Элементарная частица. Элементарные частицы и их основные характеристики

В котором есть информация о том, что все элементарные частицы, входящие в состав любого химического элемента, состоят из различного числа неделимых фантомных частичек По, мне стало интересно, почему же в докладе не говорится о кварках, ведь традиционно считается, что именно они являются структурными элементами элементарных частиц.

Теория кварков уже давно стала общепризнанной среди учёных, которые занимаются исследованиями микромира элементарных частиц. И хотя в самом начале введение понятия «кварк» было чисто теоретическим допущением, существование которого лишь предположительно подтвердилось экспериментально, на сегодняшний день этим понятием оперируют как непреклонной истинной. Учёный мир условился называть кварки фундаментальными частицами, и за несколько десятилетий это понятие стало центральной темой теоретических и экспериментальных изысканий в области физики высоких энергий. «Кварк» вошёл в программу обучения всех естественнонаучных ВУЗов мира. На исследования в данной области выделяются огромные средства - чего только стоит строительство Большого адронного коллайдера. Новые поколения учёных, изучая теорию кварков, воспринимают её в том виде, в каком она подана в учебниках, практически не интересуясь историей данного вопроса. Но давайте попробуем непредвзято и честно посмотреть в корень «кваркового вопроса».

Ко второй половине XX века, благодаря развитию технических возможностей ускорителей элементарных частиц - линейных и круговых циклотронов, а затем и синхротронов, учёным удалось открыть множество новых частиц. Однако что делать с этими открытиями они не понимали. Тогда была выдвинута идея, исходя из теоретических соображений, попытаться сгруппировать частицы в поисках некоего порядка (подобно периодической системе химических элементов - таблице Менделеева). Учёные условились тяжелые и средние по массе частицы назвать адронами , а в дальнейшем их разбить на барионы и мезоны . Все адроны участвовали в сильном взаимодействии. Менее тяжелые частицы, назвали лептонами , они участвовали в электромагнитном и слабом взаимодействии . С тех пор физики пытались объяснить природу всех этих частиц, стараясь найти общую для всех модель, описывающую их поведение.

В 1964 году американские физики Мюррей Гелл-Ман (Лауреат Нобелевской премии по физике 1969 г.) и Джордж Цвейг независимо друг от друга предложили новый подход. Было выдвинуто чисто гипотетическое предположение, что все адроны состоят из трёх более мелких частиц и соответствующих им античастиц. И Гелл-Ман назвал эти новые частицы кварками. Занимательно, что само название он позаимствовал из романа Джеймса Джойса «Поминки по Финнегану», где герою во снах часто слышались слова о таинственных трёх кварках. То ли Гелл-Ман слишком эмоционально воспринял этот роман, то ли ему просто нравилось число три, но в своих научных трудах он предлагает ввести в физику элементарных частиц первые три кварка, получившие названия верхний (и — от англ. up), нижний (d — down) и странный (s — strange), обладающие дробным электрическим зарядом + 2 / 3 , — 1 / 3 и — 1 / 3 соответственно, а для антикварков принять, что их заряды противоположны по знаку.

Согласно данной модели протоны и нейтроны, из которых, как предполагают учёные, состоят все ядра химических элементов, составлены из трёх кварков: uud и udd соответственно (снова эти вездесущие три кварка). Почему именно из трёх и именно в таком порядке не пояснялось. Просто так придумали авторитетные научные мужи и всё тут. Попытки сделать теорию красивой не приближают к Истине, а лишь искривляют и без того кривое зеркало, в котором отражена Её частичка. Усложняя простое, мы отдаляемся от Истины. А всё так просто!

Вот так строится «высокоточная» общепризнанная официальная физика. И хотя изначально введение кварков предлагалось в качестве рабочей гипотезы, но спустя короткое время эта абстракция плотно вошла в теоретическую физику. С одной стороны, она позволила с математической точки зрения решить вопрос с упорядочиванием обширного ряда открытых частиц, с другой же, оставалась лишь теорией на бумаге. Как обычно это делается в нашем потребительском обществе, на экспериментальную проверку гипотезы существования кварков было направленно очень много человеческих сил и ресурсов. Средства налогоплательщиков расходуются, людям надо о чём-то рассказывать, отчёты показывать, говорить о своих «великих» открытиях, чтобы получить очередной грант. «Ну раз надо, значит сделаем», - говорят в таких случаях. И вот это случилось.

Коллектив исследователей Стэнфордского отделения Массачусетского технологического института (США) на линейном ускорителе занимался изучением ядра, обстреливая электронами водород и дейтерий (тяжёлый изотоп водорода, ядро которого содержит один протон и один нейтрон). При этом измерялись угол и энергия рассеяния электронов после столкновения. В случае малых энергий электронов рассеянные протоны с нейтронами вели себя как «однородные» частицы, слегка отклоняя электроны. Но в случае с электронными пучками большой энергии отдельные электроны теряли значительную часть своей начальной энергии, рассеиваясь на большие углы. Американские физики Ричард Фейнман (Лауреат Нобелевской премии по физике 1965 г. и, кстати, один из создателей атомной бомбы в 1943-1945 годах в Лос-Аламосе) и Джеймс Бьёркен истолковали данные по рассеянию электронов как свидетельство составного устройства протонов и нейтронов, а именно: в виде предсказанных ранее кварков .

Обратите, пожалуйста, внимание на этот ключевой момент. Экспериментаторы в ускорителях сталкивая пучки частиц (не единичные частицы, а пучки!!!), набирая статистику(!!!) увидели, что протон и нейтрон из чего-то там состоят. Но из чего? Они ведь не увидели кварки, да ещё и в числе трёх штук, это невозможно, они просто увидели распределение энергий и углы рассеяния пучка частиц. А поскольку единственной на то время теорией строения элементарных частиц, хоть и весьма фантастической, была теория кварков, то и посчитали этот эксперимент первой успешной проверкой существования кварков.

Позже, конечно же, последовали и другие эксперименты и новые теоретические обоснования, но суть их одна и та же. Любой школьник, прочитав историю данных открытий, поймёт, насколько всё в этой области физики притянуто за уши, насколько все банально нечестно.

