Что прочнее железа. Самый твердый металл в мире: название и другие свойства

В мире есть много одинаковых по показателям твёрдости металлов, но не все они широко используются в промышленности. Причин тому может быть несколько: редкость и потому дороговизна или же радиоактивность, которая препятствует использованию в человеческих нуждах. Среди самых твёрдых металлов можно выделить 6 лидеров, покоривших мир своими особенностями.

Твёрдость металлов принято измерять по шкале Мооса. В основе метода измерения твёрдости – оценка устойчивости к царапинам другими металлами. Таким образом, было определено, что наивысшей твёрдостью обладают уран и вольфрам. Однако есть металлы, которые больше используются в разных сферах жизни, хоть их твердость и не наивысшая по шкале Мооса. Поэтому, раскрывая тему о самых твёрдых металлах, неправильно будет не упомянуть об известном титане, хроме, осмии и иридии.

На вопрос, какой самый твёрдый металл, любой человек, изучающий химию и физику в школе, ответит: «Титан». Конечно, существуют сплавы и даже самородки в чистом виде, которые превосходят его по прочности. Но среди используемых в быту и производстве титану нет равных.

Чистый титан впервые был получен в 1925 году и тогда же был объявлен самым твёрдым металлом на Земле. Его сразу стали активно использовать в абсолютно разных сферах производства – от деталей ракет и воздушного транспорта до зубных имплантатов. Заслугой такой популярности металла стали несколько его главных свойств: высокая механическая прочность, стойкость к коррозиям и высоким температурам и низкая плотность. По шкале твёрдости металлов Мооса титан обладает степенью 4.5, что не является самым высоким показателем. Однако его популярность и задействованность в различных отраслях делает его первым по твёрдости среди часто используемых.

Титан самый твёрдый среди часто используемых в производстве металлов

Детальнее про применение титана в промышленности. Данный метал имеет широкий спектр использования:

  • Авиационная промышленность – детали планерной части самолётов, газовые турбины, обшивки, силовые элементы, детали шасси, заклёпки и т.д;
  • Космическая техника – обшивки, детали;
  • Кораблестроение – обшивка судов, детали насосов и трубопроводов, навигационные приборы, турбинные двигатели, паровые котлы;
  • Машиностроение – конденсаторы турбин, трубы, износостойкие элементы;
  • Нефтегазовая промышленность – трубы для бурения, насосы, сосуды высокого давления;
  • Автостроение – в механизмах клапанов и выхлопных систем, передаточных валов, болтов, пружин;
  • Строительство – наружная и внутренняя обшивка зданий, кровельные материалы, лёгкие крепежные приспособления и даже памятники;
  • Медицина – хирургические инструменты, протезы, имплантаты, корпусы для кардиологических приборов;
  • Спорт – спортивный инвентарь, туристические принадлежности, детали для велосипедов.
  • Товары народного потребления – ювелирные украшения, декоративные изделия, садовой инвентарь, наручные часы, кухонная утварь, корпуса электроники и даже колокола, а также добавляют в состав красок, белил, пластика и бумаги.

Можно увидеть, что титан востребован в абсолютно разных сферах промышленности за счет его физико-химических свойств. Пусть он и не самый твёрдый металл в мире по шкале Мооса, изделия из него куда прочнее и легче стали, меньше изнашиваются и более стойкие к раздражителям.


Титан считается самым твердым среди активно потребляемых металлов

Самым твёрдым в своем натуральном виде считается металл голубовато-белого цвета – хром. Он был открыт еще в конце 18 века и с тех пор широко используется в производстве. По шкале Мооса твёрдость хрома составляет 5. И не зря – им можно резать стекло, а при соединении с железом он способен резать даже металл. Также хром активно применяется в металлургии – его добавляют в сталь, чтобы улучшить ее физические свойства. Спектр использования хрома весьма разнообразен. Из него изготавливают стволы огнестрельного оружия, медицинское и химическое технологическое оборудование, бытовые принадлежности – кухонная утварь, металлические части мебели и даже корпусы подводных лодок.


Наивысшая твёрдость в чистом виде - хром

Хром используют в различных сферах, например, для производства нержавеющей стали, или для покрытия поверхностей – хромирования (техника, автомобили, детали, посуда). Часто этот метал используют при изготовлении стволов огнестрельного оружия. Также нередко этот металл можно встретить при производстве красителей и пигментов. Удивительным может показаться еще одна сфера его использования – это производство диетических добавок, а в создании технологического оборудования для химических и медицинских лабораторий без хрома никак нельзя обойтись.

