Происхождение плотной волокнистой соединительной ткани. Функции волокнистых соединительных тканей

Плотные соединительные ткани характеризуются наличием плотного межклеточного вещества; различают плотные волокнистые соединительные ткани и хрящевую ткань. Существуют неоформленные и оформленные плотные соединительные ткани.

Плотные неоформленные соединительные ткани характеризуются неупорядоченным расположением пучков волокон, например сетчатый слой дермы кожи, оболочки многих органов. Например, в коже под эпидермисом располагается дерма из двух слоев: непосредственно под эпителием располагается сосочковый слой из рыхлой волокнистой соединительной ткани, который имеет незначительную толщину. Большую часть дермы составляет сетчатый слой, представляющий собой плотную неоформленную соединительную ткань (рис. 32).

Рис. 32 о - сетчатый слой дермы; б - сухожилие; в - связка

Направление хода волокон в сетчатом слое дермы может быть различным: в одних случаях они располагаются под прямым углом, в других угол расположения между ними может сильно изменяться. Между рыхлой и плотной тканями нельзя провести четкую границу, так как соотношение клеток и межклеточного вещества, а также толщина волокон постепенно меняются. Характерной особенностью сетчатого слоя является наличие большого количества толстых, образующих мощные пучки волокон, расположенных в разных направлениях. Выявляются продольные, косые, поперечные разрезы волокон - признак неоформленной соединительной ткани. Наряду с коллагеновыми имеется сеть эластических волокон, которые способствуют растяжению и возвращению тканевой системы в исходное положение. Прочность сетчатого слоя кожи обусловлена тем, что волокна образуют сложную систему перекрещивающихся пучков и сетей. Между волокнами располагаются фиброциты и прослойки рыхлой волокнистой соединительной ткани. Сетчатый слой дермы, являясь самым прочным, в составе кожного покрова выполняет опорную функцию; именно этот слой используется в кожевенной промышленности.

Плотные оформленные соединительные ткани (сухожилия, связки) характеризуются упорядоченным расположением пучков волокон, причем отдельные пучки волокон переходят из одного слоя в другой, связывая их между собой.

Препарат «Сухожилие теленка (плотная оформленная коллагеновая соединительная ткань)» (окраска гематоксилином и эозином). При слабом увеличении микроскопа (х10) видно, что на продольном разрезе сухожилия выявляются многочисленные коллагеновые волокна, ориентированные в одном направлении (признак оформленной соединительной ткани). В пищевой промышленности сухожилия используют для получения клея и желатина, так как в органе много коллагеновых (ютейдающих) волокон. При сильном увеличении микроскопа (х40) между волокнами выявляются сухожильные клетки - фиброциты. Темно-синие ядра имеют удлиненную форму, так как клетки зажаты между волокнами; границы клеток не выявляются (волокна, как и цитоплазма, окрашены эозином в красный цвет). Между пучками коллагеновых волокон видны прослойки рыхлой волокнистой неоформленной соединительной ткани. В составе сухожилия коллагеновое волокно, состоящее из пучка коллагеновых фибрилл, отграничивается от расположенного рядом волокна слоем фиброцитов; такие пучки именуются пучками первого порядка. Прослойки рыхлой волокнистой неоформленной соединительной ткани, располагающиеся между пучками первого порядка, называются эн- дотенонием. Совокупность пучков первого порядка объединяется в более крупные пучки второго порядка. Прослойки рыхлой волокнистой неоформленной соединительной ткани, располагающиеся между пучками второго порядка, называются перитенонием.

Препарат «Связка (плотная оформленная эластическая соединительная ткань)» (окраска гематоксилином и пикрофуксином). При слабом увеличении микроскопа (х10), затем при сильном увеличении (х40) найти и зарисовать многочисленные эластические волокна. В связках толстые, округлые или уплощенные эластические волокна часто ветвятся и, отходя друг от друга под острыми углами, образуют вытянутую сеть.

Общей особенностью для ПВСТ является преобладание межклеточного вещества над клеточным компонентом, а в межклеточном веществе волокна преобладают над основным аморфном веществом и располагаются по отношению друг к другу очень близко (плотно) - все эти особенности строения в сжатой форме отражены в названии данной ткани. Клетки ПВСТ представлены в подавляющем большинстве фибробластами и фиброцитами, в небольшом количестве (в основном в прослойках из рвст) встречаются макрофаги, тучные клетки, плазмоциты, малодифференцированные клетки и т.д.

Межклеточное вещество состоит из плотно расположенных коллагеновых волокон, основного вещества мало.

ПВСТ хорошо регенерирует за счет митоза малоспециализированных фибробластов и выработки ими межклеточного вещества (коллагеновых волокон) после дифференцировки в зрелые фибробласты.

Функция ПВСТ - обеспечение механической прочности.

Плотная волокнистая неоформленная соединительная ткань

Особенности: много волокон, мало клеток, волокна имеют беспорядочное расположение

Локализация: сетчатый слой дермы, надкостница, надхрящница, капсулы паренхиматозных органов.

КЛЕТКИ

клеток очень мало; имеются, в основном, фибробласты, могут встретиться тучные клетки, макрофаги

МЕЖКЛЕТОЧНОЕ ВЕЩЕСТВО

ВОЛОКНА: коллагеновые и эластические, волокон - много

ОСНОВНОЕ (АМОРФНОЕ) ВЕЩЕСТВО: гликозаминогликаны и протеогликаны в небольшом количестве

Плотная волокнистая оформленная соединительная ткань

Особенности: много волокон, мало клеток, волокна имеют упорядоченное расположение - собраны в пучки

Локализация: сухожилия, связки, капсулы, фасции, фиброзные мембраны

КЛЕТКИ

клеток очень мало имеются, в основном, фибробласты, могут встретиться тучные клетки, макрофаги

МЕЖКЛЕТОЧНОЕ ВЕЩЕСТВО

ВОЛОКНА: коллагеновые и эластические; волокон - много; волокна имеют упорядоченное расположение, образуют толстые пучки

ОСНОВНОЕ (АМОРФНОЕ) ВЕЩЕСТВО: гликозаминогликаны и протеогликаны в очень небольшом количестве

СУХОЖИЛИЕ

Состоит из толстых, плотно лежащих параллельных пучков коллагеновых волокон. Они окружены тонкими прослойками рыхлой волокнистой неоформленной соединительной ткани; самые тонкие - пучки 1 порядка, их окружает эндотеноний пучки 2 порядка окружает перитеноний, само сухожилие представляет собой пучок 3 порядка.

