В ее составе – только двигательные нервы, регулирующие сокращение мышц.

Для обеспечения сердцебиения и кровоснабжения не требуются усилия самого человека – этим управляет именно вегетативная часть ПНС. Принципы строения и функции ПНС изучаются в неврологии.

Отделы ПНС

ПНС также состоит из афферентной нервной системы и эфферентного отдела.

Афферентный отдел представляет собой совокупность сенсорных волокон, которые обрабатывают информацию от рецепторов и передают ее в головной мозг. Работа этого отдела начинается тогда, когда рецептор раздражается из-за какого-либо воздействия.

Эфферентная система отличается тем, что обрабатывает импульсы, передающиеся от головного мозга к эффекторам, то есть мышцам и железам.

Одна из важных частей вегетативного отдела ПНС – это энтеральная нервная система. Энтеральная нервная система формируется из волокон, расположенных в ЖКТ и мочевыделительных путях. Энтеральная нервная система обеспечивает моторику тонкой и толстой кишки. Этот отдел также регулирует секрет, выделяемый в ЖКТ, и обеспечивает местное кровоснабжение.

Значение нервной системы заключается в обеспечении работы внутренних органов, интеллектуальной функции, моторике, чувствительности и рефлекторной деятельности. ЦНС ребенка развивается не только во внутриутробный период, но и на протяжение первого года жизни. Онтогенез нервной системы начинается с первой недели после зачатия.

Основа для развития головного мозга формируется уже на третьей неделе после зачатия. Основные функциональные узлы обозначаются к третьему месяцу беременности. К этому сроку уже сформированы полушария, ствол и спинной мозг. К шестому месяцу высшие отделы мозга уже развиты лучше, чем спинальный отдел.

К моменту появления малыша на свет, наиболее развитым оказывается головной мозг. Размеры мозга у новорожденного составляют примерно восьмую часть веса ребенка и колеблются в пределах 400 г.

Деятельность ЦНС и ПНС сильно понижена в первые несколько дней после рождения. Это может заключаться в обилии новых раздражающих факторов для малыша. Так проявляется пластичность нервной системы, то есть способностью этой структуры перестраиваться. Как правило, повышение возбудимости происходит постепенно, начиная с первых семи дней жизни. Пластичность нервной системы с возрастом ухудшается.

Типы ЦНС

В центрах, расположенных в коре мозга, одновременно взаимодействуют два процесса – торможение и возбуждение. Скорость смены этих состояний определяет типы нервной системы. В то время как возбужден один участок центра ЦНС, другой замедляется. Этим обусловлены особенности интеллектуальной деятельности, такие как внимание, память, сосредоточенность.

Типы нервной системы описывают отличия между скоростью процессов торможения и возбуждения ЦНС у разных людей.

Люди могут отличаться по характеру и темпераменту, в зависимости от особенностей процессов в ЦНС. К ее особенностям относят скорость переключения нейронов с процесса торможения на процесс возбуждения, и наоборот.

Типы нервной системы делятся на четыре вида.

  • Слабый тип, или меланхолик, считают наиболее предрасположенным к возникновению неврологических и психоэмоциональных расстройств. Он отличается медленными процессами возбуждения и торможения. Сильный и неуравновешенный тип – это холерик. Этот тип отличается преобладанием процессов возбуждения над процессами торможения.
  • Сильный и подвижный – это тип сангвиника. Все процессы, проистекающие в коре головного мозга сильны и активны. Сильный, но инертный, или флегматический тип, отличается низкой скоростью переключения нервных процессов.

Типы нервной системой взаимосвязаны с темпераментами, но эти понятия следует различать, ведь темперамент характеризует набор психоэмоциональных качеств, а тип ЦНС описывает физиологические особенности процессов, происходящих в ЦНС.

Защита ЦНС

Анатомия нервной системы очень сложная. ЦНС и ПНС страдают из-за воздействия стресса, перенапряжения и недостатка питания. Для нормального функционирования ЦНС необходимы витамины, аминокислоты и минералы. Аминокислоты принимают участие в работе мозга и являются строительным материалом для нейронов. Разобравшись, зачем и для чего нужны витамины и аминокислоты, становится ясно, как важно обеспечить организм необходимым количеством этих веществ. Особенно для человека важны глютаминовая кислота, глицин и тирозин. Схема приема витаминно-минеральных комплексов для профилактики заболеваний ЦНС и ПНС подбирается индивидуально лечащим врачом.

Повреждения пучков нервных волокон, врожденные патологии и аномалии развития мозга, а также действие инфекций и вирусов – все это приводит к нарушению работы ЦНС и ПНС и развитию различных патологических состояний. Такие патологии могут вызвать ряд очень опасных заболеваний — обездвиживание, парез, атрофия мышц, энцефалит и многое другое.

Злокачественные новообразования в головном или спинном мозге приводят к ряду неврологических нарушений. При подозрениях на онкологическое заболевания ЦНС назначается анализ — гистология пораженных отделов, то есть обследование состава ткани. Нейрон как часть клетки также может мутировать. Такие мутации позволяет выявить гистология. Гистологический анализ проводится по показаниям врача и заключается в сборе пораженной ткани и ее дальнейшем изучении. При доброкачественных образования также проводится гистология.

В теле человека находится множество нервных окончаний, повреждение которых может вызвать ряд проблем. Повреждение зачастую приводит к нарушению подвижности части тела. Например, повреждение руки может привести к боли на пальцах рук и нарушению их движения. Остеохондроз позвоночника спровоцировать возникновение болей на стопе из-за того, что раздраженный или передавленный нерв посылает болевые импульсы рецепторам. Если болит ступня, люди часто ищут причину в долгой ходьбе или травме, но болевой синдром может быть спровоцирован повреждением в позвоночнике.

При подозрении на повреждение ПНС, а также при любых сопутствующих проблемах необходимо пройти осмотр у специалиста.

ЛЕКЦИЯ НА ТЕМУ: НЕРВНАЯ СИСТЕМА ЧЕЛОВЕКА

Нервная система – это система, которая регулирует деятельность всех органов и систем человека. Данная система обуславливает: 1) функциональное единство всех органов и систем человека; 2) связь всего организма с окружающей средой.

С точки зрения поддержания гомеостаза нервная система обеспечивает: поддержание параметров внутренней среды на заданном уровне; включение поведенческих реакций; адаптацию к новым условиям, если они сохраняются долгое время.

Нейрон (нервная клетка) - основной структурный и функциональный элемент нервной системы; у человека насчитывается более ста миллиардов нейронов. Нейрон состоит из тела и отростков, обычно одного длинного отростка - аксона и нескольких коротких разветвленных отростков - дендритов. По дендритам импульсы следуют к телу клетки, по аксону - от тела клетки к другим нейронам, мышцам или железам. Благодаря отросткам нейроны контактируют друг с другом и образуют нейронные сети и круги, по которым циркулируют нервные импульсы.

Нейрон - это функциональная единица нервной системы. Нейроны восприимчивы к раздражению, то есть способны возбуждаться и передавать электрические импульсы от рецепторов к эффекторам. По направлению передачи импульса различают афферентные нейроны (сенсорные нейроны), эфферентные нейроны (двигательные нейроны) и вставочные нейроны.

Нервную ткань называют возбудимой тканью. В ответ на некоторое воздействие в ней возникает и распространяется процесс возбуждения – быстрой перезарядки клеточных мембран. Возникновение и распространение возбуждения (нервного импульса) – это основной способ осуществления нервной системой ее управляющей функции.

Основные предпосылки возникновения возбуждения в клетках: существование на мембране в состоянии покоя электрического сигнала – мембранного потенциала покоя (МПП);

способность изменять потенциал за счет изменения проницаемости мембраны для некоторых ионов.