Осмий и иридий – представители металлов платиновой группы, имеют почти одинаковую плотность. В своем чистом виде в природе встречаются невероятно редко, а чаще всего – в сплаве друг с другом. Иридий по природе своей обладает высокой твердостью, из-за чего плохо поддается металлообработке, как механической, так и химической.


Осмий и иридий обладают наивысшей плотностью

Активно применять иридий в промышленности стали сравнительно недавно. Раньше его использовали с осторожностью, поскольку его физико-химические характеристики были изучены не до конца. Теперь иридий используют даже в изготовлении ювелирных изделий (в качестве инкрустаций или в сплаве с платиной), хирургических инструментов и деталей для сердечных стимуляторов. В медицине металл просто незаменим: его биопрепараты могут помочь побороть онкологию, а облучение его радиоактивным изотопом может остановить процесс роста раковых клеток.

Две трети добываемого в мире иридия уходит в химическую промышленность, а остальное распределяется между другими отраслями производства – напыления в металлургической индустрии, товарах народного использования (элементы перьевых ручек, ювелирные изделия), медицине при производстве электродов, элементов кардиостимуляторов и хирургических инструментов, а также для улучшения физико-химических и механических свойств металлов.


Твёрдость иридия по шкале Мосса – 5

Осмий – серебристо-белый металл с голубоватым отливом. Он был открыт позже иридия на год, а сейчас его нередко находят в железных метеоритах. Помимо высокой твёрдости, осмий отличается своей дороговизной – 1 грамм чистого металла оценивается в 10 тысяч долларов. Еще одной его особенностью считается его вес – 1 литр расплавленного осмия равен 10 литрам воды. Правда, ученые еще не нашли применения этому свойству.

Из-за редкости и высокой стоимости осмий задействуется только там, где никакой другой металл не может быть использован. Широкого применения ему так и не нашли, да и нет смысла в поисках, пока поставки металла не станут регулярными. Сейчас осмий используется для изготовления инструментов, требующих высокой точности. Изделия из него почти не изнашиваются и обладают значительной прочностью.


Показатель твёрдости осмия достигает 5.5

Один из наиболее знаменитых элементов, который является одним из самых твёрдых металлов в мире, – уран. Это металл светло-серого цвета, обладающий слабой радиоактивностью. Уран считается одним из самых тяжелых металлов – его удельный вес в 19 раз превышает вес воды. Он также обладает относительной пластичностью, ковкостью и гибкостью, парамагнитными свойствами. По шкале Мосса твёрдость металла составляет 6, что считается очень высоким показателем.

Раньше уран почти не использовался, а встречался только как рудный отход при добыче других металлов – радия и ванадия. На сегодняшний день уран добывается в месторождениях, основными источниками являются Скалистые горы США, Республика Конго, Канада и Южно-Африканский Союз.

Несмотря на радиоактивность, уран активно потребляется человечеством. Наиболее востребован в атомной энергетике – его используют как топливо для ядерных реакторов. Также уран применяется в химической промышленности и в геологии – для определения возраста горных пород.

Не пропустила невероятные показатели удельного веса и военная инженерия. Уран регулярно используется для создания сердечников бронебойных снарядов, которые, за счет высокой прочности, отлично справляются с поставленной задачей.


Уран является самым твёрдым металлом, но он радиоактивный

Увенчивает наш список самых твёрдых металлов на Земле блестящий серебристо-серый вольфрам. По шкале Мооса твердость вольфрама равна 6, как и у урана, но, в отличие от последнего, он не является радиоактивным. Природная твёрдость, однако, не лишает его гибкости, потому вольфрам идеально подходит для ковки разных металлических изделий, а его устойчивость к высоким температурам позволяет применять его в осветительных приборах и электронике. Потребление вольфрама не достигает больших оборотов, и главной тому причиной является его ограниченное количество в месторождениях.

Благодаря высоким показателям плотности вольфрам широко используется в оружестроении для производства тяжеловесов и артиллерийских снарядов. Вообще вольфрам активно используется в военной инженерии – пули, противовесы, баллистические ракеты. Следующим по популярности использования этого метала является авиация. Из него изготавливают двигатели, детали электровакуумных приборов. В строительстве используют режущие инструменты из вольфрама. Также он является незаменимым элементом при производстве лаков и светоустойчивых красок, огнестойких и водонепроницаемых тканей.