Соединительные ткани со специальными свойствами

К соединительным тканям со специальными свойствами (СТСС) относятся:

1. Ретикулярная ткань.

2. Жировая ткань (белый и бурый жир).

3. Пигментная ткань.

4. Слизисто-студенистая ткань.

В эмбриогенезе все соединительные ткани СТСС образуются из мезенхимы. СТСС как и все ткани внутренней среды состоят из клеток и межклеточного вещества, но клеточный компонент представлен, как правило, 1 популяцией клеток.

1. Ретикулярная ткань - составляет основу кроветворных органов, в небольшом количестве имеется вокруг кровеносных сосудов. Состоит из ретикулярных клеток и межклеточного вещества, состоящего из основного вещества и ретикулярных волокон. Ретикулярные клетки - крупные отростчатые клетки с оксифильной цитоплазмой, соединяясь друг с другом отростками образуют петлистую сеть. Переплетающиеся ретикулярные волокна также образуют сеть. Отсюда и название ткани - "ретикулярная ткань" - сетчатая ткань. Ретикулярные клетки способны к фагоцитозу, вырабатывают составные компоненты ретикулярных волокон. Ретикулярная ткань неплохо регенерирует за счет деления ретикулярных клеток и выработки ими межклеточного вещества.

Функции:

    опорно-механическая (являются несущим каркасом для созревающих клеток крови);

    трофическая (обеспечивают питание созревающих клеток крови);

    фагоцитоз погибших клеток, инородных частиц и антигенов;

    создают специфическое микроокружение, определяющее направление дифференцировки кроветворных клеток.

2. Жировая ткань - это скопление жировых клеток. В соответствие наличию 2 типов жировых клеток различают 2 разновидности жировой ткани:

    белый жир (скопление белых жировых клеток) - имеется в подкожной жировой клетчатке, в сальниках, вокруг паренхиматозных и полых органов. Функции белого жира: запас энергетического материала и воды; механическая защита; участие в терморегуляции (теплоизоляция).

    бурый жир (скопление бурых жировых клеток) - имеется у животных впадающих в зимнюю спячку, у человека только в период новорожденности и в раннем детском возрасте. Функции бурого жира: участие в терморегуляции - жир сграет в митохондриях липоцитов, тепло выделяющееся при этом согревает кровь в проходящих рядом капиллярах.

3. Пигментная ткань - скопление большого количества меланоцитов. Имеется в определенных участках кожи (вокруг сосков молочных желез), в сетчатке и радужке глаза, и т.д. Функция: защита от избытка света, УФЛ.

4. Слизисто-студенистая ткань - имеется только у эмбриона (под кожей, в пупочном канатике). В этой ткани очень мало клеток (мукоциты), преобладает межклеточное вещество, а в нем - преобладает студенистое основное вещество, богатое гиалуроновой кислотой . Такая особенность строения обуславливает высокий тургор данной ткани. Функция: механическая защита нижележащих тканей, препятствует пережатию кровеносных сосудов пуповины.

Волокнистые соединительные ткани - типичные представители группы соединительных тканей, для которых характерно высокое содержание продуцируемого клетками матрикса. В основу их классификации положено соотношение клеток и матрикса с учетом свойств и организации последнего. Выделяют две разновидности.

В плотной волокнистой соединительной ткани клеточные элементы малочисленны и однообразны: преобладает один тип клеток - фиброциты. В матриксе выявляется большое число волокон.

В рыхлой волокнистой соединительной ткани клеточные элементы многочисленны и разнообразны. Для нее характерно сравнительно небольшое содержание в матриксе волокон при относительно большом объеме основного межфибриллярного вещества.

Плотная волокнистая соединительная ткань

Суставная капсула - это специфически дифференцированное соединительнотканное образование. В ней принято различать наружную фиброзную оболочку (membrana fibrosa) и внутреннюю - синовиальную оболочку (membrana synovialis).

Для плотной волокнистой ткани в составе фиброзной оболочки капсулы характерны типичные для этого вида соединительной ткани клетки - фиброциты - дефинитивные формы среди клеток фибробластического ряда. Они локализуются в слабо развитом интерстициальном пространстве, имеют веретенообразную форму и небольшие крыловидные отростки. Слабое развитие органелл соответствует низкому уровню биосинтетической функции этих клеток. Другие клетки соединительной ткани в норме единичны.

Плотная волокнистая соединительная ткань обладает четко выраженной преимущественной ориентацией коллагеновых волокон, эластических сетей и клеток. Такая ткань обладает значительной растяжимостью соответственно вектору смещения структур органа и значительной прочностью на разрыв.

Суставная капсула формирует замкнутую суставную сумку вокруг сочленяющихся в суставе костей, обеспечивая последним благоприятную среду для перемещения относительно друг друга. Капсула обеспечивает герметичность заполненного синовией (СЖ) щелевидного пространства, именуемого суставной полостью. Фиброзная оболочка капсулы имеет непосредственную связь (анатомическую и функциональную) с суставными связками, что позволяет говорить о наличии единой сумочно-связочной системы у каждого синовиального сустава.