Вот так и ведутся экспериментальные исследования в области науки с красивым названием - физика высоких энергий. Давайте будем честными сами перед собой, на сегодняшний день не существует чётких научных обоснований существования кварков. Этих частиц просто нет в природе. Понимает ли хоть один специалист, что на самом деле происходит при столкновении двух пучков заряженных частиц в ускорителях? То, что на этой кварковой теории строилась так называемая Стандартная модель, которая якобы является самой точной и правильной, ещё ни о чём не говорит. Специалистам хорошо известны все изъяны этой очередной теории. Вот только почему-то об этом принято умалчивать. Но почему? «И самая большая критика Стандартной модели касается тяготения и происхождения массы. Стандартная модель не учитывает тяготения и требует, чтобы масса, заряд и некоторые другие свойства частиц измерялись опытным путем для последующей постановки в уравнения» .

Несмотря на это огромные средства выделяются на эту область исследований, вдумайтесь только, на подтверждение Стандартной модели, а не поиски Истины. Построен Большой адронный коллайдер (CERN, Швейцария), сотни других ускорителей по всему миру, выдаются премии, гранты, содержится огромный штат технических специалистов, но суть всего этого - банальный обман, Голливуд и не более. Спросите любого человека - какую реальную пользу обществу приносят эти исследования - никто вам не ответит, поскольку это тупиковая ветвь науки. С 2012 года заговорили об открытии бозона Хиггса на ускорителе в CERN . История этих исследований - это целый детектив, в основе которого всё тот же обман мировой общественности. Занимательно, что этот бозон якобы открыли именно после того, как зашла речь о прекращении финансирования этого дорогостоящего проекта. И дабы показать обществу важность этих исследований, оправдать свою деятельность, дабы получить новые транши на строительство ещё более мощных комплексов, сотрудникам CERN, работающим в этих исследования, и пришлось пойти на сделку со своей совестью, выдавая желаемое за действительное.

В докладе «ИСКОННАЯ ФИЗИКА АЛЛАТРА» на этот счёт есть такая интересная информация: «Учёные обнаружили ча-стицу, предположительно похожую на бозон Хиггса (бозон был пред-сказан английским физиком Пите-ром Хиггсом (Peter Higgs; 1929), со-гласно теории, он должен обладать конечной массой и не иметь спина). На самом деле то, что обнаружили учёные, не является искомым бо-зоном Хиггса. Но эти люди, сами того ещё не осознавая, сделали действительно важное открытие и обнаружили гораздо большее. Они экспериментально обнаружили яв-ление, о котором подробно описа-но в книге «АллатРа» (примечание: книга «АллатРа», стр. 36 послед-ний абзац). .

Как же на самом деле устроен микромир материи? В докладе «ИСКОННАЯ ФИЗИКА АЛЛАТРА» есть достоверная информация об истинном строении элементарных частиц, знания, которые были известны и древним цивилизациям, чему есть неопровержимые доказательства в виде артефактов. Элементарные частицы состоят из различного числа фантомных частичек По . «Фантомная частичка По ‒ это сгусток, состоящий из септонов, вокруг которого находится небольшое разреженное собственное септонное поле. Фантомная частичка По имеет внутренний потенциал (является его носителем), обновляющийся в процессе эзоосмоса. Согласно внутреннему потенциалу, фантомная частичка По имеет свою соразмерность. Самой наименьшей фантомной частичкой По является уникальная силовая фантомная частичка По ‒ Аллат (примечание: подробнее см. далее по докладу) . Фантомная частичка По ‒ это упорядоченная структура, находящаяся в постоянном спиралевидном движении. Она может существовать только в связанном состоянии с другими фантомными частичками По, которые в конгломерате образуют первичные проявления материи. Вследствие своих уникальных функций, является своеобразным фантомом (призраком) для материального мира. Учитывая, что из фантомных частичек По состоит вся материя, это задаёт ей характеристику иллюзорной конструкции и формы бытия, зависимой от процесса эзоосмоса (наполнения внутреннего потенциала).

Фантомные частички По являются нематериальным образованием. Однако в сцепке (последовательном соединении) между собой, выстроенные согласно информационной программе в определённом количестве и порядке, на определённом расстоянии друг от друга, они составляют основу строения любой материи, задают её разнообразие и свойства, благодаря своему внутреннему потенциалу (энергии и информации). Фантомная частичка По ‒ это то, из чего состоят в своей основе элементарные частицы (фотон, электрон, нейтрино и так далее), а также частицы-переносчики взаимодействий. Это первичное проявление материи в этом мире» .

Проведя после прочтения данного доклада такое небольшое исследование истории развития теории кварков и в целом физики высоких энергий, стало понятно, как всё-таки мало знает человек, если ограничивает своё познание лишь рамками материалистического мировоззрения. Одни допущения от ума, теория вероятности, условная статистика, договорённости и отсутствие достоверных знаний. А ведь люди порой на эти исследования тратят свои жизни. Уверен, что среди учёных и этой области физики есть множество людей, которые действительно пришли в науку не ради славы, власти и денег, а ради одной цели - познания Истины. Когда им станут доступны знания «ИСКОННОЙ ФИЗИКИ АЛЛАТРА», они сами наведут порядок и сделают действительно эпохальные научные открытия, которые принесут реальную пользу обществу. С выходом в свет этого уникального доклада сегодня открыта новая страница мировой науки. Теперь уже стоит вопрос не в знаниях как таковых, а в том, готовы ли сами люди к созидательному использованию этих Знаний. В силах каждого человека сделать всё возможное, чтобы все мы преодолели навязанный нам потребительский формат мышления и пришли к пониманию необходимости создания основ построения духовно-созидательного общества будущего в грядущую эпоху глобальных катаклизмов на планете Земля.

Валерий Вершигора

Ключевые слова: кварки, теория кварков, элементарные частицы, бозон Хиггса, ИСКОННАЯ ФИЗИКА АЛЛАТРА, Большой адронный коллайдер, наука будущего, фантомная частичка По, септонное поле, аллат, познание истины.