Клеточная мембрана является полупроницаемой биологической мембраной, в ней имеются каналы пропускающие ионы калия, но нет каналов для внутриклеточных анионов, которые удерживаются у внутренней поверхности мембраны, создавая при этом отрицательный заряд мембраны изнутри, это и есть мембранный потенциал покоя, который составляет в среднем- – 70 милливольт (мВ). В клетке в 20-50 раз больше ионов калия, чем снаружи, это поддерживается всю жизнь при помощи мембранных насосов (большие белковые молекулы, способные переносить ионы калия из внеклеточной среды во внутрь). Величина МПП обусловлена переносом ионов калия в двух направлениях:

1. снаружи в клетку под действием насосов (с большой затратой энергии);

2. из клетки наружу путем диффузии по мембранным каналам (без затрат энергии).

В процессе возбуждения главную роль играют ионы натрия, которых снаружи клетки всегда больше в 8-10 раз, чем внутри. Натриевые каналы закрыты, когда клетка находится в состоянии покоя, для того что бы их открыть, необходимо подействовать на клетку адекватным раздражителем. Если достигается порог раздражения, то натриевые каналы открываются и натрий входит в клетку. За тысячные доли секунды заряд мембраны сначала исчезнет, а затем изменится на противоположный – это первая фаза потенциала действия (ПД) – деполяризация. Каналы закрываются – пик кривой, затем заряд восстанавливается по обе стороны мембраны (за счет калиевых каналов) – стадия реполяризации. Возбуждение прекращается и пока клетка в покое, насосы меняют натрий вошедший в клетку на калий, который вышел из клетки.

ПД вызванный в любой точке нервного волокна, сам становится раздражителем для соседних участков мембраны, вызывая в них ПД, а те в свою очередь возбуждают все новые и новые участки мембраны, распространяясь таким образом на по всей клетке. В волокнах, покрытых миелином, ПД будут возникать только в свободных от миелина участках. Поэтому скорость распространения сигнала возрастает.


Передача возбуждения от клетки к другой, происходит при помощи химического синапса, который представлен местом контакта двух клеток. Синапс образован пресинаптической и постсинаптической мембранами и синаптической щелью между ними. Возбуждение в клетке возникшее в результате ПД достигает участка пресинаптической мембраны, где располагаются синаптические пузырьки- везикулы, из которых выбрасывается специальное вещество – медиатор. Медиатор попадая в щель, движется к постсинаптической мембране и связывается с ней. В мембране открываются поры для ионов, происходит их движение внутрь клетки и возникает процесс возбуждения

Таким образом в клетке происходит превращение электрического сигнала в химический, а химического опять в электрический. Передача сигнала в синапсе происходит медленнее, чем в нервной клетке, а также односторонне, так как выделяется медиатор только через пресинаптическую мембрану, а связывается может только с рецепторами постсинаптической мембраны, а не наоборот.

Медиаторы могут вызывать в клетках не только возбуждение, но и торможение. При этом на мембране открываются поры, для таких ионов, которые усиливают отрицательный заряд, существовавший на мембране в состоянии покоя. На одной клетке может множество синаптических контактов. Пример медиатора между нейроном и волокном скелетной мышцы – ацетилхолин.

Нервная система подразделяется на центральную нервную систему и периферическую нервную систему.

В центральной нервной системе различают головной мозг, где сосредоточены основные нервные центры и спинной мозг, здесь находятся центры более низкого уровня и идут проводящие пути к периферическим органам.

Периферический отдел – нервы, нервные узлы, ганглии и сплетения.

Основной механизм деятельности нервной системы – рефлекс. Рефлексом называется любая ответная реакция организма на изменение внешней или внутренней среды, которая осуществляется при участии ЦНС в ответ на раздражение рецепторов. Структурная основа рефлекса – рефлекторная дуга. Она включает пять последовательных звеньев:

1 - Рецептор – сигнальное устройство воспринимающее воздействие;

2 - Афферентный нейрон – приводит сигнал, от рецептора в нервный центр;

3 - Вставочный нейрон – центральная часть дуги;

4 - Эфферентный нейрон – сигнал поступает из ЦНС к исполнительной структуре;

5 - Эффектор – мышца или железа осуществляющие определенный вид деятельности

Головной мозг состоит из скоплений тел нервных клеток, нервных трактов и кровеносных сосудов. Нервные тракты образуют белое вещество мозга и состоят из пучков нервных волокон, проводящих импульсы к различным участкам серого вещества мозга - ядрам или центрам - или от них. Проводящие пути связывают между собой различные ядра, а так же головной мозг со спинным мозгом.

В функциональном отношении мозг можно разделить на несколько отделов: передний мозг (состоящий из конечного мозга и промежуточного мозга), средний мозг, задний мозг, (состоящий из мозжечка и варолиева моста) и продолговатый мозг. Продолговатый мозг, варолиев мост и средний мозг вместе называются стволом головного мозга.

Спиной мозг расположен в позвоночном канале, надежно защищающий его от механических повреждений.

Спиной мозг имеет сегментарное строение. От каждого сегмента отходит по две пары передних и задних корешков, что соответствует одному позвонку. Всего 31 пара нервов.

Задние корешки образованы чувствительными (афферентными) нейронами, их тела находятся в ганглиях, а аксоны входят в спиной мозг.

Передние корешки сформированы аксонами эфферентных (двигательных) нейронов, тела которых лежат в спином мозге.

Спиной мозг условно подразделяют на четыре отдела – шейный, грудной, поясничный и крестцовый. В нем замыкается огромное количество рефлекторных дуг, что обеспечивает регулирование многих функций организма.

Серое центральное вещество – это нервные клетки, белое – нервные волокна.

Нервную систему подразделяют на соматическую и вегетативную.

К соматической нервной системе (от латинского слова «сома» - тело) относится часть нервной системы (и тела клеток, и их отростки), которая управляет деятельностью скелетных мышц (тела) и органов чувств. Эта часть нервной системы в большой степени контролируется нашим сознанием. То есть мы способны по своему желанию согнуть или разогнуть руку, ногу и так далее.Однако мы неспособны сознательно прекратить восприятие, например, звуковых сигналов.

Вегетативная нервная система (в переводе с латинского «вегетативный» - растительный) - это часть нервной системы (и тела клеток, и их отростки), которая управляет процессами обмена веществ, роста и размножения клеток, то есть функциями - общими и для животных, и для растительных организмов. В ведении вегетативной нервной системы находится, например, деятельность внутренних органов и сосудов.

Вегетативная нервная система практически не контролируется сознанием, то есть мы не способны по своему желанию снять спазм желчного пузыря, остановить деление клетки, прекратить деятельность кишечника, расширить или сузить сосуды

Все органы и системы организма человека тесно взаимосвязаны, они осуществляют взаимодействие при помощи нервной системы, что регулирует все механизмы жизнедеятельности, начиная от пищеварения и заканчивая процессом размножения. Известно, что человека (НС) обеспечивает связь человеческого организма с внешней средой. Единицей НС является нейрон, который представляет собой нервную клетку, проводящую импульсы к иным клеткам организма. Соединяясь в нейронные цепи, образуют целую систему, как соматическую, так и вегетативную.

Можно сказать, что НС пластична, так как способна перестраивать свою работу в том случае, когда происходят изменения потребностей человеческого организма. Этот механизм особенно актуален при повреждении одного из участков мозга головного.

Поскольку нервная система человека координирует работу всех органов, её поражение влияет на деятельность как рядом расположенных, так и отдалённых структур, и сопровождается выходом из строя функций органов, тканей и систем организма. Причины нарушения работы нервной системы могут крыться в наличии инфекций или отравления организма, в возникновении опухоли или травмы, в заболеваниях НС и нарушении обмена веществ.

Таким образом, НС человека играет проводящую роль в формировании и развитии человеческого организма. Благодаря эволюционному совершенствованию нервной системы развивались психика и сознание человека. Нервная система является жизненно важным механизмом регулирования процессов, которые происходят в организме человека

Тема. Структура и функции нервной системы человека

1 Что такое нервная система

2 Центральная нервная система

Головной мозг

Спинной мозг

ЦНС

3 Вегетативная нервная система

4 Развитие нервной системы в онтогенезе. Характеристика трехпузырьной и пятипузырьной стадий формирования головного мозга

Что такое нервная система

Нервная система – это система, которая регулирует деятельность всех органов и систем человека. Данная система обуславливает:

1) функциональное единство всех органов и систем человека;

2) связь всего организма с окружающей средой.