Согласно С.А. Ахмалетдинову, в отделах фиброзной оболочки капсулы коленного сустава по упруго-прочностным свойствам, способности к деформации, фиброархитектонике, составу основного вещества можно выделить три группы структур:

  • структуры, сочетающие большую прочность и упругость с относительно малой способностью к деформации (заднемедиальный отдел капсулы);
  • структуры с большими прочностными и упругими свойствами, а также способностью к значительной деформации - удлинению (капсула сустава ниже менисков);
  • структуры с относительно небольшими прочностными и упругими свойствами, но большими возможностями для деформации (передние и заднелатеральные отделы капсулы).

Биохимическая и биомеханическая характеристики фиброзных структур сустава

Фиброзная капсула сустава, подобно другим разновидностям плотной соединительной ткани, весьма богата коллагенами. Так, если пересчитать на коллаген концентрацию специфического показателя коллагеновых белков - гидроксипролина - в капсуле плечевого сустава человека, станет ясно, что коллагены составляют около 80 г/100 г сухой обезжиренной ткани. Близкие цифры содержания коллагена были получены ранее при исследовании капсулы нормального тазобедренного сустава человека.

Главный коллаген фиброзных разновидностей соединительной ткани в зрелом ее состоянии - коллаген I типа. Другой большой интерстициальный коллаген - коллаген III типа, свойственный главным образом соединительной ткани эмбрионов и растущих организмов, составляет в капсуле суставов взрослого человека лишь небольшую часть общего количества коллагенов.

Как правило, массивные коллагеновые волокна суставной капсулы, основу которых составляет коллаген I типа, являются гетеротипическими. В большинстве случаев они содержат также небольшое количество ковалентно связанных с макромолекулами коллагена I типа макромолекул «малого» фибриллярного коллагена Утипа. Коллаген V типа, кроме того, присутствует в стенках кровеносных сосудов капсулы, где он продуцируется гладкомышечными и эндотелиальными клетками.

Кроме того, коллаген I типа в этих волокнах сопровождается макромолекулами ассоциированных нефибриллярных коллагенов XII, XIV, XX типов, входящих в подсемейство так называемых FACIT-коллагенов. В отличие от коллагена IX типа, который ковалентно связан с фибриллами коллагена II типа, FACIT-коллагены фиброзных тканей присоединены к коллагену I типа нековалентными связями. Предполагают, что все FACIT-коллагены выполняют общие по отношению к разным «большим» коллагеновым волокнам функции, а именно функции связывающих «мостиков» между волокнами.

На основании исследований in vitro у коллагенов XII и XIV типов предполагается еще одна функция - повышение деформативности трехмерной сети больших коллагеновых волокон в экстрацеллюлярном матриксе. Повышенная деформативность волокон создает благоприятные условия для миграции фибробластов. С этим предположением согласуется факт усиления экспрессии клетками коллагена XII типа при приложении к сухожилию растягивающих усилий.

Коллагены играют центральную роль в формировании биомеханических свойств суставной капсулы, в частности прочности на разрыв. Особенно важен в этом отношении, как и во всех других разновидностях соединительной ткани, коллаген I типа. Прочность на разрыв неодинакова у капсул различных суставов. Например, капсула плечевого сустава человека значительно прочнее капсулы локтевого сустава, несмотря на примерно одинаковую концентрацию коллагенов в ткани и примерно одинаковую толщину коллагеновых волокон (по данным ТЭМ). Различия в прочности капсул более выражены в молодом возрасте, а по мере старения прочность на разрыв обеих капсул снижается, и различия уменьшаются. Считают, что одним из факторов, способствующих снижению прочности суставных капсул с возрастом, является их кальцификация.

В суставной капсуле присутствует эластин. В концентрации этого фибриллярного белка имеются половые различия: в капсуле тазобедренного сустава у молодых самок крыс концентрация эластина составляет в среднем 3,3 г/100 г, а у самцов того же возраста - 1,1 г/100 г высушенной обезжиренной ткани. Она повышалась при введении животным эстрогенов и понижалась при введении тестостерона.

То обстоятельство, что при одинаковом количественном содержании коллагена отмечаются различия в биомеханических свойствах суставных капсул, может рассматриваться как указание на возможное участие неколлагеновых компонентов ткани в формировании этих свойств - участие, хорошо известное в общей биомеханике соединительной ткани. Авторы не проводили количественный биомеханический анализ разных капсул. Можно также упомянуть, что капсула тазобедренного сустава человека содержит больше гексозаминсодержащих гликоконъюгатов и сравнительно много ДНК (1,5-2,2 г/100 г высушенной обезжиренной ткани), другими словами - относительно богата клетками. Нарушение биомеханических свойств капсулы, наблюдаемое при OA тазобедренного сустава, развивается на фоне снижения концентрации ДНК, что указывает на уменьшение клеточной популяции.

Все эти факты, а также найденное L. Videman увеличение содержания гликозаминогликанов в ткани капсулы при иммобилизации (в экспериментах на кроликах с иммобилизацией в состоянии разгибания коленного сустава) говорят о том, что оптимизация биомеханических свойств суставных капсул обусловлена взаимодействием коллагеновых структур ткани с другими ее компонентами.

Морфофункциональная специфика суставных связок

Связки - это соединительнотканные образования в виде тяжей или пластин, входящие в состав аппарата, укрепляющего сустав. По отношению к суставной капсуле различают три разновидности связок. Первая разновидность - это внекапсульные связки, которые расположены вне капсулы сустава, но очень часто вплетающиеся в нее. Вторая разновидность - это капсулъные связки, которые являются уплощениями суставной капсулы. И наконец, третьей разновидностью являются внутрикапсульные (внутрисуставные) связки, находящиеся в суставной полости и покрытые СО. Так, в коленном суставе анатомически различают 9 связок, среди которых - две внутрисуставные крестообразные связки, две коллатеральные (малоберцовая и большеберцовая) и др.

Вместе с тем для соединительной ткани связок характерны свои особенности.