Литература:

Коккедэ Я., Теория кварков, М., Издательство «Мир», 340 с., 1969, http://nuclphys.sinp.msu.ru/books/b/Kokkedee.htm ;

Arthur W. Wiggins, Charles M. Wynn, The Five Biggest Unsolved Problems in Science, John Wiley & Sons, Inc., 2003 // Уиггинс А., Уинн Ч. «Пять нерешённых проблем науки» в пер. на русский;

Observation of an Excess of Events in the Search for the Standard Model Higgs boson with the ATLAS detector at the LHC, 09 Jul 2012, CERN LHC, ATLAS, http://cds.cern.ch/record/1460439 ;

Observation of a new boson with a mass near 125 GeV, 9 Jul 2012, CERN LHC, CMS, http://cds.cern.ch/record/1460438?ln=en ;

Доклад «ИСКОННАЯ ФИЗИКА АЛЛАТРА» интернациональной группы учёных Международного общественного движения «АЛЛАТРА» под ред. Анастасии Новых, 2015 г. ;

– материальные объекты, которые нельзя разделить на составные части. В соответствии с этим определением к элементарным частицам не могут быть отнесены молекулы, атомы и атомные ядра, которые поддаются делению на составные части – атом делится на ядро и орбитальные электроны, ядро – на нуклоны. В то же время нуклоны, состоящие из более мелких и фундаментальных частиц – кварков, нельзя разделить на эти кварки. Поэтому нуклоны относят к элементарным частицам. Учитывая то обстоятельство, что нуклон и другие адроны имеют сложную внутреннюю структуру, состоящую из более фундаментальных частиц – кварков, более целесообразно адроны называть не элементарными частицами, а просто частицами.
Частицы имеют размеры меньшие, чем атомные ядра. Размеры ядер 10 -13 − 10 -12 см. Наиболее “крупные” частицы (к ним относятся и нуклоны) состоят из кварков (двух или трёх) и называются адронами. Их размеры ≈ 10 -13 см. Существуют также бесструктурные (на современном уровне знаний) точечноподобные (< 10 -17 см) частицы, которые называют фундаментальными. Это кварки, лептоны, фотон и некоторые другие. Всего известно несколько сот частиц. Это в подавляющем большинстве адроны.

Таблица 1

Фундаментальные фермионы

Взаимодействия

Поколения Заряд
Q/e
лептоны ν е ν μ ν τ
e μ τ
кварки c t +2/3
s b -1/3

Фундаментальными частицами являются 6 кварков и 6 лептонов (табл. 1), имеющих спин 1/2 (это фундаментальные фермионы) и несколько частиц со спином 1 (глюон, фотон, бозоны W ± и Z), а также гравитон (спин 2), называемые фундаментальными бозонами (табл. 2). Фундаментальные фермионы делятся на три группы (поколения), в каждой из которых 2 кварка и 2 лептона. Из частиц первого поколения (кварки u, d, электрон е −) состоит вся наблюдаемая материя: из кварков u и d состоят нуклоны, из нуклонов состоят ядра. Ядра с электронами на орбитах образуют атомы и т.д.

Таблица 2

Фундаментальные взаимодействия
Взаимодействие Квант поля Радиус, см Константа взаимодействия
(порядок величины)
Пример
проявления
сильное глюон 10 -13 1 ядро, адроны
электромагнитное γ-квант 10 -2 атом
слабое W ± , Z 10 -16 10 -6 γ-распад
гравитационное гравитон 10 -38 сила тяжести

Роль фундаментальных бозонов в том, что они реализуют взаимодействие между частицами, являясь “переносчиками” взаимодействий. В процессе различных взаимодействий частицы обмениваются фундаментальными бозонами. Частицы участвуют в четырёх фундаментальных взаимодействиях – сильном (1), электромагнитном (10 -2), слабом (10 -6) и гравитационном (10 -38). В скобках указаны цифры, характеризующие относительную силу каждого взаимодействия в области энергий меньше 1 ГэВ. Кварки (и адроны) участвуют во всех взаимодействиях. Лептоны не участвуют в сильном взаимодействии. Переносчиком сильного взаимодействия является глюон (8 типов), электромагнитного – фотон, слабого – бозоны W ± и Z, гравитационного – гравитон.
Подавляющее число частиц в свободном состоянии нестабильно, т.е. распадается. Характерные времена жизни частиц 10 -24 –10 -6 сек. Время жизни свободного нейтрона около 900 сек. Электрон, фотон, электронное нейтрино и возможно протон (и их античастицы) – стабильны.
Основой теоретического описания частиц является квантовая теория поля. Для описания электромагнитных взаимодействий используется квантовая электродинамика (КЭД), слабое и электромагнитное взаимодействие совместно описываются объединённой теорией – электрослабой моделью (ЭСМ), сильное взаимодействие – квантовой хромодинамикой (КХД). КХД и ЭСМ, совместно описывающие сильное, электромагнитное и слабое взаимодействия кварков и лептонов, образуют теоретическую схему, называемую Стандартной Моделью.

Открыто более 350 элементарных частиц. Из них стабильны фотон, электронное и мюонное нейтрино, электрон, протон и их античастицы. Остальные элементарные частицы самопроизвольно распадаются по экспоненциальному закону с постоянной времени от приблизительно 1000 секунд (для свободного нейтрона) до ничтожно малой доли секунды (от 10 −24 до 10 −22 с для резонансов).

Строение и поведение элементарных частиц изучается физикой элементарных частиц .

Все элементарные частицы подчиняются принципу тождественности (все элементарные частицы одного вида во Вселенной полностью одинаковы по всем своим свойствам) и принципу корпускулярно-волнового дуализма (каждой элементарной частице соответствует волна де-Бройля).

Все элементарные частицы обладают свойством взаимопревращаемости, являющегося следствием их взаимодействий: сильного, электромагнитного, слабого, гравитационного. Взаимодействия частиц вызывают превращения частиц и их совокупностей в другие частицы и их совокупности, если такие превращения не запрещены законами сохранения энергии , импульса, момента количества движения, электрического заряда, барионного заряда и др.

Основные характеристики элементарных частиц: масса, спин, электрический заряд, время жизни , чётность, G-чётность, магнитный момент, барионный заряд, лептонный заряд, странность, изотопический спин, CP-чётность, зарядовая чётность.

Энциклопедичный YouTube

    1 / 5

    ✪ Элементарные частицы

    ✪ CERN: Стандартная модель физики элементарных частиц

    ✪ Урок 473. Элементарные частицы. Позитрон. Нейтрино

    ✪ Кирпичики вселенной: Элементарные частицы из которых состоит мир. Лекция профессора Дэвида Тонга.

