Аминокислоты: их значение для здоровья человека. Аминокислоты и их значение

Аминокислоты являются строительным материалом белков, из которых состоит весь организм человека. Белок необходим для нормальной жизнедеятельности организма и слаженной работы всех систем. При потреблении белка он распадается в желудочно-кишечном тракте на аминокислоты, из которых синтезируются не достающие организму белки, гормоны и пищеварительные ферменты. Поэтому, вполне закономерно, что нехватка тех или иных аминокислот может повышать риски заболеваний и ухудшать работу всех органов и систем. Рассмотрим некоторые из них.

Аминокислоты: их значение для здоровья человека.

Ясный ум и крепкие нервы.

Как мы уже знаем, весь наш организм состоит из белка. И нервные клетки – не исключение. Активность мозга и процессы запоминания обеспечиваются гормонами, которые тоже состоят из белков. Кроме того, белки помогают мозгу усваивать энергию.

Исследования показали, что клетки нервов и мозга, получающие достаточное питание, продуцируют только приятные эмоции. Например, такие как радость, духовность, теплоту в отношениях и т.д. Истощение же нервной системы, напротив, приводит к бессоннице, депрессии, рассеянности, чувству отчаяния, подавленности и усталости.

Особенно важны для работы мозга и нервной системы в целом аминокислоты глицин, триптофан, теанин.

Глицин.

Глицин – эту аминокислоту знает, наверное, каждый. Она частично синтезируется в нашем организме, а также поступает извне с продуктами питания. Глицин – это важнейший компонент клеточных мембран нервных волокон и головного мозга. Он улучшает питание и нормализует обмен веществ, укрепляет стенки сосудов в этих клеточных структурах. Его дефицит повышает артериальное давление, психоэмоциональное напряжение, агрессию, нарушает сон и снижает работоспособность.

Всемирная организация здравоохранения не располагает данными о доказанной эффективности или клинической значимости глицина. Однако, в России он широко применяется. Производители фармакологических препаратов глицина заявляют, что он оказывает успокаивающее, противотревожное и ноотропное действие.

Глицин нормализует процессы возбуждения и торможения в коре головного мозга, уменьшая, таким образом, агрессивность и конфликтность человека и повышая его социальную адаптацию. Кроме того, эта аминокислота повышает умственную работоспособность, улучшает память и ассоциативные процессы, нормализует сон и облегчает засыпание.

Продукты, в которых содержится глицин: рыба, мясо, молочные продукты, сыр, бобы, яйца, шпинат, тыквенное семя, арахис, фисташки, грецкие и кедровые орехи.

Триптофан.

Триптофан преобразуется в организме до серотонина – «гормона радости», нормализующего деятельность нервной системы и являющегося естественным антидепрессантом. Триптофан успокаивает нервную систему, поднимает настроение и улучшает качество сна.

Все дело в том, что при регулярном поступлении триптофана в нашем организме поддерживается необходимый уровень серотонина. И происходит это в дневное время суток. А вот в темное время суток (при отсутствии освещения) из серотонина образуется мелатонин – «гормон сна». Именно мелатонин обеспечивает хорошее качество сна, позволяя хорошо выспаться и отдохнуть за более короткое время.

Таким образом, триптофан – это аминокислота, благодаря которой в дневное время вырабатывается «гормон радости», а в ночное – «гормон сна».

Продукты, в которых содержится триптофан: красная и черная икра, сыр голландский, арахис, миндаль, кешью, кедровые орехи, мясо кролика и индейки, кальмары, лосось, треска, яйца, творог жирный, шоколад.

Кроме того, в аптеках продается большое количество биологически активных добавок, в состав которых входит триптофан: «Триптофан Формула спокойного сна» от компании Эвалар, Пустырник с триптофаном и т.д.

Теанин.

Особый интерес вызывает аминокислота L-танин. Именно теанин работает как активатор мозговой деятельности. При этом он не вызывает возбудимости нервной системы. Танин, наоборот, позволяет сохранить спокойствие, ясность ума и нормализовать давление, поднявшееся из-за стресса.

Танин пробуждает деловую активность и умственную работоспособность, улучшает память и дает творческую энергию. Теанин – это настоящий допинг для мозга. Существует множество клинических экспериментов, проведенных японцами, что эта аминокислота не только эффективна, но и безопасна, так как выделена из листьев зеленого чая.