Коллатеральная большеберцовая связка представляет плоский соединительнотканный тяж, в котором выявляются поверхностные и глубокие пучки коллагеновых волокон. Коллатеральная малоберцовая связка представляет собой соединительнотканный тяж овальной формы, в котором так же, как и в крестообразных связках, различают пучки коллагеновых волокон трех порядков. Обе коллатеральные связки в целом отличаются от крестообразных большим содержанием эластических волокон.

М.М. Галлямовым также показано, что СО, покрывающая крестообразные связки, имеет ряд особенностей, не присущих СО других зон суставной полости. Это прежде всего синовиальные карманы - обширные углубления, которые являются резервуарами СЖ и увеличивают общую поверхность СО в суставе. Внутрисвязочные кровеносные сосуды непосредственно сообщаются с кровеносным руслом покрывающей связки СО, которое представлено однослойной и двухслойной сетями капилляров. По данным М.М. Галлямова, на 1 мм 2 поверхности среза крестообразных связок коленного сустава человека приходится 9,9 ± 1, 1звеньев микроциркуляторного русла с суммарной площадью стенок 0,14 ±0,01 мм 2 , в то время как на ту же площадь в СО приходится 66,0 ±6,7 сосудов с суммарной площадью стенок 0,97 ±0,1 мм 2 .

Некоторые биохимические характеристики суставных связок

В связках наряду с характерным для них и сухожилий коллагеном I типа отмечается представительство второго из «больших» интерстициальных коллагенов - коллагена III типа (до 12% общего количества), а также минорных FACIT-коллагенов.

Центральным формообразующим фактором, определяющим количественное накопление и структурную организацию коллагенов в связках и сухожилиях, являются механические нагрузки. Действие этого фактора начинается сразу же после рождения, одновременно с началом движений. В экспериментах на крысах установлено, что абсолютное содержание коллагена, определяемое по гидроксипролину, в медиальной коллатеральной связке коленного сустава увеличивается вследствие тренировки на тредбане; это абсолютное увеличение (концентрация гидроксипролина остается неизмененной) отражает утолщение связки. При снятии естественных механических нагрузок, которое достигалось в опытах на кроликах иммобилизацией коленного сустава, в этой же медиальной коллатеральной связке масса коллагенов уменьшалась, что было обусловлено ускоренным распадом коллагенов, которое лишь частично компенсировалось усиленным в восстановительном периоде биосинтезом.

Количественное содержание коллагенов в сухожилиях и связках увеличивается с возрастом. Общая концентрация коллагенов в пяточном (ахилловом) сухожилии кролика составляет при рождении 37 г/100 г, а у старых животных (в возрасте 4 лет) - 85 г/100 г высушенной обезжиренной ткани. Эта динамика согласуется с тем фактом, что фиброциты фиброзного аппарата сустава сохраняют способность экспрессировать макромолекулы матрикса. Эта способность в большей степени выражена у клеток тех отделов сухожилий и связок, которые подвержены большей механической нагрузке. Механическая нагрузка способствует совершенствованию структурной организации коллагеновых фибрилл.

Коллаген I типа является главным фактором, обеспечивающим прочность сухожилий и связок на разрыв. При этом большое значение имеет степень развития межмолекулярных поперечных связей в коллагеновых волокнах.

При общем большом сходстве морфологических и биохимических параметров связок и сухожилий нельзя не отметить, что содержание клеток и основного (межфибриллярного) вещества в связках, особенно внутрисуставных, выше, чем в сухожилиях. Одним из показателей этого является более высокое содержание в связках ДНК. Эти данные соответствует морфологической картине связок, в которой обращает на себя внимание сравнительно высокая насыщенность клетками.

Большое значение в супрамолекулярной организации сухожилий и связок имеют «малые» (богатые лейцином) протеогликаны декорин и фибромодулин. Они взаимодействуют с FACIT-коллагенами, включаясь, таким образом, в регулирование фибриллогенеза больших коллагенов. У животных с выключенными генами малых протеогликанов развивается серьезная дезорганизация структуры коллагеновых фибрилл в сухожилиях.

Сухожилия и связки неоднородны по химическому составу на своем протяжении. В подвергающихся давлению участках, в области прикрепления сухожилия кости, отмечены экспрессия агрекана, а также найдена значительно более активная экспрессия антиадгезивного гликопротеина тенасцина С, чем в подверженном растяжению центральном отделе. Предполагают, что тенасцин С в этих участках предохраняет фиброциты от компрессии, давая им возможность продуцировать компоненты, свойственные матриксу хряща. В этих же участках сухожилий, наряду с коллагеном I типа и связанными с ним FACIT-коллагенами, присутствуют коллагены, характерные для гиалинового хряща - И, IX, а также III типов.

Мениски. Диски. Суставные губы

Специфическими для ряда крупных суставов являются диски, мениски и суставные губы - структуры, состоящие из фиброзной ткани и хряща (преимущественно волокнистого).

Некоторые суставы человека (коленный, височно-челюстной, грудино-ключичный, лучезапястный) содержат особые образования, по сути близкие к внутрисуставным связкам, - мениски и диски. Мениски присутствуют в коленных суставах. Диски выявляются в остальных перечисленных выше суставах. Менискам и дискам свойственна двойственная биомеханическая функция: во-первых, они снижают компрессию, падающую на суставные хрящи; во-вторых, исполняют роль внутрисуставных связок, повышающих стабильность сустава. Этой функции менисков и дисков соответствует и материал, из которого они построены, а именно фиброзный (волокнистый) хрящ.

Суставные губы. Суставная губа имеется и в тазобедренном суставе. Функция ее аналогичная, а именно увеличивать размеры и выпуклость впадины сустава.