Нервная система управляет деятельностью различных органов, систем и аппаратов, составляющих организм. Она регулирует функции движения, пищеварения, дыхания, кровоснабжения, метаболические процессы и др. Нервная система устанавливает взаимосвязь организма с внешней средой, объединяет все части организма в единое целое.

Нервную систему по топографическому принципу разделяют на центральную и периферическую (рис. 1 ).

Центральная нервная система (ЦНС) включает в себя головной и спинной мозг.

К периферический части нервной системы относят спинномозговые и черепные нервы с их корешками и ветвями, нервные сплетения, нервные узлы, нервные окончания.

Помимо этого в составе нервной системы выделяют две особые части : соматическую (анимальную) и вегетативную (автономную).

Соматическая нервная система иннервирует преимущественно органы сомы (тела): поперечнополосатые (скелетные) мышцы (лица, туловища, конечностей), кожу и некоторые внутренние органы (язык, гортань, глотку). Соматическая нервная система осуществляет преимущественно функции связи организма с внешней средой, обеспечивая чувствительность и движение, вызывая сокращение скелетной мускулатуры. Так как функции движения и чувствования свойственны животным и отличают их от растений, эта часть нервной системы получила название анимальной (животной). Действия соматической нервной системы подконтрольны человеческому сознанию.

Вегетативная нервная система иннервирует внутренности, железы, гладкие мышцы органов и кожи, сосуды и сердце, регулирует обменные процессы в тканях. Вегетативная нервная система оказывает влияние на процессы так называемой растительной жизни, общие для животных и растений (обмен веществ, дыхание, выделение и др.), отчего и происходит ее название (вегетативная - растительная).

Обе системы тесно связаны между собой, однако вегетативная нервная система обладает некоторой долей самостоятельности и не зависит от нашей воли, вследствие чего ее также называют автономной нервной системой .

Ее делят на две части симпатическую и парасимпатическую . Выделение этих отделов основано как на анатомическом принципе (различия в расположении центров и строении периферической части симпатической и парасимпатической нервной системы), так и на функциональных отличиях.

Возбуждение симпатической нервной системы способствует интенсивной деятельности организма; возбуждение парасимпатической , наоборот, способствует восстановлению затраченных организмом ресурсов.

На многие органы симпатическая и парасимпатическая системы оказывают противоположное влияние, являясь функциональными антагонистами. Так, под влиянием импульсов, приходящих по симпатическим нервам , учащаются и усиливаются сокращения сердца, повышается давление крови в артериях, расщепляется гликоген в печени и мышцах, увеличивается содержание глюкозы в крови, расширяются зрачки, повышается чувствительность органов чувств и работоспособность центральной нервной системы, суживаются бронхи, тормозятся сокращения желудка и кишечника, уменьшается секреция желудочного сока и сока поджелудочной железы, расслабляется мочевой пузырь и задерживается его опорожнение. Под влиянием импульсов, приходящих по парасимпатическим нервам, замедляются и ослабляются сокращения сердца, понижается артериальное давление, снижается содержание глюкозы в крови, возбуждаются сокращения желудка и кишечника, усиливается секреция желудочного сока и сока поджелудочной железы и др.

Центральная нервная система

Центральная нервная система (ЦНС) - основная часть нервной системы животных и человека, состоящая из скопления нервных клеток (нейронов) и их отростков.

Центральная нервная система состоит из головного и спинного мозга и их защитных оболочек.

Самой наружной является твердая мозговая оболочка , под ней расположена паутинная (арахноидальная ), а затем мягкая мозговая оболочка , сращенная с поверхностью мозга. Между мягкой и паутинной оболочками находится подпаутинное (субарахноидальное) пространство , содержащее спинномозговую (цереброспинальную) жидкость, в которой как головной, так и спинной мозг буквально плавают. Действие выталкивающей силы жидкости приводит к тому, что, например, головной мозг взрослого человека, имеющий массу в среднем 1500 г, внутри черепа реально весит 50–100 г. Мозговые оболочки и спинномозговая жидкость играют также роль амортизаторов, смягчающих всевозможные удары и толчки, которые испытывает тело и которые могли бы привести к повреждению нервной системы.

ЦНС образована из серого и белого вещества .

Серое вещество составляют тела клеток, дендриты и немиелинизированные аксоны, организованные в комплексы, которые включают бесчисленное множество синапсов и служат центрами обработки информации, обеспечивая многие функции нервной системы.

Белое вещество состоит из миелинизированных и немиелинизированных аксонов, выполняющих роль проводников, передающих импульсы из одного центра в другой. В состав серого и белого вещества входят также клетки глии

Нейроны ЦНС образуют множество цепей, которые выполняют две основные функции : обеспечивают рефлекторную деятельность, а также сложную обработку информации в высших мозговых центрах. Эти высшие центры, например зрительная зона коры (зрительная кора), получают входящую информацию, перерабатывают ее и передают ответный сигнал по аксонам.

Результат деятельности нервной системы – та или иная активность, в основе которой лежит сокращение или расслабление мышц либо секреция или прекращение секреции желез. Именно с работой мышц и желез связан любой способ нашего самовыражения. Поступающая сенсорная информация подвергается обработке, проходя последовательность центров, связанных длинными аксонами, которые образуют специфические проводящие пути, например болевые, зрительные, слуховые. Чувствительные (восходящие ) проводящие пути идут в восходящем направлении к центрам головного мозга. Двигательные (нисходящие ) пути связывают головной мозг с двигательными нейронами черепно-мозговых и спинномозговых нервов. Проводящие пути обычно организованы таким образом, что информация (например, болевая или тактильная) от правой половины тела поступает в левую часть мозга и наоборот. Это правило распространяется и на нисходящие двигательные пути: правая половина мозга управляет движениями левой половины тела, а левая половина – правой. Из этого общего правила, однако, есть несколько исключений.

Головной мозг

состоит из трех основных структур: больших полушарий, мозжечка и ствола.

Большие полушария – самая крупная часть мозга – содержат высшие нервные центры, составляющие основу сознания, интеллекта, личности, речи, понимания. В каждом из больших полушарий выделяют следующие образования: лежащие в глубине обособленные скопления (ядра) серого вещества, которые содержат многие важные центры; расположенный над ними крупный массив белого вещества; покрывающий полушария снаружи толстый слой серого вещества с многочисленными извилинами, составляющий кору головного мозга.

Мозжечок тоже состоит из расположенного в глубине серого вещества, промежуточного массива белого вещества и наружного толстого слоя серого вещества, образующего множество извилин. Мозжечок обеспечивает главным образом координацию движений.

Ствол мозга образован массой серого и белого вещества, не разделенной на слои. Ствол тесно связан с большими полушариями, мозжечком и спинным мозгом и содержит многочисленные центры чувствительных и двигательных проводящих путей. Первые две пары черепно-мозговых нервов отходят от больших полушарий, остальные же десять пар – от ствола. Ствол регулирует такие жизненно важные функции, как дыхание и кровообращение.

Ученые высчитали, что мозг мужчины тяжелее мозга женщины в среднем на 100 гм. Они объясняют это тем, что большинство мужчин по своим физическим параметрам гораздо больше женщин, т. е. все части тела мужчины больше частей тела женщины. Мозг активно начинает расти еще тогда, когда ребенок еще находится в утробе матери. Своего «настоящего» размера мозг достигает только тогда, когда человек достигает двадцатилетнего возраста. В самом конце жизни человека его мозг становится немного легче.

В головном мозге выделяют пять основных отделов:

1) конечный мозг;

2) промежуточный мозг;

3) средний мозг;

4) задний мозг;

5) продолговатый мозг.

Если человек перенес черепно-мозговую травму, то это всегда отрицательно сказываете как на его центральной нервной системе, так и на его психическом состоянии.