Аминокислота теанин содержится в зеленом чае, камелии китайской и обыкновенной, польском грибе. Однако, согласно исследованиям, его оптимальная дозировка, которая работает, должна быть не менее 500 мг. А в обычной чашке зеленого чая его содержится всего на всего 10-20 мг, что очень мало и желаемого терапевтического эффекта просто не будет. Получить танин в дозировке 500 мг можно только из лекарственных препаратов, продаваемых в аптеках. Например, биологически активная добавка от компании Эвалар «Теанин Эвалар»

Здоровая печень.

Функция печени в нашем организме очень важна и незаменима. Правильно и хорошо функционирующая печень является гарантом нашего здоровья и жизнеспособности. Большое значение аминокислоты имеют и для правильной работы печени.

Метионин.

Эта серосодержащая аминокислота, которая участвует в выработке таких важнейших соединений как холин, адреналин, креатин и т.д. Она обеспечивает образование фосфолипидов – основных элементов структуры клеточных оболочек печени. Метионин обеспечивает обезвреживание токсических продуктов и тормозит отложение жира в печени и жизненно важных артериях. Дело в том, что метионин способствует снижению содержания плохого холестерина в крови, защищая тем самым сосуды.

Метионин не синтезируется организмом и поступает в организм человека только с продуктами питания или дополнительным приемом лекарственных препаратов и биологически активных добавок.

L-орнитин.

Аминокислота L-орнитин – это гепатопротекторное и детоксикационное средство. L-орнитин эффективно восстанавливает работу клеток печени. Он способствует снятию интоксикации печени и организма в целом за счет выведения и азотсодержащих продуктов обмена белков. При этом орнитин защищает организм от негативного воздействия токсических веществ, что значимо для людей с нарушениями функции печени. Кроме того, L-орнитин способствует нормализации и улучшению белкового обмена в организме.

Энергия для активной жизни.

Синдром хронической усталости – им страдают как работники умственного труда, так люди, занимающиеся физическим трудом. Постоянная слабость и усталость не дают в полной мере радоваться жизни. Из-за дефицита энергии падает работоспособность человека и ухудшается его общее самочувствие. Ведь благодаря физической энергии происходит нормальная жизнедеятельность человеческого организма. Повысить энергию нам помогут следующие аминокислоты.

L-карнитин.

L-карнитин повышает работоспособность, снижает утомляемость, в том числе у пожилых людей, и дает энергию для активной жизни. При спортивных занятиях он помогает снизить вес и эффективно уменьшить содержание жира в мышцах. Дело в том, что основной задачей L-карнитина является транспорт жирных кислот в митохондрии, где они сжигаются для получения энергии. Таким образом, L-карнитин помогает не только получить энергию для активной жизни, но и существенно снизить вес.

А вот на Западе L-карнитин – неотъемлемая часть диеты пожилых людей. Он защищает мозг от старения, замедляя воспалительные процессы в его тканях. Он помогает ускорить восстановление после перенесенных заболеваний и хирургических вмешательств, в том числе для регенерации тканей.

Большое количество L-карнитина содержится в нежирном мясе: говядина, телятина, баранина, свинина, кролик. Также L-карнитин содержится в рыбе, морепродуктах и молочных продуктах.

Лейцин.

Эта аминокислота поступает в организм человека только с пищей. В первую очередь лейцин отвечает за сохранение и нормальное развитие мышечной ткани. Она обеспечивает клетки тела энергий, повышая, таким образом, выносливость организма при повышенных физических нагрузках.

Лейцин стабилизирует работу центральной нервной системы, участвует в образовании белка гемоглобина, регулирует уровень в крови. Помимо этого, эта аминокислота активизирует работу иммунной системы, повышая естественную защиту организма от бактерий и вирусов.

Больше всего лейцина содержится в яйцах, молоке, твороге, сое и сыре. Также он есть в кальмарах, горбуше, скумбрии, арахисе, фасоли, фисташках, кукурузе и чечевице.

Будьте здоровы!