Вольфрам считается наиболее тугоплавким и прочным

Изучив свойства и сферы потребления каждого металла, сложно однозначно сказать, какой же самый твердый металл в мире, если брать во внимание не только показатели шкалы Мооса. Каждый из представителей имеет ряд преимуществ. Например, титан, не обладающий сверхвысокой твердостью, прочно занял первое место среди самых используемых металлов. А вот уран, твердость которого достигает наивысшей отметки среди металлов, не так популярен из-за слабой радиоактивности. А вольфрам, который не излучает радиации и имеет наивысшую прочность и очень хорошие показатели податливости, не может быть активно использован из-за ограниченных ресурсов.

Сегодня мы рассмотрим самые прочные металлы в мире и обсудим их свойства. И открывает "рейтинг прочности" титан.

Не самый прочный?

Название металла, предположительно, произошло от имени древнегреческого героя Титана. Поэтому данный металл ассоциируется у нас с несокрушимостью. Многие считают титан самым прочным металлом в мире. Однако на самом деле это далеко не так.

Чистый титан был впервые получен в 1925 году. На новый материал сразу же обратили внимание благодаря ряду свойств. Титан начали очень активно применять в промышленной сфере.

Сегодня титан находится на 10 месте среди природных металлов по распространенности. В земной коре его содержится около 700 млн тонн. То есть нынешнего сырья хватит еще на 150 лет.

Титан отличают превосходные свойства. Это легкий и прочный металл, устойчивый к коррозии. Он с легкостью поддается термической обработке, имеет широкий диапазон применения. Он взаимодействует с другими элементами таблицы Менделеева только при нагревании. В природе содержится в рутиловых и ильменитовых рудах. Чистый титан получают путем спекания руды с хлором.

Он способен выдерживать огромные нагрузки. Отличается металл высокой прочностью и сопротивляемостью ударному действию. Его используют при изготовлении транспортных средств, ракет и даже подводных лодок. Титан выдерживает силу давления даже на больших глубинах.

Популярен он и в медицинской промышленности. Протезы на его основе не взаимодействуют с тканями организма и не подвержены коррозии. Но через годы он начинает изнашиваться, что заставляет заменять протез на новый.

Новые разработки

В 2016 году ученые отыскали способ усовершенствовать свойства титана и сделать его еще более прочным. Основная цель исследований - найти более стойкий материал, при этом совместимый с тканями организма. И тут вспомнили о золоте, которое долгие годы применяется в протезировании.

Сплав титана и золота, после нескольких попыток найти идеальное соотношение составляющих, оказался невероятно прочным. В 4 раза прочнее других металлов, использующихся сегодня для протезирования.

Тантал

Один из самых прочных металлов. Назван в честь древнегреческого бога Тантала, который прогневил Зевса и был низвержен в ад. Имеет серебристо-белый цвет с синеватым отливом. Является характерным элементом гранитной и щелочной магмы. Его добывают из минерала колтана, наиболее крупные месторождения которого находятся в Бразилии и Африке.

Он был открыт в далеком 1802 году. Тогда его считали разновидностью колумбия, но позже установили - это два разных металла, схожих по свойствам. Лишь через 100 лет удалось получить чистый тантал. Стоимость его сегодня достаточно высокая - 150 долларов за 1 кг металла.

Тантал - тугоплавкий металл с достаточно высокой плотностью. С химической точки зрения он стабилен, так как не растворяется в разбавленных кислотах. В виде порошка тантал неплохо горит на воздухе. Используется для изготовления электролитических конденсаторов, нагревателей в вакуумных печах. Танталовые конденсаторы увеличивают срок эксплуатации электронных систем до 10-12 лет. Примечательно, что нашли применение ему даже ювелиры - им заменяют платину.

Испытание металлов на прочность показало - сплав тантала и вольфрама имеет почти стопроцентную крепость.

Осмий - самый-самый...

Осмий - еще один невероятно прочный металл. Он также входит в список самых редких и дорогих. В составе земной коры он присутствует в мизерных количествах. Относится к рассеянным, то есть не имеет собственных месторождений. Поэтому добыча его сопровождается огромными сложностями.