    ✪ Мир элементарных частиц (рассказывает академик Валерий Рубаков)

    Субтитры

Классификация

По времени жизни

  • Стабильные элементарные частицы - частицы, имеющие бесконечно большое время жизни в свободном состоянии (протон , электрон , нейтрино , фотон , гравитон и их античастицы).
  • Нестабильные элементарные частицы - частицы, распадающиеся на другие частицы в свободном состоянии за конечное время (все остальные частицы).

По массе

Все элементарные частицы делятся на два класса:

  • Безмассовые частицы - частицы с нулевой массой (фотон , глюон , гравитон и их античастицы).
  • Частицы с ненулевой массой (все остальные частицы).

По величине спина

Все элементарные частицы делятся на два класса:

По видам взаимодействий

Элементарные частицы делятся на следующие группы:

Составные частицы

  • Адроны - частицы, участвующие во всех видах фундаментальных взаимодействий . Они состоят из кварков и подразделяются, в свою очередь, на:
    • мезоны - адроны с целым спином , то есть являющиеся бозонами ;
    • барионы - адроны с полуцелым спином, то есть фермионы . К ним, в частности, относятся частицы, составляющие ядро атома , - протон и нейтрон .

Фундаментальные (бесструктурные) частицы

  • Лептоны - фермионы, которые имеют вид точечных частиц (то есть не состоящих ни из чего) вплоть до масштабов порядка 10 −18 м. Не участвуют в сильных взаимодействиях. Участие в электромагнитных взаимодействиях экспериментально наблюдалось только для заряженных лептонов (электроны , мюоны , тау-лептоны) и не наблюдалось для нейтрино . Известны 6 типов лептонов.
  • Кварки - дробнозаряженные частицы, входящие в состав адронов. В свободном состоянии не наблюдались (для объяснения отсутствия таких наблюдений предложен механизм конфайнмента). Как и лептоны, делятся на 6 типов и считаются бесструктурными, однако, в отличие от лептонов, участвуют в сильном взаимодействии.
  • Калибровочные бозоны - частицы, посредством обмена которыми осуществляются взаимодействия:
    • фотон - частица, переносящая электромагнитное взаимодействие ;
    • восемь глюонов - частиц, переносящих сильное взаимодействие ;
    • три промежуточных векторных бозона W + , W − и Z 0 , переносящие слабое взаимодействие ;
    • гравитон - гипотетическая частица, переносящая гравитационное взаимодействие . Существование гравитонов, хотя пока не доказано экспериментально в связи со слабостью гравитационного взаимодействия, считается вполне вероятным; однако гравитон не входит в Стандартную модель элементарных частиц .

Размеры элементарных частиц

Несмотря на большое разнообразие элементарных частиц, их размеры укладываются в две группы. Размеры адронов (как барионов, так и мезонов) составляют около 10 −15 м , что близко к среднему расстоянию между входящими в них кварками. Размеры фундаментальных, бесструктурных частиц - калибровочных бозонов, кварков и лептонов - в пределах погрешности эксперимента согласуются с их точечностью (верхний предел диаметра составляет около 10 −18 м ) (см. пояснение ). Если в дальнейших экспериментах окончательные размеры этих частиц не будут обнаружены, то это может свидетельствовать о том, что размеры калибровочных бозонов, кварков и лептонов близки к фундаментальной длине (которая весьма вероятно может оказаться планковской длиной , равной 1,6·10 −35 м).

Следует отметить, однако, что размер элементарной частицы является достаточно сложной концепцией, не всегда согласующейся с классическими представлениями. Во-первых, принцип неопределённости не позволяет строго локализовать физическую частицу. Волновой пакет , представляющий частицу как суперпозицию точно локализованных квантовых состояний , всегда имеет конечные размеры и определённую пространственную структуру, причём размеры пакета могут быть вполне макроскопическими - например, электрон в эксперименте с интерференцией на двух щелях «чувствует» обе щели интерферометра, разнесённые на макроскопическое расстояние. Во-вторых, физическая частица меняет структуру вакуума вокруг себя, создавая «шубу» из кратковременно существующих виртуальных частиц - фермион-антифермионных пар (см. Поляризация вакуума) и бозонов-переносчиков взаимодействий. Пространственные размеры этой области зависят от калибровочных зарядов , которыми обладает частица, и от масс промежуточных бозонов (радиус оболочки из массивных виртуальных бозонов близок к их комптоновской длине волны , которая, в свою очередь, обратно пропорциональна их массе). Так, радиус электрона с точки зрения нейтрино (между ними возможно только слабое взаимодействие) примерно равен комптоновской длине волны W-бозонов , ~3×10 −18 м , а размеры области сильного взаимодействия адрона определяются комптоновской длиной волны легчайшего из адронов, пи-мезона (~10 −15 м ), выступающего здесь как переносчик взаимодействия.

История

Первоначально термин «элементарная частица» подразумевал нечто абсолютно элементарное, первокирпичик материи . Однако, когда в 1950-х и 1960-х годах были открыты сотни адронов с похожими свойствами, стало ясно, что по крайней мере адроны обладают внутренними степенями свободы, то есть не являются в строгом смысле слова элементарными. Это подозрение в дальнейшем подтвердилось, когда выяснилось, что адроны состоят из кварков .

Таким образом, физики продвинулись ещё немного вглубь строения вещества: самыми элементарными, точечными частями вещества сейчас считаются лептоны и кварки. Для них (вместе с калибровочными бозонами) применяется термин «фундаментальные  частицы» .

В активно разрабатываемой примерно с середины 1980-х теории струн предполагается, что элементарные частицы и их взаимодействия являются следствиями различных видов колебаний особо малых «струн».

Стандартная модель

Стандартная модель элементарных частиц включает в себя 12 ароматов фермионов, соответствующие им античастицы, а также калибровочные бозоны (фотон , глюоны , W - и Z -бозоны), которые переносят взаимодействия между частицами, и обнаруженный в 2012 году бозон Хиггса , отвечающий за наличие инертной массы у частиц. Однако Стандартная модель в значительной степени рассматривается скорее как теория временная, а не действительно фундаментальная, поскольку она не включает в себя гравитацию и содержит несколько десятков свободных параметров (массы частиц и т. д.), значения которых не вытекают непосредственно из теории. Возможно, существуют элементарные частицы, которые не описываются Стандартной моделью - например, такие, как гравитон (частица, переносящая гравитационные силы) или суперсимметричные партнёры обычных частиц. Всего модель описывает 61 частицу .