Немногочисленная клеточная популяция менисков и дисков состоит из фибробластов и уплощенных хондроцитов, близких по виду к хондроцитам поверхностной зоны суставных хрящей. Как и в волокнистой соединительной ткани, в менисках коленного сустава среди коллагеновых белков преобладает коллаген I типа, на который приходится не менее 90% общего количества коллагенов. Только около 10% составляют коллагены, свойственные гиалиновому хрящу, главным образом коллаген II типа. В эмбриональном периоде в ткани менисков экспрессируются лишь коллагены I, III и Vтипов, экспрессия коллагена II типа обнаруживается только после рождения, когда сустав начинает подвергаться механической нагрузке. Появляются также коллагены IX и VI.

В менисках и дисках содержатся свойственные гиалиновому хрящу агрегаты агрекана, но общее количество протеогликанов, определяемое, например, в ткани цельных менисков и дисков по концентрации гликозаминогликанов, примерно в 10 раз меньше, чем в суставном хряще. Кроме агрекана, мениски и диски содержат также небольшие количества «малых» протеогликанов - бигликана, декорина и фибромодулина. Они распределены в менисках неравномерно: их суммарная концентрация выше в тонких медиальных зонах, подвергающихся наиболее сильной компрессии.

Биосинтез протеогликанов в менисках человека увеличивается с возрастом. Между 20 и 62 годами экспрессия мРНК декорина увеличивается в 5 раз, мРНК агрекана - в 8 раз, хотя эти показатели продолжают оставаться гораздо более низкими по сравнению с суставными хрящами. Более значительное усиление экспрессии агрекана связано, вероятно, с возрастным повышением массы тела и увеличением компрессионной нагрузки на коленные суставы. Из числа гликопротеинов в менисках установлено наличие фибронектинов и тромбоспондинов.

Классификация. Собственно соединительную ткань разделяют на:

1) волокнистые соединительные ткани:

    рыхлая волокнистая соединительная ткань;

    плотная волокнистая соединительная ткань:

а) плотная неоформленная соединительная ткань;

б) плотная оформленная соединительная ткань;

2) соединительные ткани со специальными свойствами.

В основу данной классификации положен принцип со­отношения клеток и межклеточных структур, а также сте­пень упорядоченности расположения соединительнотканных волокон.

Волокнистые соединительные ткани

Рыхлая волокнистая соединительная ткань

Этот вид соединительной ткани обнаруживается во всех органах, так как она сопровождает кровеносные и лимфати­ческие сосуды и образует строму многих органов.

Строение . Она состоит из клеток и межклеточного ве­щества (рис. 6-1).

Различают следующие клетки рыхлой волокнистой со­единительной ткани :

1. Фибробласты – наиболее многочисленная группа клеток, различных по степени дифференцировки, характе­ри­зующаяся прежде всего способностью синтезировать фиб­риллярные белки (коллаген, эластин) и гликозаминогликаны с последующим выделением их в межклеточное вещество. В процессе дифференцировки образуется ряд клеток:

    стволовые клетки;

    полустволовые клетки-предшественни­ки;

    малоспециализированные фибробласты – малоотростча­тые клетки с округлым или овальным ядром и небольшим ядрышком, базофильной цитоплазмой, богатой РНК.

Функция: обладают очень низ­ким уровнем синтеза и сек­реции белка.

    дифференцированные фибробласты (зрелые) - крупные по разме­ру клетки (40-50мкм и более). Их ядра светлые, содер­жат 1-2 крупных ядрышка. Границы клеток нечеткие, размытые. Цитоплазма содержит хорошо развитую грану­лярную эндоплазматическую сеть.

Функция: Интенсивный биосинтез РНК, коллагеновых и эластических белков, а также гликозминогликанов и проте­огликанов, необходимых для формирова­ния основного веще­ства и волокон.

    фиброциты - дефинитивные формы развития фибробла­стов. Они имеют веретеновидную форму и крыловидные от­ростки. Содер­жат небольшое число органелл, вакуолей, ли­пидов и гликогена.

Функция: cинтез коллагена и других веществ у этих клеток резко снижен.

- миофибробласты - функционально сходные с гладкими мышечными клет­ками, но в отличие от последних имеющие хорошо развитую эндоплазматическую сеть.

Функция: эти клетки наблюдаются в грануляционной ткани раневого про­цесса и в матке, при развитии беременно­сти.

- фиброкласты.- клетки с высокой фагоцитарной и гидро­ли­тической активностью, в них содержится большое количе­ство лизосом.

Функция: принимают участие в рассасывании меж­кле­точного вещества.

Рис. 6-1. Рыхлая соединительная ткань. 1. Коллагеновые во­локна. 2. Эластические волокна. 3. Фибробласт. 4. Фиброцит. 5. Макрофаг. 6. Плазмоцит. 7. Жировая клетка. 8. Тканевой базо­фил (тучная клетка). 9. Перицит. 10. Пигментная клетка. 11. Ад­вентициальная клетка. 12. Основное вещество. 13. Клетки крови (лейкоциты). 14. Ретикулярная клетка.

2. Макрофаги – блуждающие, активно фагоцитирую­щие клетки. Форма макрофагов различна: встречаются клетки уплощенные, округлые, вытянутые и неправильной формы. Их границы всегда четко очерчены, а края неровные. Цитолемма макрофагов образует глубокие складки и длин­ные микро­выросты, с помощью которых эти клетки захваты­вают инородные частицы. Как правило, имеют одно ядро. Цитоплазма базофильна, богата лизосомами, фагосомами и пиноцитозными пузырьками, содержит умеренное количе­ство митохондрий, гранулярной эндоплазматической сети, комплекса Гольджи, включений гликогена, липидов и др.

Функция: фагоцитоз, секретируют в межклеточное ве­щество биологичес­ки активные факторы и ферменты (интер­ферон, лизоцим, пирогены, протеазы, кислые гидролазы и др.), чем обеспечиваются их разнообразные защитные функ­ции; вырабатывают медиаторы-монокины, интерлейкин I, активирующий синтез ДНК в лимфоцитах; факторы, активи­рующие выработку иммуноглобулинов, стимулирующие дифференцировку Т- и В-лимфоцитов, а также цитолитиче­ские факторы; обеспечивают процессинг и презентацию ан­тигенов.