«Рисунок» головного мозга очень сложен. Сложность этого «рисунка» предопределяется тем, что по полушариям идут борозды и валики, которые и образуют некое подобие «извилин». Несмотря на то что этот «рисунок» строго индивидуален, выделяют несколько общих борозд. Благодаря этим общим бороздам ученые-биологи и анатомы выделили 5 долей полушарий:

1) лобную долю;

2) теменную долю;

3) затылочную долю;

4) височную долю;

5) скрытую долю.

Несмотря на то что написаны сотни трудов по исследованию функций головного мозга, до конца его природа не выяснена. Одной из самых главных загадок, которую «загадывает» головной мозг, является зрение. Вернее, как и с помощью чего мы видим. Многие ошибочно предполагают, что зрение – это прерогатива глаз. Это не так. Ученые больше склонны считать, что глаза просто воспринимают сигналы, которые нам посылает окружающая нас среда. Глаза передают их дальше «по инстанции». Мозг, получив данный сигнал, выстраивает картинку, т. е. мы видим то, что «показывает» нам наш мозг. Аналогично должен решаться вопрос и со слухом: слышат ведь не уши. Вернее, они тоже получают определенные сигналы, которые посылает нам окружающая среда.

Спинной мозг .

Спинной мозг внешне похож на тяж, он несколько сплюснут спереди назад. Его размер у взрослого человека составляет примерно от 41 до 45 см, а вес – около 30 гм. Он «окружается» мозговыми оболочками и располагается в мозговом канале. На всем своем протяжении толщина спинного мозга одинакова. Но он имеет всего лишь два утолщения:

1) шейное утолщение;

2) поясничное утолщение.

Именно в этих утолщениях формируются так называемые иннервационные нервы верхних и нижних конечностей. Спинной мозг делится на несколько отделов:

1) шейный отдел;

2) грудной отдел;

3) поясничный отдел;

4) крестцовый отдел.

Находящийся внутри позвоночного столба и защищенный его костной тканью спинной мозг имеет цилиндрическую форму и покрыт тремя оболочками. На поперечном срезе серое вещество имеет форму буквы Н или бабочки. Серое вещество окружено белым веществом. Чувствительные волокна спинномозговых нервов заканчиваются в дорсальных (задних) отделах серого вещества – задних рогах (на концах Н, обращенных к спине). Тела двигательных нейронов спинномозговых нервов расположены в вентральных (передних) отделах серого вещества – передних рогах (на концах Н, удаленных от спины). В белом веществе проходят восходящие чувствительные проводящие пути, заканчивающиеся в сером веществе спинного мозга, и нисходящие двигательные пути, идущие от серого вещества. Кроме того, многие волокна в белом веществе связывают различные отделы серого вещества спинного мозга.

Главная и специфическая функция ЦНС - осуществление простых и сложных высокодифференцированных отражательных реакций, получивших название рефлексов. У высших животных и человека низшие и средние отделы ЦНС - спинной мозг, продолговатый мозг, средний мозг, промежуточный мозг и мозжечок - регулируют деятельность отдельных органов и систем высокоразвитого организма, осуществляют связь и взаимодействие между ними, обеспечивают единство организма и целостность его деятельности. Высший отдел ЦНС - кора больших полушарий головного мозга и ближайшие подкорковые образования - в основном регулирует связь и взаимоотношения организма как единого целого с окружающей средой.

Основные черты строения и функции ЦНС

связана со всеми органами и тканями через периферическую нервную систему, которая у позвоночных включает черепно-мозговые нервы , отходящие от головного мозга, и спинномозговые нервы - от спинного мозга, межпозвонковые нервные узлы, а также периферический отдел вегетативной нервной системы - нервные узлы, с подходящими к ним (преганглионарными) и отходящими от них (постганглионарными) нервными волокнами.

Чувствительные, или афферентные, нервные приводящие волокна несут возбуждение в ЦНС от периферических рецепторов; по отводящим эфферентным (двигательным и вегетативным) нервным волокнам возбуждение из ЦНС направляется к клеткам исполнительных рабочих аппаратов (мышцы, железы, сосуды и т. д.). Во всех отделах ЦНС имеются афферентные нейроны, воспринимающие приходящие с периферии раздражения, и эфферентные нейроны, посылающие нервные импульсы на периферию к различным исполнительным эффекторным органам.

Афферентные и эфферентные клетки своими отростками могут контактировать между собой и составлять двухнейронную рефлекторную дугу, осуществляющую элементарные рефлексы (например, сухожильные рефлексы спинного мозга). Но, как правило, в рефлекторной дуге между афферентными и эфферентными нейронами расположены вставочные нервные клетки, или интернейроны. Связь между различными отделами ЦНС осуществляется также с помощью множества отростков афферентных, эфферентных и вставочных нейронов этих отделов, образующих внутрицентральные короткие и длинные проводящие пути. В состав ЦНС входят также клетки нейроглии, которые выполняют в ней опорную функцию, а также участвуют в метаболизме нервных клеток.

Головной и спинной мозг покрыт оболочками:

1) твердой мозговой оболочкой;

2) паутинной оболочкой;

3) мягкой оболочкой.

Твердая оболочка. Твердая оболочка покрывает снаружи спинной мозг. По своей форме она больше всего напоминает мешок. Следует сказать, что наружная твердая оболочка головного мозга – это надкостница костей черепа.

Паутинная оболочка. Паутинная оболочка представляет собой вещество, которое почти вплотную прилегает к твердой оболочке спинного мозга. Паутинная оболочка как спинного, так и головного мозга не содержит в себе никаких кровеносных сосудов.

Мягкая оболочка. Мягкая оболочка спинного и головного мозга содержит нервы и сосуды, которые, собственно, и питают оба мозга.

Вегетативная нервная система

Вегетативная нервная система – это одна из частей нашей нервной системы. Вегетативная нервная система отвечает за: деятельность внутренних органов, деятельность желез внутренней и внешней секреции, деятельность кровеносных и лимфатических сосудов, а также в некоторой части за мускулатуру.

Вегетативная нервная система делится на два раздела:

1) симпатический раздел;

2) парасимпатический раздел.

Симпатическая нервная система расширяет зрачок, она же вызывает учащение пульса, повышение кровяного давления, расширяет мелкие бронхи и т. д. Данная нервная система осуществляется симпатическими спинномозговыми центрами. Именно от этих центров начинаются периферические симпатические волокна, которые расположены в боковых рогах спинного мозга.

Парасимпатическая нервная система отвечает за деятельность мочевого пузыря, половых органов, прямой кишки, а также она «раздражает» ряд других нервов (например, языкоглоточный, глазодвигательный нерв). Такая «разнообразная» деятельность парасимпатической нервной системы объясняется тем, что ее нервные центры расположены как в крестцовом отделе спинного мозга, так и в стволе головного мозга. Теперь становится понятным, что те нервные центры, которые расположены в крестцовом отделе спинного мозга, контролируют деятельность органов, расположенных в малом тазу; нервные центры, которые расположены в стволе головного мозга, регулируют деятельность остальных органов через ряд специальных нервов.

Как же осуществляется контроль за деятельностью симпатической и парасимпатической нервной системы? Контроль за деятельностью этих разделов нервной системы осуществляется специальными вегетативными аппаратами, которые расположены в головном мозге.

Заболевания вегетативной нервной системы. Причинами заболеваний вегетативной нервной системы являются следующие: человек плохо переносит жаркую погоду или, наоборот, некомфортно чувствует себя зимой. Симптомом может быть то, что человек при волнении начинает быстро краснеть или бледнеть, у него учащается пульс, он начинает сильно потеть.

Следует отметить и то, что заболевания вегетативной нервной системы бывают у людей и от рождения. Многие считают, что, если человек разволновался и покраснел, значит, он просто слишком скромный и стеснительный. Мало кто подумает, что у этого человека есть какое-нибудь заболевание вегетативной нервной системы.

Также эти заболевания могут быть и приобретенными. Например, вследствие травмы головы, хронического отравления ртутью, мышьяком, вследствие перенесенного опасного инфекционного заболевания. Они могут также возникнуть и при переутомлении человека, при недостатке витаминов, при сильных психических расстройствах и переживаниях. Также заболевания вегетативной нервной системы могут быть результатом несоблюдения правил техники безопасности на производстве с опасными условиями труда.