Фермионы

12 ароматов фермионов разделяются на 3 семейства (поколения) по 4 частицы в каждом. Шесть из них - кварки . Другие шесть - лептоны , три из которых являются нейтрино , а оставшиеся три несут единичный отрицательный заряд: электрон , мюон и тау-лептон .

Поколения частиц
Первое поколение Второе поколение Третье поколение

ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ - первичные, далее неразложимые частицы, из которых, как полагают, состоит вся материя. В современной физике термин «элементарные частицы» обычно употребляется для обозначения большой группы мельчайших частиц материи, не являющихся атомами (см. Атом) или атомными ядрами (см. Ядро атомное); исключение составляет ядро атома водорода - протон.

К 80-м годам 20 века науке было известно более 500 элементарных частиц, большинство которых является нестабильными. К элементарным частицам относятся протон (p), нейтрон (n), электрон (e), фотон (γ), пи-мезоны (π), мюоны (μ), тяжелые лептоны (τ + , τ -), нейтрино трех типов - электронные (V e), мюонные (V μ) и связанные с так называемым тяжелым дептоном (V τ), а также «странные» частицы (К-мезоны и гипероны), разнообразные резонансы, мезоны со скрытым очарованием, «очарованные» частицы, ипсилон-частицы (Υ), «красивые» частицы, промежуточные векторные бозоны и др. Появился самостоятельный раздел физики - физика элементарных частиц.

История физики элементарных частиц началась с 1897 года, когда Томсоном (J. J. Thomson) был открыт электрон (см. Электронное излучение); в 1911 году Милликен (R. Millikan) измерил величину его электрического заряда. Понятие «фотон» - квант света - было введено Планком (М. Planck) в 1900 году. Прямые экспериментальные доказательства существования фотона были получены Милликеном (1912-1915) и Комптоном (A. Н. Compton, 1922). В процессе изучения атомного ядра Э. Резерфорд открыл протон (см. Протонное излучение), а в 1932 году Чедвик (J. Chadwick) - нейтрон (см. Нейтронное излучение). В 1953 году было экспериментально доказано существование нейтрино, которое Паули (W. Pauli) предсказал еще в 1930 году.

Элементарные частицы делят на три группы. Первая представлена единственной элементарной частицей - фотоном, γ-квантом, или квантом электромагнитного излучения. Вторая группа - это лептоны (греческий leptos мелкий, легкий), участвующие, кроме электромагнитных, еще и в слабых взаимодействиях. Известно 6 лептонов: электрон и электронное нейтрино, мюон и мюонное нейтрино, тяжелый τ-лептон и соответствующий нейтрино. Третью - основную группу элементарных частиц составляют адроны (греческий hadros большой, сильный), которые участвуют во всех видах взаимодействий, в том числе и в сильных взаимодействиях (см. ниже). К адронам относятся частицы двух типов: барионы (греч. barys тяжелый) - часстицы с полуцелым спином и массой не меньше массы протона, и мезоны (греческий mesos средний) - частицы с нулевым или целым спином (см. Электронный парамагнитный резонанс). К барионам принадлежат протон и нейтрон, гипероны, часть резонансов и «очарованных» частиц и некоторые другие элементарные частицы. Единственным стабильным барионом является протон, остальные барионы нестабильны (нейтрон в свободном состоянии - нестабильная частица, однако в связанном состоянии внутри стабильных атомных ядер он стабилен. Мезоны получили свое название потому, что массы первых открытых мезонов - пи-мезона и К-мезона - имели значения, промежуточные между массами протона и электрона. Позже были открыты мезоны, масса которых превышает массу протона. Адроны характеризуются также странностью (S) - нулевым, положительным или отрицательным квантовым числом. Адроны с нулевой странностью называют обычными, а с S ≠ 0 - странными. В 1964 г. Цвейг (G. Zweig) и Гелл-Манн (М. Gell-Mann) независимо друг от друга высказали предположение о кварковой структуре адронов. Результаты ряда экспериментов свидетельствуют о том, что кварки являются реальными материальными образованиями внутри адронов. Кварки обладают рядом необычных свойств, например дробным электрическим зарядом и др. В свободном состоянии кварков не наблюдали. Полагают, что все адроны образуются за счет различных сочетаний кварков.

Вначале элементарные частицы исследовали при изучении радиоактивного распада (см. Радиоактивность) и космического излучения (см.). Однако начиная с 50-х годов 20 века исследования элементарных частиц производят на ускорителях заряженных частиц (см.), в которых ускоренные частицы бомбардируют мишень или сталкиваются с частицами, летящими навстречу. При этом частицы взаимодействуют между собой, в результате чего происходит их взаимопревращение. Именно таким образом было открыто большинство элементарных частиц.

Каждая элементарная частица наряду со спецификой присущих ей взаимодействий описывается набором дискретных значений определенных физических величин, выражаемых целыми или дробными числами (квантовыми числами). Общими характеристиками всех элементарных частиц являются масса (m), время жизни (т), спин (J) - собственный момент количества движения элементарных частиц, имеющий квантовую природу и не связанный с перемещением частицы как целого, электрический заряд (Ω) и магнитный момент (μ). Электрические заряды изученных элементарных частиц по абсолютной величине являются целыми кратными числами от заряда электрона (е≈1,6*10 -10 к). У известных элементарных частиц электрические заряды равны 0, ±1 и ±2.

Все элементарные частицы имеют соответствующие античастицы, масса и спин которых равны массе и спину частицы, а электрический заряд, магнитный момент и другие характеристики равны по абсолютной величине и противоположны по знаку. Например, античастицей электрона является позитрон - электрон с положительным электрическим зарядом. Элементарная частица, тождественная своей античастице, называется истинно нейтральной, например нейтрон и антинейтрон, нейтрино и антинейтрино и т. д. При взаимодействии античастиц друг с другом происходит их аннигиляция (см.).