Аминокислоты составляют основу протеинов (белка). Большинство аминокислот необходимо для нормального роста и развития человека. Аминокислоты - это строительные блоки нашего тела. Они содержат азот, который отсутствует в жирных кислотах и сахаре. Протеин (белок) жизненно важен для каждого живого организма. К тому же протеин необходим для множества химических процессов, поддерживающих жизнеспособность. Существует порядка 1600 основных протеинов, которые подходят для человеческого организма, они все состоят из 22 аминокислот. В результате пищеварения протеин рассыпается на 22 аминокислоты, восемь из которых принято считать важнейшими (essential acids) и которые не могут вырабатываться самим организмом, оставшиеся аминокислоты не столь важны и могут вырабатываться самим организмом. Нехватка в организме всего одной аминокислоты, ведёт к возникновению серьезных проблем со здоровьем. Дефицит аминокислот может наблюдаться в результате множества факторов, как правило, это результат низко-белковой диеты. Среди иных факторов следует отметить стрессы, травмы, инфекции, возраст, лечение и химический дисбаланс в организме. Очень важно, чтобы содержание аминокислот в организме было сбалансировано, поэтому рекомендуется принимать аминокислотные комплексы, которые восполняют запас недостающих аминокислот.

Аминокислоты необходимы для многих функций организма, включая:

  • Строительство клеток и восстановление тканей;
  • Часть энзимной и гормональной систем;
  • Распространение кислорода по всему организму;
  • Некоторые аминокислоты превращаются в глюкозу для стабилизации уровня сахара в крови;
  • Поддерживают и восстанавливают мышцы, сухожилия, кожные покровы, связки, органы такие как, сердце и мозг, гланды, ногти и волосы;
  • Необходимы для поддержания кислотно-щелочного баланса;
  • Формируют антитела для противодействия вирусам и бактериям;
  • Создают нуклеопротеины RNA и DNA;
  • Являются частью мышечной системы;
  • Служат для построения соединительных тканей (коллаген);
  • Источники энергии, необходимые для функционирования мозга.

Аминокислотный комплекс представляет собой всеобъемлющий комплекс, который содержит 18 свободных аминокислот, витамин B6 и необходимые пищеварительные энзимы. Аминокислоты в свободной форме представляют собой высокоценные аминокислоты, также как и витамин B6. Эта формула также содержит такие пищеварительные энзимы как бромелан, папаин и панкреатин, которые в дальнейшем обеспечивают оптимальную биологическую ценность.

Какова биологическая роль аминокислот? Попробуем вместе найти ответ на этот вопрос. Выявим особенности строения данного класса органических веществ, их химические свойства, основные области применения.

Исторические сведения

Первой открытой аминокислотой был глицин. Его синтезировали в 1820 году путем кислотного гидролиза желатина. Расшифровать аминокислотный состав белковых молекул удалось только к середине прошлого века, именно тогда была выявлена аминокислота - треонин.

Основные функции

На данный момент имеется информация о 300 аминокислотах, выполняющих в организме различные функции.

Какова основная биологическая роль из них считают стандартными (протеиногенными), поскольку именно они входят в состав основных белковых молекул.

Эти соединения входят в состав определенных белков. Оксиприлин является основой коллагена, эластин образуется десмозином.

Они могут быть промежуточными веществами в обменных процессах. Такую функцию выполняет цитруллин, орнитин.

Биологическая также состоит в синтезе нуклеотидов, полиамидов. Углеродная цепочка этих соединений используется для образования иных органических веществ:

  • глюкоза синтезируется из глюкогенных аминокислот;
  • липиды образуются кетогенными соединениями.

Биологическая роль аминокислот заключается в возможности их использования для определения функциональных групп. Цистеин применяют при выявлении сульфатной группы. Аспарат используется при выявлении аминогруппы.

Особенности номенклатуры

Как правильно назвать классификация, биологическая роль этих соединений рассматриваются даже в курсе школьной программы.

Аминокислоты являются производными карбоновых кислот, в составе которых один атом водорода замещается аминогруппой.

В зависимости от расположения этой функциональной группы, у одного соединения может существовать несколько изомеров. Химики используют сразу три разных тривиальную, систематическую.

Тривиальные названия данных соединений связаны с тем источником, из которого они были выделены. Серин включен в состав фиброина шелка, глутамин обнаружен в клейковине злаковых растений. Цистин присутствует в камнях мочевого пузыря.