Может быть нарушена регулирующая деятельность вегетативной нервной системы. Заболевания могут «маскироваться» под другие болезни. Например, при заболевании солнечного сплетения могут наблюдаться вздутие кишечника, плохой аппетит; при заболевании шейных или грудных узлов симпатического ствола могут наблюдаться боли в груди, которые могут отдавать в плечо. Такие боли очень напоминают болезнь сердца.

Человеку для предупреждения заболеваний вегетативной нервной системы следует соблюдать ряд простейших правил:

1) избегать нервного переутомления, простуд;

2) соблюдать технику безопасности на производстве с опасными условиями труда;

3) полноценно питаться;

4) своевременно обращаться в больницу, полно проходить весь назначенный курс лечения.

Причем последний пункт, своевременное обращение в больницу и полное прохождение назначенного курса лечения, является самым важным. Это следует из того, что слишком долгое затягивание своего визита к врачу может привести к самым печальным последствиям.

Полноценное питание также играет важную роль, т. к. человек «заряжает» свой организм, дает ему новые силы. Подкрепившись, организм начинает вести борьбу с болезнями в несколько раз активнее. Кроме того, во фруктах содержится множество полезных витаминов, которые помогают организму в борьбе с болезнями. Наиболее полезными фрукты являются в сыром виде, т. к. при их заготовке многие полезные свойства могут исчезать. Ряд фруктов, помимо того, что они содержат витамин С, обладают также веществом, которое усиливает действие витамина С. Это вещество называется танин и содержится оно в айве, грушах, яблоках, гранате.

Развитие нервной системы в онтогенезе. Характеристика трехпузырьной и пятипузырьной стадий формирования головного мозга

Онтогенез, или индивидуальное развитие организма, делится на два периода: пренатальный (внутриутробный) и постнатальный (после рождения). Первый продолжается от момента зачатия и формирования зиготы до рождения; второй - от момента рождения и до смерти.

Пренатальный период в свою очередь подразделяется на три периода: начальный, зародышевый и плодный. Начальный (предимплантационный) период у человека охватывает первую неделю развития (с момента оплодотворения до имплантации в слизистую оболочку матки). Зародышевый (предплодный, эмбриональный) период - от начала второй недели до конца восьмой недели (с момента имплантации до завершения закладки органов). Плодный (фетальный) период начинается с девятой недели и длится до рождения. В это время происходит усиленный рост организма.

Постнатальный период онтогенеза подразделяют на одиннадцать периодов: 1-й - 10-й день - новорожденные; 10-й день - 1 год - грудной возраст; 1-3 года - раннее детство; 4-7 лет - первое детство; 8-12 лет - второе детство; 13-16 лет - подростковый период; 17-21 год - юношеский возраст; 22-35 лет - первый зрелый возраст; 36-60 лет - второй зрелый возраст; 61-74 года- пожилой возраст; с 75 лет - старческий возраст, после 90 лет - долгожители.

Завершается онтогенез естественной смертью.

Нервная системаразвивается из трех основных образований : нервной трубки, нервного гребня и нейральных плакод. Нервная трубка формируется в результате нейруляции из нервной пластинки – участка эктодермы, расположенного над хордой. Согласно теории организаторов Шпемена, бластомеры хорды способны выделять вещества – индукторы первого рода, в результате действия которых нервная пластинка прогибается внутрь тела зародыша и образуется нервный желобок, края которого затем сливаются, образуя нервную трубку. Смыкание краев нервного желобка начинается в шейном отделе тела зародыша, распространяясь сначала на каудальную часть тела, а позже на краниальную.

Нервная трубка дает начало центральнойнервной системе, а также нейронам и глиоцитам сетчатой оболочки глаза. Вначале нервная трубка представлена многорядным нейроэпителием, клетки в нем называются вентрикулярными. Их отростки, обращенные в полость нервной трубки, соединены нексусами, базаль-ные части клеток лежат на субпиальной мембране. Ядра нейро-эпителиальных клеток меняют свое расположение в зависимости от фазы жизненного цикла клетки. Постепенно, к концу эмбриогенеза, вентрикулярные клетки утрачивают способность к делению и в постнатальном периоде дают начало нейронам и различным типам глиоцитов. В некоторых областях мозга (герминативные, или камбиальные зоны) вентрикулярные клетки не утрачивают способности к делению. В этом случае они называются субвентрикулярными и экстравентрикулярными. Из них, в свою очередь, дифференцируются нейробласты, которые, уже не имея способности к пролиферации, подвергаются изменениям, в ходе которых превращаются в зрелые нервные клетки – нейроны. Отличием нейронов от остальных клеток своего дифферона (клеточного ряда) является наличие в них нейрофибрилл, а также отростков, при этом сначала появляется аксон (нейрит), позже – дендриты. Отростки образуют соединения – синапсы. Итого, дифферон нервной ткани представлен нейроэпителиальными (вентрикулярными), субвентрикулярными, экстравентрикуляр-ными клетками, нейробластами и нейронами.

В отличие от глиоцитов макроглии, развивающихся из вентри-кулярных клеток, клетки микроглии развиваются из мезенхимы и входят в макрофагическую систему.

Шейная и туловищная части нервной трубки дают начало спинному мозгу, краниальная часть дифференцируется в головной. Полость нервной трубки превращается в спинномозговой канал, соединенный с желудочками головного мозга.

Головной мозг в своем развитии претерпевает несколько стадий. Его отделы развиваются из первичных мозговых пузырей. Сначала их насчитывается три: передний, средний и ромбовидный. К концу четвертой недели передний мозговой пузырь разделяется на зачатки конечного и промежуточного мозга. Вскоре после этого делится и ромбовидный пузырь, давая начало заднему и продолговатому мозгу. Эта стадия развития головного мозга называется стадией пяти мозговых пузырей. Время их формирования совпадает со временем появления трех изгибов головного мозга. В первую очередь образуется теменной изгиб в области среднего мозгового пузыря, выпуклость его обращена дорсально. После него появляется затылочный изгиб между зачатками продолговатого и спинного мозга. Выпуклость его также обращена дорсально. Последним образуется мостовой изгиб между двумя предыдущими, но он изгибается в вентральную сторону.

Полость нервной трубки в головном мозге преобразуется сначала в полости трех, затем пяти пузырей. Полость ромбовидного пузыря дает начало четвертому желудочку, который соединяется через водопровод среднего мозга (полость среднего мозгового пузыря) с третьим желудочком, образованным полостью зачатка промежуточного мозга. Полость непарного поначалу зачатка конечного мозга соединяется через межжелудочковое отверстие с полостью зачатка промежуточного мозга. В дальнейшем полость конечного пузыря даст начало боковым желудочкам.

Стенки нервной трубки на стадиях формирования мозговых пузырей будут утолщаться наиболее равномерно в области среднего мозга. Вентральная часть нервной трубки преобразуется в ножки мозга (средний мозг), серый бугор, воронку, заднюю долю гипофиза (промежуточный мозг). Дорсальная ее часть превращается в пластинку крыши среднего мозга, а также крышу III желудочка с сосудистым сплетением и эпифиз. Латеральные стенки нервной трубки в области промежуточного мозга разрастаются, образуя зрительные бугры. Здесь под влиянием индукторов второго рода образуются выпячивания – глазные пузырьки, каждый из которых даст начало глазному бокалу, а в дальнейшем – сетчатке глаза. Индукторы третьего рода, находящиеся в глазных бокалах, влияют на эктодерму над собой, которая отшнуровывается внутрь бокалов, давая начало хрусталику.