Осмий принадлежит к группе платиновых металлов. Стоимость его составляет около 10 000 долларов за 1 грамм. По цене он уступает лишь искусственному калифорнию. Он состоит из нескольких изотопов, которые невероятно сложно разделить. При этом наиболее востребованным является изотоп осмий-187. Его цена за 1 грамм доходит до 200 000 долларов!

Осмий - рекордсмен по плотности среди металлов. Кроме этого, он является высокопрочным металлом. Сплавы, в составе которых присутствует осмий, приобретают устойчивость к коррозии, становятся более прочными и долговечными. Применяют металл и в чистом виде, к примеру, для изготовления дорогих авторучек, которые практически не изнашиваются и пишут годами.

Хром

Хром, кобальт и вольфрам известны науке еще с 1913 года и объединены под общим названием - стеллиты. Они сохраняют твердость даже при температуре 600 градусов по Цельсию.

В основном этот металл содержится в глубоких слоях Земли. Также он встречается в составе каменных метеоритов, которые считаются аналогами нашей мантии. Промышленную ценность представляют только хромшпинелиды. Многие минералы, в составе которых встречается хром, совершенно бесполезны. Наиболее чистый хром получают путем электролиза концентрированных водных растворов или электролиза сульфата хрома.

Металл в сочетании со сталью значительно усиливает ее прочность, а также добавляет устойчивости к окислению. Он совершенствует характеристики стали, при этом не снижая ее пластичности.

Рутений

Принадлежит к платиновой группе и относится к благородным металлам. Однако из их списка рутений считают наименее благородным... Открыл его ученый Карл-Эрнст Клаус в 1844 году. Примечательно, что профессор постоянно нюхал и пробовал на вкус результаты своих исследований. Однажды он даже получил ожог ротовой полости, когда дегустировал одно из соединений открытого им рутения.

Его мировые запасы на сегодняшний день составляет около 5 000 тонн. Рутений долгое время исследуют, однако многие его свойства пока неизвестны. Вся проблема в том, что пока не было найдено способа полной очистки рутения. Загрязненность сырья мешает исследовать его свойства. Однако медики уверены, что использование металла в обиходе способно повысить заболеваемость среди населения. Поэтому выброс изотопа рутения-106 на Урале вызвал такой резонанс в прессе. Ведь рутений-106 имеет радиоактивные свойства.

При этом стоимость его в 2017 году неожиданно превзошла все платиновые металлы.

Иридий - самый прочный металл

Именно иридий отличается наивысшей прочностью. Да, он уступает осмию по плотности, но имеет высочайший коэффициент прочности. Его также называют самым редким из металлов, однако на самом деле содержание астата в земной коре еще меньше.

Иридий изучали очень осторожно. Спустя 70 лет его основные свойства - невероятная прочность и устойчивость к коррозии, стали известны всему миру. Сегодня он применяется во множестве отраслей. Львиную долю металла эксплуатирует химическая промышленность. Оставшаяся часть распределена на множество других областей, среди которых - медицина и ювелирное дело. Иридий в сочетании с платиной создает качественные и очень долговечные украшения.

Если под прочностью принято понимать способность твердых тел противостоять разрушению и сохранять форму изделия, то к сверхпрочным и прочным металлам можно отнести следующие металлы.

Название титан было присвоено Мартином Клапротом, немецким исследователем, открывшим новый металл не по его химическим качествам, а в честь мифологических героев детей земли – титанов.

Нахождение титана в природе стоит на 10-м месте, более всего он концентрируется в минералах. Без этого металла невозможны были бы новейшие открытия в области ракето-, корабле- и авиастроении. Титан используют во всех областях промышленности, при изготовлении медицинских имплантов и бронежилетов с пищевой промышленности и сельском хозяйстве.

2 Место

Светло – серый вольфрам , дословно переводится, как волчьи сливки, является самым тугоплавким металлом, поэтому он незаменим при изготовлении жароустойчивых поверхностей и изделий. Нить накаливания в обычной лампочке сделана из вольфрамовой нити.

Тот металл используют в баллистических ракетах, при изготовлении снарядов и пуль, в гироскопических сверхскоростных роторах.

3 место

Тантал практически невозможно видоизменить, ведь он начинает плавиться при температуре 3015 градусов по Цельсию, а закипает при температуре кипения в 5300 градусов. Обычному человеку такую жару даже представить невозможно. Синевато — серый металл является самым незаменимым в современной медицине, из него изготовляют проволоку и листы, которыми закрывают поврежденные кости.