3. Плазматические клетки (плазмоциты). Их вели­чина колеблется от 7 до 10 мкм. Форма клеток округлая или овальная. Ядра относительно небольшие, круглой или оваль­ной формы, расположены эксцентрично. Цито­плазма резко базофильна, содержит хорошо развитую гранулярную эндо­плазматическую сеть, в которой синтезируются белки (анти­тела). Базофилии лишена только небольшая светлая зона около ядра образующая так называемую сферу, или дворик. Здесь обнаружи­ваются центриоли и комплекс Гольджи.

Функции: эти клетки обеспечивают гуморальный имму­нитет. Они синтезируют антитела – гаммаглобулины (белки), вырабатывающиеся при по­явлении в организме антигена и обезвреживающие его.

4. Тканевые базофилы (тучные клетки). Клетки их имеют разнообразную форму, иногда с короткими широкими отростками, что обусловлено способностью их к амебоидным движениям. В цитоплазме находится специфическая зерни­стость (синего цвета), напоминающая гранулы базофильных лейкоцитов. В ней содержится гепарин, гиалуроновая ки­слота, гистамин и серотонин. Органеллы тучных клеток раз­виты слабо.

Функция: тканевые базофилы являются регуляторами местного гомеостаза соединительной ткани. В частности, ге­парин снижает проницаемость межклеточного вещества, свертываемость крови, оказывает противовоспалительное влияние. Гистамин же выступает как его антагонист.

5. Адипоциты (жировые клетки) – располагаются группами, реже – поодиночке. Накапливаясь в больших ко­личествах, эти клетки образу­ют жировую ткань. Форма оди­ночно расположенных жировых клеток шаровидная, они со­держат одну большую каплю нейтрального жира (триглице­ридов), занимающую всю централь­ную часть клетки и окру­женную тонким цитоплазматическим ободком, в утолщенной части которого лежит ядро. В связи с этим, адипоциты имеют перстневидную форму. Кроме того, в цитоплазме адипоцитов имеется небольшое количество холестерина, фосфолипидов, свободных жирных кислот и др.

Функция: обладают способностью накапливать в боль­ших количествах резервный жир, принимающий участие в трофике, энергообразовании и метаболизме воды.

6. Пигментные клетки – имеют короткие, непостоян­ной формы отростки. Эти клетки содержат в своей цито­плазме пигмент меланин, способный поглощать УФЛ.

Функция: защита клеток от действия УФО.

7. Адвентициальные клетки - малоспециализирован­ные клетки, сопровож­дающие кровеносные сосуды. Они имеют уплощенную или ве­ретенообразную форму со слабо­базофильной цитоплазмой, овальным ядром и слаборазви­тыми органеллами.

Функция: выполняет роль камбия.

8. Перициты имеют отросчатую форму и в виде кор­зинки окружают кровеносные капилляры, располагаясь в расщелинах их базальной мембраны.

Функция: регулируют изменения просвета кровеносных капилляров.

9. Лейкоциты мигрируют в соединительную ткань из крови.

Функция: см. клетки крови.

Межклеточное вещество состоит из основного веще­ства и расположенных в них волокон – коллагеновых, эла­стических и ретикулярных.

Коллагеновые волокна в рыхлой неоформленной во­локнистой соединительной ткани располагаются в различных направлениях в виде скрученных округлых или уплощенных тяжей толщиной 1-3 мкм и более. Длина их неопределенна. Внутренняя структура коллагенового волокна определяется фибриллярным белком – коллагеном, который синтезируется в рибосомах гранулярной эндоплазматической сети фиброб­ластов. В строении этих волокон выделяют несколько уров­ней организации (рис. 6-2):

- Первый – молекулярный уровень – представлен моле­кулами белка коллагена, имеющих в дли­ну около 280 нм и ширину 1,4 нм. Они построены из трипле­тов – трех полипеп­тидных цепочек предшественника коллагена – проколла­гена, скрученных в единую спираль. Каждая цепочка про­коллагена содержит наборы из трех различных аминокислот, многократно и за­кономерно повторяющихся на протяжении ее длины. Первая ами­нокислота в таком наборе может быть любой, вторая – пролин или лизин, третья – глицин.

Рис. 6-2. Уровни структурной организации коллагенового волокна (схема).

А. I. Полипептидная цепочка.

II. Молекулы коллагена (тропоколлаген).

III. Протофибриллы (микрофибриллы).

IV. Фибрилла минимальной толщины, у которой становится видимой поперечная исчерченность.

V. Коллагеновое волокно.

Б. Спиральная структура макромол­лекулы коллагена (по Ричу); мелкие светлые кружочки – глицин, круп­ные светлые кружочки – пролин, заштрихованные кружочки – гидро­кси­пролин. (По Ю. И. Афанасьеву, Н. А. Юриной).

- Второй – надмолекулярный, внеклеточный уровень – представляет соединенные в длину и поперечно связанные с по­мощью водородных связей молекулы коллагена. Сначала образу­ются протофцбриллы , а 5-б протофибрилл, скреплен­ных между собой боковыми связями, составляют микрофиб­риллы, толщиной около 10 нм. Они различимы в электрон­ном мик­роскопе в виде слабоизвилистых нитей.

- Третий, фибриллярный уровень. При участии гликоза­мино-гликанов и гликопротеинов микрофибриллы образуют пучки фибрилл. Они представляют собой поперечно исчер­ченные структуры толщиной в среднем 50–100 нм. Период повторяемости темных и светлых участков 64 нм.

- Четвертый , волоконный уровень. В состав коллагено­вого волокна (толщиной 1-10 мкм) в зави­симости от топо­графии входят от нескольких фибрилл до несколь­ких десят­ков.

Функция: определяют прочность соединительных тка­ней.