НЕРВНАЯ СИСТЕМА
сложная сеть структур, пронизывающая весь организм и обеспечивающая саморегуляцию его жизнедеятельности благодаря способность реагировать на внешние и внутренние воздействия (стимулы). Основные функции нервной системы - получение, хранение и переработка информации из внешней и внутренней среды, регуляция и координация деятельности всех органов и органных систем. У человека, как и у всех млекопитающих, нервная система включает три основных компонента: 1) нервные клетки (нейроны); 2) связанные с ними клетки глии, в частности клетки нейроглии, а также клетки, образующие неврилемму; 3) соединительная ткань. Нейроны обеспечивают проведение нервных импульсов; нейроглия выполняет опорные, защитные и трофические функции как в головном, так и в спинном мозгу, а неврилемма, состоящая преимущественно из специализированных, т.н. шванновских клеток, участвует в образовании оболочек волокон периферических нервов; соединительная ткань поддерживает и связывает воедино различные части нервной системы. Нервную систему человека подразделяют по-разному. Анатомически она состоит из центральной нервной системы (ЦНС) и периферической нервной системы (ПНС). ЦНС включает головной и спинной мозг, а ПНС, обеспечивающая связь ЦНС с различными частями тела, - черепно-мозговые и спинномозговые нервы, а также нервные узлы (ганглии) и нервные сплетения, лежащие вне спинного и головного мозга.

Нейрон. Структурно-функциональной единицей нервной системы является нервная клетка - нейрон. По оценкам, в нервной системе человека более 100 млрд. нейронов. Типичный нейрон состоит из тела (т.е. ядерной части) и отростков, одного обычно неветвящегося отростка, аксона, и нескольких ветвящихся - дендритов. По аксону импульсы идут от тела клетки к мышцам, железам или другим нейронам, тогда как по дендритам они поступают в тело клетки. В нейроне, как и в других клетках, есть ядро и ряд мельчайших структур - органелл (см. также КЛЕТКА). К ним относятся эндоплазматический ретикулум, рибосомы, тельца Ниссля (тигроид), митохондрии, комплекс Гольджи, лизосомы, филаменты (нейрофиламенты и микротрубочки).



Нервный импульс. Если раздражение нейрона превышает определенную пороговую величину, то в точке стимуляции возникает серия химических и электрических изменений, которые распространяются по всему нейрону. Передающиеся электрические изменения называются нервным импульсом. В отличие от простого электрического разряда, который из-за сопротивления нейрона будет постепенно ослабевать и сумеет преодолеть лишь короткое расстояние, гораздо медленнее "бегущий" нервный импульс в процессе распространения постоянно восстанавливается (регенерирует). Концентрации ионов (электрически заряженных атомов) - главным образом натрия и калия, а также органических веществ - вне нейрона и внутри него неодинаковы, поэтому нервная клетка в состоянии покоя заряжена изнутри отрицательно, а снаружи положительно; в результате на мембране клетки возникает разность потенциалов (т.н. "потенциал покоя" равен примерно -70 милливольтам). Любые изменения, которые уменьшают отрицательный заряд внутри клетки и тем самым разность потенциалов на мембране, называются деполяризацией. Плазматическая мембрана, окружающая нейрон, - сложное образование, состоящее из липидов (жиров), белков и углеводов. Она практически непроницаема для ионов. Но часть белковых молекул мембраны формирует каналы, через которые определенные ионы могут проходить. Однако эти каналы, называемые ионными, открыты не постоянно, а, подобно воротам, могут открываться и закрываться. При раздражении нейрона некоторые из натриевых (Na+) каналов открываются в точке стимуляции, благодаря чему ионы натрия входят внутрь клетки. Приток этих положительно заряженных ионов снижает отрицательный заряд внутренней поверхности мембраны в области канала, что приводит к деполяризации, которая сопровождается резким изменением вольтажа и разрядом - возникает т.н. "потенциал действия", т.е. нервный импульс. Затем натриевые каналы закрываются. Во многих нейронах деполяризация вызывает также открытие калиевых (K+) каналов, вследствие чего ионы калия выходят из клетки. Потеря этих положительно заряженных ионов вновь увеличивает отрицательный заряд на внутренней поверхности мембраны. Затем калиевые каналы закрываются. Начинают работать и другие мембранные белки - т.н. калий-натриевые насосы, обеспечивающие перемещение Na+ из клетки, а K+ внутрь клетки, что, наряду с деятельностью калиевых каналов, восстанавливает исходное электрохимическое состояние (потенциал покоя) в точке стимуляции. Электрохимические изменения в точке стимуляции вызывают деполяризацию в прилегающей точке мембраны, запуская в ней такой же цикл изменений. Этот процесс постоянно повторяется, причем в каждой новой точке, где происходит деполяризация, рождается импульс той же величины, что и в предыдущей точке. Таким образом, вместе с возобновляющимся электрохимическим циклом нервный импульс распространяется по нейрону от точки к точке. Нервы, нервные волокна и ганглии. Нерв - это пучок волокон, каждое из которых функционирует независимо от других. Волокна в нерве организованы в группы, окруженные специализированной соединительной тканью, в которой проходят сосуды, снабжающие нервные волокна питательными веществами и кислородом и удаляющие диоксид углерода и продукты распада. Нервные волокна, по которым импульсы распространяются от периферических рецепторов к ЦНС (афферентные), называют чувствительными или сенсорными. Волокна, передающие импульсы от ЦНС к мышцам или железам (эфферентные), называют двигательными или моторными. Большинство нервов смешанные и состоят как из чувствительных, так и из двигательных волокон. Ганглий (нервный узел) - это скопление тел нейронов в периферической нервной системе. Волокна аксонов в ПНС окружены неврилеммой - оболочкой из шванновских клеток, которые располагаются вдоль аксона, как бусины на нити. Значительное число этих аксонов покрыто дополнительной оболочкой из миелина (белково-липидного комплекса); их называют миелинизированными (мякотными). Волокна же, окруженные клетками неврилеммы, но не покрытые миелиновой оболочкой, называют немиелинизированными (безмякотными). Миелинизированные волокна имеются только у позвоночных животных. Миелиновая оболочка формируется из плазматической мембраны шванновских клеток, которая накручивается на аксон, как моток ленты, образуя слой за слоем. Участок аксона, где две смежные шванновские клетки соприкасаются друг с другом, называется перехватом Ранвье. В ЦНС миелиновая оболочка нервных волокон образована особым типом глиальных клеток - олигодендроглией. Каждая из этих клеток формирует миелиновую оболочку сразу нескольких аксонов. Немиелинизированные волокна в ЦНС лишены оболочки из каких-либо специальных клеток. Миелиновая оболочка ускоряет проведение нервных импульсов, которые "перескакивают" от одного перехвата Ранвье к другому, используя эту оболочку как связующий электрический кабель. Скорость проведения импульсов возрастает с утолщением миелиновой оболочки и колеблется от 2 м/с (по немиелинизированным волокнам) до 120 м/с (по волокнам, особенно богатым миелином). Для сравнения: скорость распространения электрического тока по металлическим проводам - от 300 до 3000 км/с.
Cинапс. Каждый нейрон имеет специализированную связь с мышцами, железами или другими нейронами. Зона функционального контакта двух нейронов называется синапсом. Межнейронные синапсы образуются между различными частями двух нервных клеток: между аксоном и дендритом, между аксоном и телом клетки, между дендритом и дендритом, между аксоном и аксоном. Нейрон, посылающий импульс к синапсу, называют пресинаптическим; нейрон, получающий импульс, - постсинаптическим. Синаптическое пространство имеет форму щели. Нервный импульс, распространяющийся по мембране пресинаптического нейрона, достигает синапса и стимулирует высвобождение особого вещества - нейромедиатора - в узкую синаптическую щель. Молекулы нейромедиатора диффундируют через щель и связываются с рецепторами на мембране постсинаптического нейрона. Если нейромедиатор стимулирует постсинаптический нейрон, его действие называют возбуждающим, если подавляет - тормозным. Результат суммации сотен и тысяч возбуждающих и тормозных импульсов, одновременно стекающихся к нейрону, - основной фактор, определяющий, будет ли этот постсинаптический нейрон генерировать нервный импульс в данный момент. У ряда животных (например, у лангуста) между нейронами определенных нервов устанавливается особо тесная связь с формированием либо необычно узкого синапса, т.н. щелевого соединения, либо, если нейроны непосредственно контактируют друг с другом, плотного соединения. Нервные импульсы проходят через эти соединения не при участии нейромедиатора, а непосредственно, путем электрической передачи. Немногочисленные плотные соединения нейронов имеются и у млекопитающих, в том числе у человека.
Регенерация. К моменту рождения человека все его нейроны и большая часть межнейронных связей уже сформированы, и в дальнейшем образуются лишь единичные новые нейроны. Когда нейрон погибает, он не заменяется новым. Однако оставшиеся могут брать на себя функции утраченной клетки, образуя новые отростки, которые формируют синапсы с теми нейронами, мышцами или железами, с которыми был связан утраченный нейрон. Перерезанные или поврежденные волокна нейронов ПНС, окруженные неврилеммой, могут регенерировать, если тело клетки осталось сохранным. Ниже места перерезки неврилемма сохраняется в виде трубчатой структуры, и та часть аксона, которая осталась связанной с телом клетки, растет по этой трубке, пока не достигнет нервного окончания. Таким образом восстанавливается функция поврежденного нейрона. Аксоны в ЦНС, не окруженные неврилеммой, по-видимому, не способны вновь прорастать к месту прежнего окончания. Однако многие нейроны ЦНС могут давать новые короткие отростки - ответвления аксонов и дендритов, формирующие новые синапсы.
ЦЕНТРАЛЬНАЯ НЕРВНАЯ СИСТЕМА