Открытый в 1817 году молибден , серо-стальной металл в чистом виде практически не встречается. Поражает тугоплавкость этого металла, температура плавления которого превышает 2620 градусов. Самое большое применение молибден нашел в военной промышленности, где изготавливаются орудийные и броневые стали.

5 место

Авиа — и машиностроение, ядерная энергетика и космонавтика используют ниобий , очень похожий по своим свойствам на тантал металл. На ниобий практически не действуют никакие вещества, ни соли, ни кислоты, он трудно плавится, и трудно окисляется, что и сделано уникальный металл таким востребованным.

6 место

Самый тяжелый металл на земле иридий обладает самыми стойкими антикоррозийными свойствами, его не может расплавить даже царская водка. Добавление иридия в другие сплавы повышает их способность противостоять коррозии.

7 место

Бериллий является одним из редких металлов, которые добываются в земле. Его уникальные качества, такие как высокая теплопроводность и огнеупорность, сделали этот металл незаменимым при изготовлении ядерных реакторов. Бериллиевые сплавы по праву занимают ведущее место в аэрокосмической и авиационной промышленности.

8 место

Светло – голубой хром , который является также одним из самых прочных металлов, благодаря своим уникальным свойствам при добавлении в сплавы сталей делает их более твердыми и коррозийноустойчивыми. Хромированные детали имеют красивый внешний вид, который не видоизменяется со временем.

9 место

Саксонцы бережно относятся к своим легендам, имя героя одной из них Кобольда было увековечено в названии металла – кобальта . Очень часто при добывании руды искатели серо — розовый металл принимали за серебро.

Тугоплавкий металл, как добавка, повышает жаропрочность, твердость и износоустойчивость стали. Благодаря уникальным качествам кобальт незаменим в металлорежущих станках.

Гафний – уникальный по своим качествам металл светло-серого цвета добывается из циркониевой руды. Твердый, тугоплавкий гафний имеет уникальную особенность, дело в том, что его темплоемкостная зависимость аномальна и не подпадает не под какие законы физики.

Гафний используют в атомной энергетике и в оптике, для укрепления различных сплавов и изготовления стекла для рентгена, без него трудно представить военное производство.

Окружающий нас мир таит в себе еще множество загадок, но даже давно известные ученым явления и вещества не перестают удивлять и восторгать. Мы любуемся яркими красками, наслаждаемся вкусами и используем свойства всевозможных веществ, делающих нашу жизнь комфортнее, безопаснее и приятнее. В поисках самых надежных и крепких материалов человек совершил немало восторгающих открытий, и перед вами подборка как раз из 25 таких уникальных соединений!

25. Алмазы

Об этом точно знают если не все, то почти все. Алмазы – это не только одни из самых почитаемых драгоценных камней, но и один из самых твердых минералов на Земле. По шкале Мооса (шкала твёрдости, в которой оценка дается по реакции минерала на царапание) алмаз числится на 10 строчке. Всего в шкале 10 позиций, и 10-ая – последняя и самая твердая степень. Алмазы такие твердые, что поцарапать их можно разве что другими алмазами.

24. Ловчие сети паука вида Caerostris darwini


Фото: pixabay

В это сложно поверить, но сеть паука Caerostris darwini (или паук Дарвина) крепче стали и тверже кевлара. Эту паутину признали самым твердым биологическим материалом в мире, хотя сейчас у нее уже появился потенциальный конкурент, но данные еще не подтверждены. Паучье волокно проверили на такие характеристики, как разрушающая деформация, ударная вязкость, предел прочности и модуль Юнга (свойство материала сопротивляться растяжению, сжатию при упругой деформации), и по всем этим показателям паутина проявила себя удивительнейшим образом. Вдобавок ловчая сеть паука Дарвина невероятно легкая. Например, если волокном Caerostris darwini обернуть нашу планету, вес такой длинной нити составит всего 500 граммов. Таких длинных сетей не существует, но теоретические подсчеты просто поражают!

23. Аэрографит


Фото: BrokenSphere

Эта синтетическая пена – один из самых легких волокнистых материалов в мире, и она представляет собой сеть углеродных трубочек диаметром всего в несколько микронов. Аэрографит в 75 раз легче пенопласта, но при этом намного прочнее и пластичнее. Его можно сжать до размеров, в 30 раз меньших первоначального вида, без какого-либо вреда для его чрезвычайно эластичной структуры. Благодаря этому свойству аэрографитная пена может выдержать нагрузку, в 40 000 раз превышающую ее собственный вес.