Рациональное название связано с производной карбоновой кислоты, а сокращенное обозначение применяют при указании последовательности расположения аминокислот в белковой молекуле. В биохимии пользуются сокращенными и тривиальными названиями этих соединений.

Классификация аминокислот

Для того чтобы понять, какова биологическая роль аминокислот и их применение, остановимся подробнее на видах классификации этих органических соединений.

В настоящее время используется несколько видов классификации:

  • по радикалу;
  • по степени его полярности;
  • по варианту синтеза в организме.

По строению радикала в органической химии выделяют разные виды аминокислот.

Алифатические соединения могут содержать по одной карбоксильной и аминогруппе, в таком случае они являются моноаминокарбоновыми соединениями.

При наличии двух СООН и одной аминогруппы вещества называют моноаминодикарбоновыми веществами.

Также выделяют диаминомонокарбоновые и диаминодикарбоновые формы аминокислот.

Циклические виды отличаются не только количеством циклов, но и их качественным составом.

По Ленинджеру, аминокислоты подразделяют на четыре группы по особенностям взаимодействия углеводородного радикала с водой:

  • гидрофобные;
  • гидрофильные;
  • отрицательно - заряженные;
  • положительно-заряженные.

В зависимости от способности аминокислот синтезироваться в человеческом организме выделяют незаменимые (поступают с пищей), а также заменимые виды.

Многочисленными научными экспериментами была доказана биологическая роль альфа-аминокислот.

Физические свойства

Чем характеризуются аминокислоты? Номенклатура, свойства, биологическая роль этих соединений предлагается выпускникам школ на едином государственном экзамене по химии. Эти органические кислоты хорошо растворяются в воде, обладают высокой точкой плавления.

Их оптическая активность объясняется присутствием в молекулах асимметричного углеродного атома (исключением является только глицин). Именно поэтому были обнаружены L- и D-стереоизомеры аминокислот.

Изомеры L-ряда обнаружены в составе белков животных. Величина водородного показателя для этих соединений находится в диапазоне 5,5-7.

Химические свойства

Рассмотрим подробнее аминокислоты. Строение, химические свойства, биологическая роль этих органических веществ необходимо знать.

Специфика химических свойств аминокислот заключается в их двойственности. Причиной амфотерности является наличие двух функциональных групп в составе этих органических кислот.

Присутствие карбоксильной группы СООН придает этим соединениям кислотный характер. Они легко вступают во взаимодействие с активными металлами, основными оксидами, щелочами. Также кислотность свойств этих органических соединений проявляется в реакции этерификации (со спиртами образуют эфиры).

Аминокислоты могут также вступать в химическое взаимодействие с солями, образованными слабыми минеральными кислотами. В качестве примера такой реакции можно рассматривать взаимодействие аминокислот с гидрокарбонатами и карбонатами.

Основные свойства данного класса заключаются в способности аминокислот реагировать с другими кислотами по аминогруппе. При этом образуются соли.

Биологическая роль декарбоксилирования аминокислот в том, что образуется нейтральная среда, которая абсолютно безопасна для живого организма.

Позволяет выявлять в растворе аминокислот. Суть реакции заключается в том, что бесцветный раствор нингидрина при взаимодействии с аминокислотой, будет конденсироваться в форме димера через атом азота, который отщепляется от аминогруппы соответствующей кислоты.

Получаемый пигмент имеет красно-филолетовый оттенок, кроме того, происходит декарбоксилирование аминокислоты, в результате которого образуется определенный альдегид и оксид углерода (4).

Именно нингидриновая реакция используется биологами при анализе первичной структуры белковых молекул. По интенсивности окраски можно выявить количественное содержание аминокислот в исходном растворе, поэтому подобный анализ уместен при выявлении концентрации аминокислот.

Специфические реакции

В аминокислотах, кроме карбоксильной и аминогруппы, могут содержаться дополнительные функциональные группы. Для их определения в научно-исследовательских лабораториях проводят качественные реакции.

Аргинин можно выявить в смеси путем осуществления качественной реакции Сакагучи (на гуанидиновую группу). Цистеин можно определить методом Фоля, специфичным для SH-группы.