При попадании элементарной частицы в материальную среду они взаимодействуют с ней. Различают сильное, электромагнитное, слабое и гравитационное взаимодействия. Сильное взаимодействие (сильнее электромагнитного) возникает между элементарными частицами, находящимися на расстоянии менее 10 -15 м (1 ферми). При расстояниях более 1,5 ферми сила взаимодействия между частицами близка к нулю. Именно сильные взаимодействия между элементарными частицами обеспечивают исключительную прочность атомных ядер, лежащую в основе стабильности вещества в земных условиях. Характерной особенностью сильного взаимодействия является его независимость от электрического заряда. К сильному взаимодействию способны адроны. Сильные взаимодействия обусловливают распад короткоживущих частиц (время жизни порядка 10 -23 - 10 -24 сек.), которые называют резонансами.

Электромагнитному взаимодействию подвержены все заряженные элементарные частицы, фотоны и нейтральные частицы, обладающие магнитным моментом (например, нейтроны). В основе электромагнитных взаимодействий лежит связь с электромагнитным полем. Силы электромагнитного взаимодействия примерно в 100 раз слабее сил сильного взаимодействия. Основная сфера действия электромагнитного взаимодействия - атомы и молекулы (см. Молекула). Такое взаимодействие определяет структуру твердых тел, характер хим. процессов. Оно не ограничивается расстоянием между элементарными частицами, поэтому размер атома примерно в 10 4 раз больше размера атомного ядра.

Слабые взаимодействия лежат в основе чрезвычайно медленно протекающих процессов с участием элементарных частиц. Например, нейтрино, обладающие слабым взаимодействием, могут беспрепятственно пронизывать толщу Земли и Солнца. Слабые взаимодействия обусловливают также медленные распады так называемых квазистабильных элементарных частиц, время жизни которых находится в пределах 10 8 - 10 -10 сек. Элементарные частицы, рожденные при сильном взаимодействии (за время 10 -23 -10 -24 сек.), но распадающиеся медленно (10 -10 сек.), называют странными.

Гравитационные взаимодействия между элементарными частицами дают чрезвычайно малые эффекты из-за ничтожности масс частиц. Этот вид взаимодействия хорошо изучен на макрообъектах, имеющих большую массу.

Многообразие элементарных частиц с разными физическими характеристиками объясняет трудность их систематизации. Из всех элементарных частиц только фотоны, электроны, нейтрино, протоны и их античастицы фактически являются стабильными, так как обладают большим временем жизни. Эти частицы представляют собой конечные продукты самопроизвольного превращения других элементарных частиц. Рождение элементарных частиц может происходить в результате первых трех типов взаимодействий. Для сильно взаимодействующих частиц источником рождения являются реакции сильного взаимодействия. Лептоны, что наиболее вероятно, возникают при распадах других элементарных частиц либо рождаются парами (частица + античастица) под воздействием фотонов.

Потоки элементарных частиц формируют ионизирующие излучения (см.), вызывающие ионизацию нейтральных молекул среды. Биологический эффект элементарных частиц связывают с образованием в облученных тканях и жидкостях организма веществ с высокой химической активностью. К таким веществам относятся свободные радикалы (см. Радикалы свободные), перекиси (см.) и другие. Элементарные частицы могут оказывать и прямое действие на био-молекулы и надмолекулярные структуры, вызывать разрыв внутримолекулярных связей, деполимеризацию высокомолекулярных соединений и т. п. Определенное значение в характере действия элементарных частиц на организм могут иметь процессы миграции энергии и образования метастабильных соединений, возникающих в результате длительного сохранения состояния возбуждения в некоторых макромолекулярных субстратах. В клетках подавляется или извращается активность ферментных систем, изменяется структура клеточных мембран и поверхностных клеточных рецепторов, что приводит к повышению проницаемости мембран и изменению диффузионных процессов, сопровождающихся явлениями денатурации белков, дегидратации тканей, нарушением внутренней среды клетки. Поражаемость клеток в значительной степени зависит от интенсивности их митотического деления (см. Митоз) и обмена веществ: с повышением этой интенсивности радиопоражаемость тканей увеличивается (см. Радиочувствительность). На этом свойстве потоков элементарные частицы - ионизирующего облучения - основано их применение для лучевой терапии (см.), особенно при лечении злокачественных новообразований. Проникающая способность заряженных элементарных частиц в большой степени зависит от линейной передачи энергии (см.), то есть от средней энергии, поглощаемой средой в месте прохождения заряженной частицы, отнесенной к единице ее пути.

Повреждающее действие потока элементарных частиц особенно сказывается на стволовых клетках кроветворной ткани, эпителии яичек, тонкой кишки, кожи (см. Лучевая болезнь, Лучевые повреждения). В первую очередь поражаются системы, находящиеся во время облучения в состоянии активного органогенеза и дифференцировки (см. Критический орган).

Биологическое и терапевтическое действие элементарных частиц зависит от их вида и дозы излучения (см. Дозы ионизирующих излучений). Так, например, при воздействии рентгеновского излучения (см. Рентгенотерапия), гамма-излучения (см. Гамма-терапия) и протонного излучения (см. Протонная терапия) на все тело человека в дозе около 100 рад наблюдается временное изменение кроветворения; внешнее воздействие нейтронного излучения (см. Нейтронное излучение) ведет к образованию в организме различных радиоактивных веществ, например радионуклидов натрия, фосфора и др. При попадании в организм радионуклидов, являющихся источниками бета-частиц (электронов или позитронов) или гамма-квантов, происходит так называемое внутреннее облучение организма (см. Инкорпорирование радиоактивных веществ). Особенно опасны в этом отношении быстро резорбирующиеся радионуклиды с равномерным распределением в организме, напр. тритий (3H) и полоний-210.

Радионуклиды, являющиеся источниками элементарных частиц и участвующие в обмене веществ, используют в радиоизотопной диагностике (см.).