ЦНС состоит из головного и спинного мозга и их защитных оболочек. Самой наружной является твердая мозговая оболочка, под ней расположена паутинная (арахноидальная), а затем мягкая мозговая оболочка, сращенная с поверхностью мозга. Между мягкой и паутинной оболочками находится подпаутинное (субарахноидальное) пространство, содержащее спинномозговую (цереброспинальную) жидкость, в которой как головной, так и спинной мозг буквально плавают. Действие выталкивающей силы жидкости приводит к тому, что, например, головной мозг взрослого человека, имеющий массу в среднем 1500 г, внутри черепа реально весит 50-100 г. Мозговые оболочки и спинномозговая жидкость играют также роль амортизаторов, смягчающих всевозможные удары и толчки, которые испытывает тело и которые могли бы привести к повреждению нервной системы. ЦНС образована из серого и белого вещества. Серое вещество составляют тела клеток, дендриты и немиелинизированные аксоны, организованные в комплексы, которые включают бесчисленное множество синапсов и служат центрами обработки информации, обеспечивая многие функции нервной системы. Белое вещество состоит из миелинизированных и немиелинизированных аксонов, выполняющих роль проводников, передающих импульсы из одного центра в другой. В состав серого и белого вещества входят также клетки глии. Нейроны ЦНС образуют множество цепей, которые выполняют две основные функции: обеспечивают рефлекторную деятельность, а также сложную обработку информации в высших мозговых центрах. Эти высшие центры, например зрительная зона коры (зрительная кора), получают входящую информацию, перерабатывают ее и передают ответный сигнал по аксонам. Результат деятельности нервной системы - та или иная активность, в основе которой лежит сокращение или расслабление мышц либо секреция или прекращение секреции желез. Именно с работой мышц и желез связан любой способ нашего самовыражения. Поступающая сенсорная информация подвергается обработке, проходя последовательность центров, связанных длинными аксонами, которые образуют специфические проводящие пути, например болевые, зрительные, слуховые. Чувствительные (восходящие) проводящие пути идут в восходящем направлении к центрам головного мозга. Двигательные (нисходящие) пути связывают головной мозг с двигательными нейронами черепно-мозговых и спинномозговых нервов. Проводящие пути обычно организованы таким образом, что информация (например, болевая или тактильная) от правой половины тела поступает в левую часть мозга и наоборот. Это правило распространяется и на нисходящие двигательные пути: правая половина мозга управляет движениями левой половины тела, а левая половина - правой. Из этого общего правила, однако, есть несколько исключений. Головной мозг состоит из трех основных структур: больших полушарий, мозжечка и ствола. Большие полушария - самая крупная часть мозга - содержат высшие нервные центры, составляющие основу сознания, интеллекта, личности, речи, понимания. В каждом из больших полушарий выделяют следующие образования: лежащие в глубине обособленные скопления (ядра) серого вещества, которые содержат многие важные центры; расположенный над ними крупный массив белого вещества; покрывающий полушария снаружи толстый слой серого вещества с многочисленными извилинами, составляющий кору головного мозга. Мозжечок тоже состоит из расположенного в глубине серого вещества, промежуточного массива белого вещества и наружного толстого слоя серого вещества, образующего множество извилин. Мозжечок обеспечивает главным образом координацию движений. Ствол мозга образован массой серого и белого вещества, не разделенной на слои. Ствол тесно связан с большими полушариями, мозжечком и спинным мозгом и содержит многочисленные центры чувствительных и двигательных проводящих путей. Первые две пары черепно-мозговых нервов отходят от больших полушарий, остальные же десять пар - от ствола. Ствол регулирует такие жизненно важные функции, как дыхание и кровообращение.
См. также ГОЛОВНОЙ МОЗГ ЧЕЛОВЕКА .
Спинной мозг. Находящийся внутри позвоночного столба и защищенный его костной тканью спинной мозг имеет цилиндрическую форму и покрыт тремя оболочками. На поперечном срезе серое вещество имеет форму буквы Н или бабочки. Серое вещество окружено белым веществом. Чувствительные волокна спинномозговых нервов заканчиваются в дорсальных (задних) отделах серого вещества - задних рогах (на концах Н, обращенных к спине). Тела двигательных нейронов спинномозговых нервов расположены в вентральных (передних) отделах серого вещества - передних рогах (на концах Н, удаленных от спины). В белом веществе проходят восходящие чувствительные проводящие пути, заканчивающиеся в сером веществе спинного мозга, и нисходящие двигательные пути, идущие от серого вещества. Кроме того, многие волокна в белом веществе связывают различные отделы серого вещества спинного мозга.
ПЕРИФЕРИЧЕСКАЯ НЕРВНАЯ СИСТЕМА
ПНС обеспечивает двустороннюю связь центральных отделов нервной системы с органами и системами организма. Анатомически ПНС представлена черепно-мозговыми (черепными) и спинномозговыми нервами, а также относительно автономной энтеральной нервной системой, локализованной в стенке кишечника. Все черепно-мозговые нервы (12 пар) разделяют на двигательные, чувствительные либо смешанные. Двигательные нервы начинаются в двигательных ядрах ствола, образованных телами самих моторных нейронов, а чувствительные нервы формируются из волокон тех нейронов, тела которых лежат в ганглиях за пределами мозга. От спинного мозга отходит 31 пара спинномозговых нервов: 8 пар шейных, 12 грудных, 5 поясничных, 5 крестцовых и 1 копчиковая. Их обозначают в соответствии с положением позвонков, прилежащих к межпозвоночным отверстиям, из которых выходят данные нервы. Каждый спинномозговой нерв имеет передний и задний корешки, которые, сливаясь, образуют сам нерв. Задний корешок содержит чувствительные волокна; он тесно связан со спинальным ганглием (ганглием заднего корешка), состоящим из тел нейронов, аксоны которых образуют эти волокна. Передний корешок состоит из двигательных волокон, образованных нейронами, клеточные тела которых лежат в спинном мозге.
ВЕГЕТАТИВНАЯ НЕРВНАЯ СИСТЕМА
Вегетативная, или автономная, нервная система регулирует деятельность непроизвольных мышц, сердечной мышцы и различных желез. Ее структуры расположены как в центральной нервной системе, так и в периферической. Деятельность вегетативной нервной системы направлена на поддержание гомеостаза, т.е. относительно стабильного состояния внутренней среды организма, например постоянной температуры тела или кровяного давления, соответствующего потребностям организма. Сигналы от ЦНС поступают к рабочим (эффекторным) органам через пары последовательно соединенных нейронов. Тела нейронов первого уровня располагаются в ЦНС, а их аксоны оканчиваются в вегетативных ганглиях, лежащих за пределами ЦНС, и здесь образуют синапсы с телами нейронов второго уровня, аксоны которых непосредственно контактируют с эффекторными органами. Первые нейроны называют преганглионарными, вторые - постганглионарными. В той части вегетативной нервной системы, которую называют симпатической, тела преганглионарных нейронов расположены в сером веществе грудного (торакального) и поясничного (люмбального) отделов спинного мозга. Поэтому симпатическую систему называют также торако-люмбальной. Аксоны ее преганглионарных нейронов оканчиваются и образуют синапсы с постганглионарными нейронами в ганглиях, расположенных цепочкой вдоль позвоночника. Аксоны постганглионарных нейронов контактируют с эффекторными органами. Окончания постганглионарных волокон выделяют в качестве нейромедиатора норадреналин (вещество, близкое к адреналину), и потому симпатическая система определяется также как адренергическая. Симпатическую систему дополняет парасимпатическая нервная система. Тела ее преганглинарных нейронов расположены в стволе мозга (интракраниально, т.е. внутри черепа) и крестцовом (сакральном) отделе спинного мозга. Поэтому парасимпатическую систему называют также кранио-сакральной. Аксоны преганглионарных парасимпатических нейронов оканчиваются и образуют синапсы с постганглионарными нейронами в ганглиях, расположенных вблизи рабочих органов. Окончания постганглионарных парасимпатических волокон выделяют нейромедиатор ацетилхолин, на основании чего парасимпатическую систему называют также холинергической. Как правило, симпатическая система стимулирует те процессы, которые направлены на мобилизацию сил организма в экстремальных ситуациях или в условиях стресса. Парасимпатическая же система способствует накоплению или восстановлению энергетических ресурсов организма. Реакции симпатической системы сопровождаются расходом энергетических ресурсов, повышением частоты и силы сердечных сокращений, возрастания кровяного давления и содержания сахара в крови, а также усилением притока крови к скелетным мышцам за счет уменьшения ее притока к внутренним органам и коже. Все эти изменения характерны для реакции "испуга, бегства или борьбы". Парасимпатическая система, наоборот, уменьшает частоту и силу сердечных сокращений, снижает кровяное давление, стимулирует пищеварительную систему. Симпатическая и парасимпатическая системы действуют координированно, и их нельзя рассматривать как антагонистические. Они сообща поддерживают функционирование внутренних органов и тканей на уровне, соответствующем интенсивности стресса и эмоциональному состоянию человека. Обе системы функционируют непрерывно, но уровни их активности колеблются в зависимости от ситуации.
РЕФЛЕКСЫ
Когда на рецептор сенсорного нейрона воздействует адекватный стимул, в нем возникает залп импульсов, запускающих ответное действие, именуемое рефлекторным актом (рефлексом). Рефлексы лежат в основе большинства проявлений жизнедеятельности нашего организма. Рефлекторный акт осуществляет т.н. рефлекторная дуга; этим термином обозначают путь передачи нервных импульсов от точки исходной стимуляции на теле до органа, совершающего ответное действие. Дуга рефлекса, вызывающего сокращение скелетной мышцы, состоит по меньшей мере из двух нейронов: чувствительного, тело которого расположено в ганглии, а аксон образует синапс с нейронами спинного мозга или ствола мозга, и двигательного (нижнего, или периферического, мотонейрона), тело которого находится в сером веществе, а аксон оканчивается двигательной концевой пластинкой на скелетных мышечных волокнах. В рефлекторную дугу между чувствительным и двигательным нейронами может включаться и третий, промежуточный, нейрон, расположенный в сером веществе. Дуги многих рефлексов содержат два и более промежуточных нейрона. Рефлекторные действия осуществляются непроизвольно, многие из них не осознаются. Коленный рефлекс, например, вызывается постукиванием по сухожилию четырехглавой мышцы в области колена. Это двухнейронный рефлекс, его рефлекторная дуга состоит из мышечных веретен (мышечных рецепторов), чувствительного нейрона, периферического двигательного нейрона и мышцы. Другой пример - рефлекторное отдергивание руки от горячего предмета: дуга этого рефлекса включает чувствительный нейрон, один или несколько промежуточных нейронов в сером веществе спинного мозга, периферический двигательный нейрон и мышцу. Многие рефлекторные акты имеют значительно более сложный механизм. Так называемые межсегментарные рефлексы складываются из комбинаций более простых рефлексов, в осуществлении которых принимают участие многие сегменты спинного мозга. Благодаря таким рефлексам обеспечивается, например, координация движений рук и ног при ходьбе. К сложным рефлексам, замыкающимся в головном мозге, относятся движения, связанные с поддержанием равновесия. Висцеральные рефлексы, т.е. рефлекторные реакции внутренних органов, опосредуются вегетативной нервной системой; они обеспечивают опорожнение мочевого пузыря и многие процессы в пищеварительной системе.
См. также РЕФЛЕКС .
ЗАБОЛЕВАНИЯ НЕРВНОЙ СИСТЕМЫ
Поражения нервной системы возникают при органических заболеваниях или травмах головного и спинного мозга, мозговых оболочек, периферических нервов. Диагностика и лечение заболеваний и травм нервной системы составляют предмет особой отрасли медицины - неврологии. Психиатрия и клиническая психология занимаются главным образом психическими расстройствами. Сферы этих медицинских дисциплин часто перекрываются. См. отдельные заболевания нервной системы: АЛЬЦГЕЙМЕРА БОЛЕЗНЬ ;
ИНСУЛЬТ ;
МЕНИНГИТ ;
НЕВРИТ ;
ПАРАЛИЧ ;
ПАРКИНСОНА БОЛЕЗНЬ ;
ПОЛИОМИЕЛИТ ;
РАССЕЯННЫЙ СКЛЕРОЗ ;
СТОЛБНЯК ;
ДЕТСКИЙ ЦЕРЕБРАЛЬНЫЙ ПАРАЛИЧ ;
ХОРЕЯ ;
ЭНЦЕФАЛИТ ;
ЭПИЛЕПСИЯ .
См. также
АНАТОМИЯ СРАВНИТЕЛЬНАЯ ;
АНАТОМИЯ ЧЕЛОВЕКА .
ЛИТЕРАТУРА
Блум Ф., Лейзерсон А., Хофстедтер Л. Мозг, разум и поведение. М., 1988 Физиология человека, под ред. Р.Шмидта, Г.Тевса, т. 1. М., 1996