22. Палладиевое металлическое стекло


Фото: pixabay

Команда ученых их Калифорнийского технического института и Лаборатории Беркли (California Institute of Technology, Berkeley Lab) разработала новый вид металлического стекла, совместивший в себе практически идеальную комбинацию прочности и пластичности. Причина уникальности нового материала кроется в том, что его химическая структура успешно скрадывает хрупкость существующих стеклообразных материалов и при этом сохраняет высокий порог выносливости, что в итоге значительно увеличивает усталостную прочность этой синтетической структуры.

21. Карбид вольфрама


Фото: pixabay

Карбид вольфрама – это невероятно твердый материал, обладающий высокой износостойкостью. В определенных условиях это соединение считается очень хрупким, но под большой нагрузкой оно показывает уникальные пластические свойства, проявляющиеся в виде полос скольжения. Благодаря всем этим качествам карбид вольфрама используется в изготовлении бронебойных наконечников и различного оборудования, включая всевозможные резцы, абразивные диски, свёрла, фрезы, долота для бурения и другие режущие инструменты.

20. Карбид кремния


Фото: Tiia Monto

Карбид кремния – один из основных материалов, используемых для производства боевых танков. Это соединение известно своей низкой стоимостью, выдающейся тугоплавкостью и высокой твердостью, и поэтому оно часто используется в изготовлении оборудования или снаряжения, которое должно отражать пули, разрезать или шлифовать другие прочные материалы. Из карбида кремния получаются отличные абразивы, полупроводники и даже вставки в ювелирные украшения, имитирующие алмазы.

19. Кубический нитрид бора


Фото: wikimedia commons

Кубический нитрид бора – это сверхтвердый материал, по своей твердости схожий с алмазом, но обладающий и рядом отличительных преимуществ – высокой температурной устойчивости и химической стойкости. Кубический нитрид бора не растворяется в железе и никеле даже под воздействием высоких температур, в то время как алмаз в таких же условиях вступает в химические реакции достаточно быстро. На деле это выгодно для его использования в промышленных шлифовальных инструментах.

18. Сверхвысокомолекулярный полиэтилен высокой плотности (СВМПЭ), марка волокон «Дайнима» (Dyneema)


Фото: Justsail

Полиэтилен с высоким модулем упругости обладает чрезвычайно высокой износостойкостью, низким коэффициентом трения и высокой вязкостью разрушения (низкотемпературная надёжность). Сегодня его считают самым прочным волокнистым веществом в мире. Самое удивительное в этом полиэтилене то, что он легче воды и одновременно может останавливать пули! Тросы и канаты из волокон Дайнима не тонут в воде, не нуждаются в смазке и не меняют свои свойства при намокании, что очень актуально для судостроения.

17. Титановые сплавы


Фото: Alchemist-hp (pse-mendelejew.de)

Титановые сплавы невероятно пластичные и демонстрируют удивительную прочность во время растяжения. Вдобавок они обладают высокой жаропрочностью и коррозионной стойкостью, что делает их крайне полезными в таких областях, как авиастроение, ракетостроение, судостроение, химическое, пищевое и транспортное машиностроение.

16. Сплав Liquidmetal


Фото: pixabay

Разработанный в 2003 году в Калифорнийском техническом институте (California Institute of Technology), этот материал славится своей силой и прочностью. Название соединения ассоциируется с чем-то хрупким и жидким, но при комнатной температуре оно на самом деле необычайно твердое, износостойкое, не боится коррозии и при нагревании трансформируется, как термопласты. Основными сферами применения пока что являются изготовление часов, клюшек для гольфа и покрытий для мобильных телефонов (Vertu, iPhone).

15. Наноцеллюлоза


Фото: pixabay

Наноцеллюлозу выделяют из древесного волокна, и она представляет собой новый вид деревянного материала, который прочнее даже стали! Вдобавок наноцеллюлоза еще и дешевле. Инновация имеет большой потенциал и в будущем может составить серьезную конкуренцию стеклу и углеволокну. Разработчики считают, что этот материал вскоре будет пользоваться большим спросом в производстве армейской брони, супергибких экранов, фильтров, гибких батареек, абсорбирующих аэрогелей и биотоплива.