Библиогр.: Ахиезер А. И. и Рекало М. П. Биография элементарных частиц, Киев, 1983, библиогр.; Боголюбов Н. Н. и Широков Д. В. Квантовые поля, М., 1980; Борн М. Атомная физика, пер. с англ., М., 1965; Джонс X. Физика радиологии, пер. с англ.. М., 1965; Кронгауз А. Н., Ляпидевский В. К. и Фролова А. В. Физические основы клинической дозиметрии, М., 1969; Лучевая терапия с помощью излучений высокой энергии, под ред. И. Беккера и Г. Шуберта, пер. с нем., М., 1964; Тюбиана М. и др. Физические основы лучевой терапии и радиобиологии, пер. с франц., М., 1969; Шпольский Э. В. Атомная физика, т. 1, М., 1984; Янг Ч. Элементарные частицы, пер. с англ.. М., 1963.

Р. В. Ставнцкий.

Элементарные частицы

Естественно начать рассмотрение структуры материи с самых «мелких» структурных единиц, существование которых в настоя­щее время установлено. Такие частицы получили название эле­ментарных, как более неделимых (их структура не обнару­живается), и как фундаментальных, из которых состоит материя.

Классификация элементарных частиц. Частицы, участвующие в сильном взаимодействии, составляют семейство адронов. Это барионы (протон р , нейтрон n ), гипероны (λ, Σ и др.), мезоны (π-; k -), а также большая группа так называемых резонансных частиц (резонансов). Барионы обладают полуцельми спинами, мезоны - целыми. Барионы отличаются от мезонов так называемым барионным зарядом, в связи с чем превращения барионов в мезоны запрещены законом сохранения барионного заряда. Это важное свойство, которое обеспечивает стабильность ядер и, следовательно, всего окружающего мира. Действительно, если бы являющиеся барионами нуклоны (протон и нейтрон) могли превращаться в мезоны, то атомные ядра в итоге распались бы. Адроны не являются истинно элементарными частицами, т. е. имеют внутреннюю структуру. Этим объясняется в частности нестабильность большинства из адронов.

На сегодня можно считать доказанным существование истин­но фундаментальных бесструктурных частиц, образующих адроны. Эти частицы называются кварками (Гелл-Манн. Цвейг, 1963). Они пока экспериментально не обнаружены, предположительно потоки, что не существуют по отдельности, т. е. в свободном состоянии. Известно, что заряд кварков кратен 1/3е , а спин равен 1/2. Предполагается существование шести типов кварков, различающихся по характеристике, называемой «ароматом» (верхний, нижний, очарованный, странный, истинный, прелест­ный); каждый кварк характеризуется еще и определенным кван­товым числом - «цветом» (красный, зеленый, голубой). Все барионы состоят из трех кварков (протон, например из двух верхних с зарядами +2/Зе и одного нижнего с зарядом - 1/Зе ). По «цвету» тройка кварков «подбирается» так, чтобы протон был «белым». Мезоны состоят из кварка и антикварка.

Все остальные частицы (кроме фотона), не участвующие в сильных взаимодействиях, названы лептонами. Семейство лептонов представлено шестью бесструктурными («точечными») части­цами: электрон е , мюон μ, тау-лептон (таон) τ и соответствующие этим частицам нейтрино (v e , v μ , v τ).

Согласно принципу кварк-лептон ной симметрии каждому лептону соответствует определенный кварк (табл. 5.2).

Таблица 5.2.

Таким образом, кварки и лептоны на сегодняшний день на­ряду с частицами-переносчиками взаимодействий считаются ис­тинно элементарными (фундаментальными) частицами. Из лептонов и кварков первого поколения вместе с фотонами построена современная Вселенная. Полагают, что частицы второго и треть­его поколений играли важную роль в ранней Вселенной, в пер­вые мгновения Большого Взрыва, при этом различия между кварками и лептонами не существовало.

Основные характеристики элементарных частиц . Одной из важ­нейших характеристик элементарных частиц является стабиль­ность, т. е. способность определенное время (время жизни) находиться в свободном состоянии. Среди экспериментально об­наруженных частиц лишь немногие стабильны. Неограниченно долго в свободном состоянии могут существовать протон, электрон, фотон и, как считается, нейтрино всех типов. Все другие частицы, стремясь перейти в состояние с минимальной энергией, более или менее быстро распадаются, достигая конечного устойчивого состояния. Самое короткое время жизни (~10 -23 с) у резонансных частиц. Нейтрон в свободном состоянии существует ~10 3 с. В семействе лептонов мюон «живет» ~10-6 с, таон ~10 -12 с.

Предполагается, что в Природе короткоживущие элементар­ные частицы играют определяющую роль в экстремальных условиях, например, подобных начальным стадиям образования Вселенной.

Массы покоя стабильных элементарных частиц имеют следующие значения: протона m p ≈ 1,67 · 10 -27 кг, электрона m е ≈ 0,91 · 10 -30 кг. У фотона и всех типов нейтрино масса покоя равна нулю.

Как правило, массы элементарных частиц выражаются в энер­гетических единицах - электрон-вольтах. Тогда m р ≈938,3×10 6 эВ =938,3 МэВ, m е ≈ 0,51 МэВ.

Элементарные частицы обладают электрическим зарядом или или являются электрически нейтральными.

Заряд электрона е равен - 1,6 · 10 -19 Кл.

Одна из важнейших характеристик элементарных частиц - спин. Значение спина определяет вид волновой функции (симмет­ричная или антисимметричная) и вид статистики (т.е. закона, которым описывается поведение коллектива микрочастиц). Час­тицы с нулевым или целочисленным спином (фотоны, π-мезоны и др.) подчиняются статистике Бозе-Эйнштейна и называются бозонами. Частицы с полуцелым спином (электроны, протоны, нейтроны) подчиняются статистике Ферми-Дирака и называются фермионами. Фундаментальными фермионами являются лептоны к кварки. Фермионы подчиняются принципу Паули, согласно ко­торому в любой системе одинаковых фермионов любые два из них не могут одновременно находиться в одном и том же состоя­нии. Применительно к распределению электронов в атоме прин­цип Паули утверждает; что в одном и том же атоме не может быть более одного электрона с одинаковым набором четырех квантовых чисел n, l, m и σ .

Принцип Паули основан на неразличимости одинаковых кван­товых частиц. При перестановке двух фермионов волновая функ­ция должна изменить свой знак. Однако, если состояния двух фермионов (т. е. их наборы квантовых чисел) одинаковы, то ψ-функция не должна менять знака. Это противоречие формаль­но устраняется только при ψ=0, что означает невозможность (нулевую вероятность) нахождения частицы в таком состоянии.