Реакция нитрования (ксантопротеиновая реакция) дает возможность подтверждать присутствие в смеси ароматической аминокислоты. Реакция Миллона предназначена для выявления гидроксильной группы в ароматическом кольце тирозина.

Особенности пептидной связи

Чем характеризуются Их биологическая роль связана с образованием молекул пептидов. При взаимодействии между собой нескольких молекул аминокислот, происходит отщепление молекул воды, а остатки аминокислот с помощью пептидной (амидной) связи образуют пептиды.

Число аминокислотных остатков, образующих полипептид, существенно варьируется. Те пептиды, которые содержат не более десяти аминокислотных остатков, именуют олигопептидами. В названии образующегося соединения часто указывают количество аминокислотных остатков.

Если в составе вещества содержится больше десяти аминокислотных остатков, соединения называют полипептидами. Для тех соединений, в составе которых больше пятидесяти остатков аминокислот, продукт их синтеза называют белком.

Так, гормон глюкаген, в составе которого есть 29 аминокислот, биологи называют гормоном. Аминокислотными остатками считают мономеры исходных органических кислот, из которых образуются белковые соединения.

Тот остаток аминокислоты, который записывается слева, имеет аминогруппу, называют N-концевым, фрагмент, обладающий карбоксильной группой, считают С-концевым, его принято записывать справа.

При наименовании полученного полипептида используют сокращенные названия аминокислот, из которых он образуется. Например, если во взаимодействии принимали участие глицин, серин, аланин, получаемый трипептид будет читаться как глицилсерилаланин.

Значимость некоторых аминокислот

Глицин (аминоуксусная кислота) является донором углеродных фрагментов, которые нужны для образования гемоглобина, пиррола, холина, нуклеотидов, а также для синтеза креатина.

Серин присутствует в составе активных центров ферментов. Эта аминокислота нужна для процесса синтеза фосфопротеина (казеина натурального молока).

Глюкогенная кислота нужна для формирования вторичной, третичной структуры белковой молекулы. В этом соединении есть самая реакционно-активная функциональная группа, поэтому вещество легко вступает в окислительно-восстановительные процессы, связывает тяжелые металлы в виде нерастворимых соединений. Именно она выполняет функцию донора сульфатной группы, востребованной для синтеза серосодержащих веществ.

Заключение

Аминокислоты являются амфотерными органическими соединениями, имеющими важное биологическое значение. Именно аминокислотные остатки в процессе синтеза образуют последовательность, которая является первичной структурой белковой молекул. В зависимости от того, как именно выстроятся аминокислотные фрагменты, синтезируется белок, специфичный для каждого живого организма.

Основными составными частями и структурными элементами белковой молекулы являются аминокислоты. Поступив с пищей, белки расщепляются до аминокислот, которые с кровью попадают в клетки и используются для синтеза белков, специфических для организма человека. В процессе синтеза специфических белков имеет значение не только количество поступивших с пищей белков, но и соотношение в них аминокислот. Вследствие того, что белков, совпадающих по аминокислотному составу с белками тканей человека в естественных пищевых продуктах нет, то для синтеза белков организма следует использовать разнообразные пищевые белки.

В пищевых продуктах для человека имеют значение 20 аминокислот в L-формах.

В организме человека наблюдается превращение одних аминокислот в другие, которое частично происходит в печени. Однако имеется ряд аминокислот, не образующихся в организме и поступающих только с пищей. Эти аминокислоты называются незаменимыми (эссенциальными) и считаются жизненно необходимыми. К незаменимым аминокислотам относятся триптофан, лизин, метионин, фенилаланин, лейцин, изолейцин, валин, треонин . У детей незаменимой аминокислотой является гистидин , так как он у них не синтезируется до трех лет в необходимом количестве. При отдельных заболеваниях организм человека не способен синтезировать некоторые другие аминокислоты. Так, при фенилкетонурии не синтезируется тирозин из фенилаланина .

Каждая аминокислота в организме имеет свое значение.

Триптофан необходим для роста организма, поддержания азотистого равновесия, образования белков сыворотки крови, гемоглобина и ниацина (витамина РР).

Лизин участвует в процессах роста, образования скелета, усвоения кальция и т.д.