Эластические волокна – их форма округлая или упло­щенная, широко анастомозируют друг с другом. Толщина эластических волокон обычно меньше коллагеновых. Основ­ным химическим компонентом эластических волокон яв­ля­ется глобулярный белок эластин, синтезируемый фибробла­стами. Электронная микроскопия позволила установить, что эласти­ческие волокна в центре содержат аморфный компо­нент, а по пе­риферии - микрофибриллярный. По прочности эластические волокна уступают коллагеновым.

Функция: определяет эластичность и растяжимость со­единительной ткани.

Ретикулярные волокна относятся к типу коллагеновых волокон, но отличаются меньшей толщиной, ветвистостью и анастомозами. Содержат повышенное количество углеводов, которые синтези­руются ретикулярными клетками и липидов. Устойчивы к действию кислот и щелочей. Обра­зуют трех­мерную сеть (ретикулум), откуда и берут свое название.

Основное вещество – это студнеобразная гидрофильная среда, в образовании кото­рой важную роль играют фиброб­ласты. В его состав входят сульфатированные (хондроитин­серная кислота, кератин-сульфат, и др.) и несульфатирован­ные (гиалуроновая кислота) гликозаминогликаны, которые обусловливают консистенцию и функциональные особенно­сти основного вещества. Кроме указанных компонентов, в состав основного вещества входят липиды, альбумины и глобулины крови, минеральные веще­ства (соли натрия, ка­лия, кальция и др.).

Функция: транспорт метаболитов между клетками и кровью; меха­ническая (связывание клеток и волокон, адгезия клеток и др.); опорная; защитная; метаболизм воды; регуля­ция ионного состава.

Плотная волокнистая соединительная ткань

Она характеризуется относительно большим количест­вом плотно расположенных волокон (коллагеновых), незна­чительным количеством клеточных элементов (фиброцитов, фибробластов) и основного вещест­ва между ними.

В зависимости от характера расположения волокнистых струк­тур эта ткань подразделяется на:

    Плотную неоформленную соединительную ткань.

Располагается в дерме кожи и характеризуется неупоря­доченным расположе­нием волокон.

    Плотную оформленную соединительную ткань.

Встречается в сухожилиях, связках, фиброзных мембра­нах и характеризуется строго упорядоченным расположе­нием волокон.

Сухожилие состоит из толстых, плотно лежащих парал­лельных пучков коллагеновых волокон, разделенных фибро­цитами, небольшим количеством фибробластов, и основного вещества. Каждый пучок коллагеновых волокон называется пучком первого порядка. Несколько пучков первого порядка, окруженных тонкими прос­лойками рыхлой волокнистой со­единительной ткани (эндотеноний), составляют пучки вто­рого порядка . Из пучков второго порядка слагаются пучки третье­го порядка, разделенные более толстыми прослой­ками рыхлой соединительной ткани (перитеноний). В круп­ных сухожилиях могут быть и пучки четвертого порядка. В перитенонии и эндотенонии проходят кровеносные сосуды и нервы.

Отличительная характеристика плотной волокнистой соединительной ткани :

· очень высокое содержание волокон, формирующих толстые пучки, которые занимают основную часть объема ткани;

· малое количество основного вещества;

· преобладание фиброцитов.

· главное свойство – высокая механическая прочность.

Неоформленная плотная соединительная ткань – для этого вида ткани характерно неупорядоченное расположение коллагеновых пучков, образующих трехмерную сеть. В промежутках между пучками волокон содержится основное аморфное вещество, которое объединяет ткань в единый остов, клетки - фиброциты (главным образом) и фибробласты, кровеносные сосуды, нервные элементы. Неоформленная плотная соединительная ткань образует сетчатый слой дермы и капсулы различных органов. Выполняет механическую и защитную функцию.

Оформленная плотная соединительная ткань отличается тем, что коллагеновые пучки в ней лежат параллельно друг другу (в направлении действия нагрузки). Образует сухожилия, связки, фасции и апоневрозы (в виде пластин). Между волокнами находятся фибробласты и фиброциты. Кроме коллагеновых, существуют эластические связки (голосовые, желтые, соединяющие позвонки), образованные пучками эластических волокон.

ВОСПАЛЕНИЕ

Воспаление - защитно-приспособительная реакция на местное повреждение, выработанная в ходе эволюции. Факторы, вызывающие воспаление, могут быть экзогенными (инфекция, травма, ожог, гипоксия) или эндогенными (очаг некроза, отложение солей). Биологический смысл этой защитной реакции - ликвидация или ограничение от здоровой ткани очага повреждения, и регенерация ткани. Хотя это и защитная реакция, но в некоторых случаях проявления этой реакции, особенно хронического воспаления, способны вызвать тяжелые повреждения тканей.

Фазы воспаления:

I. фаза альтерации – повреждение тканей и выделение медиаторов воспаления , комплекса биоактивных веществ, отвечающих за возникновение и поддержание воспалительных явлений.

Медиаторы воспаления:

гуморальные (из плазмы крови) – кинины, факторы свертывания и т.д.;

клеточные медиаторы выделяются клетками в ответ на повреждение; вырабатываются моноцитами, макрофагами, тучными клетками, гранулоцитами, лимфоцитами, тромбоцитами. Эти медиаторы: биоамины (гистамин, серотонин), эйкозаноиды (производные арахидо новой кислоты: простагландины, лейкотрие ны), и другие.

II. фаза экссудации включает:

· изменения микроциркуля торного русла: спазм артериол, затем расширение артериол, капилляр и венул – возникает гипереми я – покраснение и повышение температуры.

· формирование жидкого (бесклеточного) экссудата – благодаря повышению проницаемости сосудов, изменения осмотического давления в очаге воспаления (из-за повреждения) и гидростатического в сосудах. Нарушение оттокаприводит квозникновению отёка.

· формирование клеточного экссудата (миграция лейкоцитов через эндотелий).