Энциклопедия Кольера. - Открытое общество . 2000 .

Смотреть что такое "НЕРВНАЯ СИСТЕМА" в других словарях:

    НЕРВНАЯ СИСТЕМА - НЕРВНАЯ СИСТЕМА. Содержание: I. Эмбриогенез, гистогенез и филогенез Н.с. . 518 II. Анатомия Н. с................. 524 III. Физиология Н. с................ 525 IV. Патология Н.с................. 54? I. Эмбриогенез, гистогенез и филогенез Н. е.… … Большая медицинская энциклопедия

    - (systema nervosum), морфофункц. совокупность отд. нейронов и др. структур нервной ткани животных и человека, объединяющая деятельность всех органов и систем организма в его постоянном взаимодействии с внеш. средой. Н. с. воспринимает внеш. и… … Биологический энциклопедический словарь

    нервная система - Нервная ткань, как и все другие ткани организма, состоит из бесконечного количества клеток с особой формой и функциями. Клетки, высоко дифференцированные, носят название нервных клеток или невронов. Нервная система управляет функционированием… … Универсальный дополнительный практический толковый словарь И. Мостицкого

    нервная система - ▲ система органов животного для (чего), регулирование, жизнедеятельность, посредством, сигнал нервная система осуществляет общую регуляцию жизнедеятельности при помощи возбуждающих и угнетающих электрических импульсов; связывает рецепторы с… … Идеографический словарь русского языка

    НЕРВНАЯ СИСТЕМА, система, состоящая из взаимосвязанных нервных клеток, или НЕЙРОНОВ, которая координирует все функции организма, рост, физическую и умственную активность. У низших животных, таких как медузы, она состоит из сети нервов, без центра … Научно-технический энциклопедический словарь