Метионин участвует в превращении жиров, в синтезе холина, адреналина, активизирует действие некоторых гормонов, витаминов, ферментов и является липотропным веществом, препятствующим жировому перерождению печени

Фенилаланин – участвует в процессе передачи нервных импульсов в составе медиаторов (допамин, норэпифрин).

Лейцин – нормализует сахар крови, стимулирует гормон роста, участвует в процессах восстановления поврежденных тканей костей, кожи, мышц.

Изолейцин – поддерживает азотистый баланс, его отсутствие приводит к отрицательному азотистому балансу.

Валин – участвует в азотистом обмене, координации движений и др.

Треонин – участвует в процессах роста, формирования тканей и др.

Биологическая ценность белков пищи

Биологическая ценность - характеризуется содержанием незаменимых аминокислот в пищевых белках, их сбалансированностью и степенью усвоения организмом.

Для полного усвоения белка пищи содержание в нем аминокислот должно быть в определенном соотношении, т.е. быть сбалансированным. Для взрослого человека может быть принята следующая формула сбалансированность незаменимых аминокислот (г/сут): триптофана 1, лейцина 4-6, изолейцина 3-4, валина 3-4, треонина 2-3, лизина 3-5, метионина 2-4, фенилаланина 2-4. Для ориентировочной оценки сбалансированности незаменимых кислот принята упрощенная формула, согласно которой соотношения триптофан: лизин: метионин (вместе с цистином) равно 1:3:3 (г/сут).

В зависимости от биологической ценности различают три группы пищевых белков.

Белки высокой биологической ценности - это белки, содержащие все незаменимые аминокислоты в достаточном количестве, в оптимальной сбалансированности и обладающие легкой перевариваемостью и высокой усвояемостью (более 95%). К ним относятся белки яиц, молочных продуктов, мяса и рыбы.

Белки средней биологической ценности - содержат все незаменимые аминокислоты, но они недостаточно сбалансированы и усваиваются на 70-80%. Так, недостаток лизина - основная причина пониженной ценности белков хлеба. Кукуруза дефицитна по лизину и триптофану, рис - по лизину и треонину. Более полноценен белок картофеля, но количество его в этом продукте невелико - около 2%. Кроме того белки почти всех растительных продуктов трудно перевариваемы, так как они заключены в оболочки из клетчатки, что препятствует действию пищеварительных ферментов, особенно в бобовых, грибах, крупах из цельных зерен.

Неполноценные белки – в них отсутствует одна или несколько незаменимых аминокислот, что приводит к неполному усвоению других аминокислот и всего белка. К ним относят коллаген, эластин (содержатся в соединительной, хрящевой ткани), кератин (волосы, ногти, шерсть) и др. Так, в эластине и коллагене отсутствует триптофан и снижено количество незаменимых аминокислот.

Наиболее быстро перевариваются в желудочно-кишечном тракте белки молочных продуктов, яиц и рыбы, затем мяса (говядины быстрее, чем свинины и баранины), хлеба и круп (быстрее белки пшеничного хлеба из муки высших сортов и манной крупы). Белки рыбы перевариваются быстрее, чем мяса, так как в рыбе меньше соединительной ткани. Из коллагена получают желатин, который, несмотря на неполноценность, легко усваивается без напряжения секреции пищеварительных желез.

На усвояемость белков влияет технологическая обработка. Так, денатурация белковых молекул, образующаяся при тепловой обработке, взбивании, мариновании улучшает доступ пищеварительных ферментов и улучшает усвоение белков. Чрезмерная тепловая обработка (например, жарка) ухудшает усвояемость белков в результате избыточной денатурации, которая затрудняет ферментативную обработку. Избыточное нагревание отрицательно влияет на аминокислоты. Так, биологическая ценность молочного белка казеина падает на 50% при нагреве до 200 о С, При сильном и длительном нагреве продуктов, богатых углеводами, в них уменьшается количество доступного для усвоения лизина. Поэтому рационально предварительное замачивание круп в целях сокращения времени варки. Лучше усваиваются вареное мясо и рыба потому что содержащаяся в них соединительная ткань при варке приобретает желеобразное состояние, белки при этом частично растворяются в воде и легче расщепляются. Измельчение пищевых продуктов облегчает процесс переваривания белков.