Античастицы. Для каждой известной элементарной частицы существует так называемая античастица. Массы, времена жизни и спин частицы и античастицы одинаковы. Остальные характерис­тики, например, электрический заряд, магнитный момент - рав­ны по модулю, но противоположны по знаку. Такими парами являются, например, протон р и антипротон , электрон - и антиэлектрон е + (т.е. позитрон е +). Некоторые частицы, напри­мер, фотон, тождественны своим античастицам.

Античастицы рождаются в ядерных реакциях при достаточно больших энергиях, но в веществе время жизни их мало. При встрече частицы и античастицы происходит аннигиляция. Масса и кинетическая энергия пары «частицы-античастицы» превраща­ются в энергию фотонов или других частиц. Например, при аннигиляции электрона и позитрона выделяется два фотона:

е - + е + → 2γ.

В свою очередь, фотоны могут превращаться в электронно- позитронные пары. В подобных реакциях ярко проявляется отсутствие четкой грани между полем и веществом, характерной для классической картины мира.

Атомные ядра

Следующим в рассматриваемой иерархии объектов Природы является атомное ядро. Ядро представляет собой связанную сис­тему из адронов двух типов - протонов и нейтронов, которые объединяют в этом случае общим наименованием «нуклоны». Протон есть ядро простейшего атома - атома водорода. Он имеет положительный заряд, численно равный заряду электрона. Нейтрон электрически нейтрален. Масса нейтрона m n =1,6750·10 -27 кг. Число протонов -в ядре атома называется атомным номером (Z ), а общее число нуклонов - массовым числом (А ). Заряд ядра положителен и равен Z · е . Большинство атомных ядер представлены группами изотопов. Заряд Z в каждой группе изотопов постоянен, а количество нейтронов различно. Различают стабильные, долгоживущие и радиоактивные изотопы. Причины радиоактивной нестабильности связаны с недостатком или избытком нейтронов внутри ядра.

Размер ядра условно характеризуется радиусом R ядра. Радиус возрастает с увеличением числа нуклонов в соответствии с фор­мулой , где R 0 = (1,3 …, 1,7) · 10 -15 м. Плотность «упаковки» нуклонов в ядре очень велика и составляет ~10 44 нуклонов/м 3 или 10 17 кг/м 3 .

Как уже отмечалось, стабильность ядра объясняется наличием сильного взаимодействия или ядерных сил притяжения сил притяжения. Энергия, которая необходима для удержания нуклонов в ядре, в соответст­вии с законом сохранения энергии определяется работой, кото­рую нужно совершить для расщепления ядра на составляющие нуклоны. Эта энергия называется энергией связи ядра. Энергия связь проявляется как уменьшение массы ядра при его образова­нии по сравнению с суммарной массой составляющих ядро нук­лонов:

Величина Δm носит название дефекта массы. Энергия связи определяется как

Обычно ядро характеризуют удельной энергией связи, т. е. энергией, приходящейся на один нуклон. На рис. 5.3 приведена зависимость удельной энергии связи от массового числа А , характеризующая прочность связей нуклонов в ядрах различных хими­ческих элементов. Как следует из графика, наиболее прочными являются связи ядер элементов с массовыми числами (28 ... 138). По мере увеличения А энергия связи убывает. Понижение проч­ности ядер объясняется тем, что в легких ядрах связи нуклонов не насыщены, а в тяжелых ядрах начинает сказываться кулоновское отталкивание протонов друг от друга.

Из рис. 5.3 также видно, что процессы образования более ста­бильных ядер (т. е. характеризующихся большими значениями ΔЕ СВ сопровождаются выделением энергии. Таким образом, реак­ция слияния легких ядер с образованием более тяжелых (стрелка 1 на. рис. 5.3) и реакции деления тяжелых ядер (стрелка 2 на рис. 5.3) перспективны с точки зрения энергетики.

Подробно этот вопрос обсужден во второй части курса.

Ядерные реакции. Радиоактивность . Ядерными реакциями называются процессы, в результате которых из ядер одних элемен­тов получаются ядра других элементов. Эти процессы могут происходить как в результате внешних воздействий (например, «столкновения ядра с другими частицами), так и самопроизвольно, спонтанно (радиоактивный расти).

Ядерные реакции записываются подобно химическим. Напри­мер, в результате реакции деления ядра урана при столкновении с нейтроном образуются ядра цезия и рубидия и два нейтрона:

Облучение ядра нейтронами наиболее часто используется для осуществления ядерных реакций. Дело в том, что электрически нейтральный нейтрон не испытывает кулоновского отталкивания протонов ядра и легко в него проникает. Под действием высоко­энергетического (>100 МэВ) нейтронного облучения делятся все ядра.

Выделяющиеся в реакциях распада нейтроны могут вызвать деление других ядер, благодаря чему возникает цепная реакция - лавинообразный процесс, например, взрыв атомной бомбы. Часть нейтронов можно удалить из делящегося вещества, тогда реак­цией деления можно управлять. Поглощение нейтронов в графи­товых стержнях используется в атомных реакторах.

Самопроизвольный распад ядер с испусканием различных час­тиц называется радиоактивностью. В любом радиоактивном рас­паде масса исходного ядра превышает единицу масс продуктов распила, т.е. выделяется энергия. Естественная радиоактивность была открыта А. Бсккерелем (1896 г.), а искусственная - суп­ругами Жолио-Кюри (1936 г.). Основными типами радиоактив­ности является альфа-, бета- и гамма-распады.

Альфа-распад заключается в самопроизвольном испускании ядром ci-частицы (т. е. ядра гелия ). Альфа-распад наблюда­ется только у тяжелых ядер с Z ≥ 82.

При бета-распаде ядро испускает электрон и электронное антинейтрино (или позитрон и электронное нейтрино):

Бета-распад обусловлен превращением нуклонов, вызываемых слабым взаимодействием, например в первой из записанных реакции происходит превращение нейтрона по схеме

Гамма-распад состоит в испускании ядром фотонов с высокой энергией (γ-квантов). Ядро, являясь квантовой системой, может находиться в состояниях с различной энергией. При переходах из возбужденных энергетических состояний в основные, невозбужденные, ядра испускают γ-кванты. При этом ни массовое число Л, ни атомный номер ядра Z не изменяются.