14. Зубы улиток вида «морское блюдечко»


Фото: pixabay

Ранее мы уже рассказали вам о ловчей сети паука Дарвина, которую некогда признали самым прочным биологическим материалом на планете. Однако недавнее исследование показало, что именно морского блюдечка – наиболее прочная из известных науке биологических субстанций. Да-да, эти зубки прочнее паутины Caerostris darwini. И это неудивительно, ведь крошечные морские создания питаются водорослями, растущими на поверхности суровых скал, и чтобы отделить пищу от горной породы, этим зверькам приходится потрудиться. Ученые полагают, что в будущем мы сможем использовать пример волокнистой структуры зубов морских блюдечек в машиностроительной промышленности и начнем строить автомобили, лодки и даже воздушные суда повышенной прочности, вдохновившись примером простых улиток.

13. Мартенситно-стареющая сталь


Фото: pixabay

Мартенситно-стареющая сталь – это высокопрочный и высоколегированный сплав, обладающий превосходной пластичностью и вязкостью. Материал широко распространен в ракетостроении и используется для изготовления всевозможных инструментов.

12. Осмий


Фото: Periodictableru / www.periodictable.ru

Осмий – невероятно плотный элемент, и благодаря своей твердости и высокой температуре плавления он с трудом поддается механической обработке. Именно поэтому осмий используют там, где долговечность и прочность ценятся больше всего. Сплавы с осмием встречаются в электрических контактах, ракетостроении, военных снарядах, хирургических имплантатах и применяются еще во многих других областях.

11. Кевлар


Фото: wikimedia commons

Кевлар – это высокопрочное волокно, которое можно встретить в автомобильных шинах, тормозных колодках, кабелях, протезно-ортопедических изделиях, бронежилетах, тканях защитной одежды, судостроении и в деталях беспилотных летательных аппаратов. Материал стал практически синонимом прочности и представляет собой вид пластика с невероятно высокой прочностью и эластичностью. Предел прочности кевлара в 8 раз выше, чем у стального провода, а плавиться он начинает при температуре в 450℃.

10. Сверхвысокомолекулярный полиэтилен высокой плотности, марка волокон «Спектра» (Spectra)


Фото: Tomas Castelazo, www.tomascastelazo.com / Wikimedia Commons

СВМПЭ – это по сути очень прочный пластик. Спектра, марка СВМПЭ, – это в свою очередь легкое волокно высочайшей износостойкости, в 10 раз превосходящее по этому показателю сталь. Как и кевлар, спектра используется в изготовлении бронежилетов и защитных шлемов. Наряду с СВМПЭ марки дайнимо спектра популярна в судостроении и транспортной промышленности.

9. Графен


Фото: pixabay

Графен – это аллотропная модификация углерода, и его кристаллическая решетка толщиной всего в один атом настолько прочная, что она в 200 раз тверже стали. Графен с виду похож на пищевую пленку, но порвать его – практически непосильная задача. Чтобы пробить графеновый лист насквозь, вам придется воткнуть в него карандаш, на котором должен будет балансировать груз весом с целый школьный автобус. Удачи!

8. Бумага из углеродных нанотрубок


Фото: pixabay

Благодаря нанотехнологиям ученым удалось сделать бумагу, которая в 50 тысяч раз тоньше человеческого волоса. Листы из углеродных нанотрубок в 10 раз легче стали, но удивительнее всего то, что по прочности они превосходят в целых 500 раз! Макроскопические пластины из нанотрубок наиболее перспективны для изготовления электродов суперконденсаторов.

7. Металлическая микрорешетка


Фото: pixabay

Перед вами самый легкий в мире металл! Металлическая микрорешетка – это синтетический пористый материал, который в 100 раз легче пенопласта. Но пусть его внешний вид не вводит вас в заблуждение, ведь эти микрорешетки заодно и невероятно прочные, благодаря чему они обладают большим потенциалом для использования во всевозможных инженерных областях. Из них можно изготавливать превосходные амортизаторы и тепловые изоляторы, а удивительная способность этого металла сжиматься и возвращаться в своё первоначальное состояние позволяет использовать его для накопления энергии. Металлические микрорешетки также активно применяются в производстве различных деталей для летательных аппаратов американской компании Boeing.

6. Углеродные нанотрубки


Фото: User Mstroeck / en.wikipedia

Выше мы уже рассказывали про сверхпрочные макроскопические пластины из углеродных нанотрубок. Но что же это за материал такой? По сути это свернутые в трубку графеновые плоскости (9-ый пункт). В результате получается невероятно легкий, упругий и прочный материал широкого спектра применения.