Клеточный состав фаз воспаления:

1 фаза : на начальных этапах наиболее активно выселяются нейтрофильныегранулоциты , которые выполняют фагоцитарную и микробицидную функции; в результате их активности образуются продукты распада, которые привлекают в очаг воспаления моноциты, выселяющие из крови;

2 фаза : моноциты в соединительной ткани превращаются в макрофаги. Макрофаги фагоцитируют погибшие нейтрофилы, клеточный детрит, микроорганизмы и могут инициировать иммунный ответ.

В очаге хронического воспаления преобладают микрофаги и лимфоциты, которые образуют скопления – гранулёмы. Сливаясь, макрофаги образуют гигантские многоядерные клетки.

III. фаза пролиферации (репарации ) – Макрофаги, лимфоциты и другие клетки вызывают: хемотаксис, пролиферацию и стимуляцию синтетической активности фибробластов ; активацию образования и роста сосудов. Образуется молодая грануляционная ткань, откладывается коллаген, формируется рубец.

СОЕДИНИТЕЛЬНЫЕ ТКАНИ СО СПЕЦИАЛЬНЫМИ СВОЙСТВАМИ

ЖИРОВАЯ ТКАНЬ

Жировая ткань представляет собой особую разновидность соединительной ткани, в которой основной объём занимают жировые клетки – адипоциты. Жировая ткань повсеместно распространена в организме, составляя 15-20% массы тела у мужчин и 20-25% - у женщин (т.е. 10-20 кг у здорового человека). При ожирении (а в развитых странах это около 50% взрослого населения) масса жировой ткани увеличивается до 40-100 кг. Аномалии содержания и распределения жировой ткани связаны с рядом генетических нарушений и эндокринных расстройств.

У млекопитающих, включая человека, имеются два вида жировой ткани – белая и бурая , которые различаются по цвету, распределению в организме, метаболической активности, строению образующих их клеток (адипоцитов) и степени кровоснабжения.

Белая жировая ткань – преобладающий вид жировой ткани. Образует поверхностные (гиподерма – слой подкожной жировой клетчатки) и глубокие – висцеральные – скопления, образует мягкие упругие прослойки между внутренними органами.

В эмбриогенезе жировая ткань развивается из мезенхимы . Предшественники адипоцитов – малодифференцированные фибробласты (липобласты), лежащие по ходу мелких кровеносных сосудов. В ходе дифференцировки в цитоплазме образуются сначала мелкие липидные капли, капли сливаются друг с другом, образуя одну крупную каплю (95-98% объёма клетки), а цитоплазма и ядро смещаются к периферии. Такие жировые клетки называются однокапельными адипоцитами . Клетки утрачивают отростки, приобретают сферическую форму, в ходе развития их размер увеличивается в 7-10 раз (до 120 мкм в диаметре). Цитоплазма характеризуется развитой агранулярной ЭПС, мелким комплексом Гольджи, небольшим количеством митохондрий.

Белая жировая ткань состоит из долек (компактных скоплений адипоцитов), разделенных тонкими прослойками рыхлой волокнистой соединительной ткани, несущими кровеносные и лимфатические сосуды и нервы. В дольках клетки приобретают форму многогранников.

Функции белой жировой ткани :

· энергетическая (трофическая ): адипоциты обладают высокой метаболической активностью: липогенез (отложение жиров) - липолиз (мобилизация жиров) – обеспечение организма резервными источниками;

· опорная, защитная, пластическая – полностью или частично окружает различные органы (почки, глазное яблоко и.т.д.). Резкое похудание может привести к смещению почек;

· теплоизолирующая;

· регуляторная – в процессе миелоидного кроветворения адипоциты входят в состав стромального компонента красного мозга, создающего микроокружение для пролиферирующих и дифференцирующихся клеток крови;



· депонирующая (витамины, стероидные гормоны, вода)

· эндокринная – синтезирует эстрогены (главный источник у мужчин и

пожилых женщин) и гормон, регулирующий потребление пищи – лептин. Лептин тормозит секрецию гипоталамусом особого нейропептида NPY, который усиливает потребление пищи. При голодании секреция лептина снижается, при насыщении – возрастает. Недостаточная выработка лептина (или отсутствие рецепторов к лептину в гипоталамусе) ведёт к ожирению.

Ожирение

В 80% увеличение массы жировой ткани происходит вследствие нарастания объёма (гипертрофии) адипоцитов. В 20% (при наиболее тяжелых формах ожирения, развивающихся в молодом возрасте) – увеличение числа адипоцитов (гиперплазия): число адипоцитов может увеличиться в 3-4 раза.

Голодание

Снижение массы тела в результате лечебного или вынужденного голодания сопровождается падением массы жировой ткани – усиление липолиза и угнетение липогенеза – резкое уменьшение объемов адипоцитов при сохранении их общего числа. При возобновлении нормального питания клетки быстро накапливают липиды, клетки увеличиваются в размерах, и превращаются в типичные адипоциты, в результате чего происходит быстрое восстановление массы тела после отмены диеты. Жировая ткань на ладонях, подошвах и в ретроорбитальных участках очень устойчива к процессам липолиза. Снижение массы жировой ткани более чем на треть от нормы, вызывает дисфункцию системы гипоталамус-гипофиз-яичники – подавление менструального цикла и бесплодие. Нервная анорексия - один из видов пищевых расстройств, при котором запас жировой ткани снижается до 3 % нормального уровня массы жировой ткани, нередко заканчивается смертельным исходом.

Бурая жировая ткань

У взрослого человека бурая жировая ткань присутствует в небольшом количестве, лишь в нескольких, чётко очерченных участках (между лопаток, на задней поверхности шеи, в воротах почек). У новорожденных она составляет до 5% массы тела. Её содержание мало меняется при недостаточном или избыточном питании. Бурая жировая ткань наиболее сильно развита у животных, впадающих в зимнюю спячку.