5. Аэрографен


Фото: wikimedia commons

Известный также как графеновый аэрогель, этот материал чрезвычайно легкий и прочный одновременно. В новом виде геля жидкая фаза полностью заменена на газообразную, и он отличается сенсационной твердостью, жаропрочностью, низкой плотностью и низкой теплопроводностью. Невероятно, но графеновый аэрогель в 7 раз легче воздуха! Уникальное соединение способно восстанавливать свою изначальную форму даже после 90% сжатия и может впитывать такое количество масла, которое в 900 раз превышает вес используемого для абсорбции аэрографена. Возможно, в будущем этот класс материалов поможет в борьбе с такими экологическими катастрофами, как разливы нефти.

4. Материал без названия, разработка Массачусетского технологического института (MIT)


Фото: pixabay

Пока вы читаете эти строки, команда ученых из MIT работает над усовершенствованием свойств графена. Исследователи заявили, что им уже удалось преобразовать двумерную структуру этого материала в трехмерную. Новая графеновая субстанция еще не получила своего названия, но уже известно, что ее плотность в 20 раз меньше, чем у стали, а ее прочность в 10 раз выше аналогичной характеристики стали.

3. Карбин


Фото: Smokefoot

Хоть это и всего лишь линейные цепочки атомов углерода, карбин обладает в 2 раза более высоким пределом прочности, чем графен, и он в 3 раза жестче алмаза!

2. Нитрид бора вюрцитной модификации


Фото: pixabay

Это недавно открытое природное вещество формируется во время вулканических извержений, и оно на 18% тверже алмазов. Впрочем, алмазы оно превосходит еще по целому ряду других параметров. Вюрцитный нитрид бора – одна из всего 2 натуральных субстанций, обнаруженных на Земле, которая тверже алмаза. Проблема в том, что таких нитридов в природе очень мало, и поэтому их непросто изучать или применять на практике.

1. Лонсдейлит


Фото: pixabay

Известный также как алмаз гексагональный, лонсдейлит состоит из атомов углерода, но в случае данной модификации атомы располагаются несколько иначе. Как и вюрцитный нитрид бора, лонсдейлит – превосходящая по твердости алмаз природная субстанция. Причем этот удивительный минерал тверже алмаза на целых 58%! Подобно нитриду бора вюрцитной модификации, это соединение встречается крайне редко. Иногда лонсдейлит образуется во время столкновения с Землей метеоритов, в состав которых входит графит.

Так как у них самая высокая плотность. Среди них самые тяжелые - осмий и иридий. Это Показатель плотности данных металлов почти одинаков, если не считать незначительной погрешности вычислений.

Открытие иридия произошло в 1803 году. Его обнаружил английский химик Смитсон Теннат, исследуя природную платину, доставленную из Южной Америки. В переводе с древнегреческого название «иридий» означает «радуга».

Научный интерес как источника электрической энергии представляет изотоп тяжелого металла - иридий-192m2, так как данного металла очень большой - 241 год. Широкое применение иридий нашел в промышленности и палеонтологии - его используют для производства перьев для ручек, определения возраста слоев земли.

Открытие осмия произошло случайным образом в 1804 году. Этот самый твердый металл был обнаружен в химическом составе осадка растворенной в царской водке платины. Название «осмий» происходит от древнегреческого слова «запах». В природе этого металла почти нет. Наиболее часто его находят в составе Также как и иридий, осмий почти не подвержен механическому воздействию. Один литр осмия намного тяжелее, чем десять литров воды. Но это свойство данного металла пока еще нигде не нашло применения.

Самый твердый металл осмий добывается на российских и американских рудниках. Однако наиболее богатым его месторождением признана ЮАР. Часто осмий находят в составе железных метеоритов.

Особый интерес представляет собой осмий-187, экспортируемый только Казахстаном. Он используется для определения возраста метеоритов. Один грамм этого изотопа стоит 10 тыс. долларов США.

В промышленности в основном используется твердый сплав осмия с вольфрамом (осрам) для производства ламп накаливания. Осмий также является катализирующим веществом при производстве Достаточно редко из этого металла изготавливают режущие части для инструментов в хирургии.

Оба тяжелых металла - осмий и иридий - почти всегда содержатся в одном сплаве. Это определенная закономерность. А для их разделения нужно приложить немало усилий, ведь они не такие мягкие, как, например, серебро.