Важное про минутный объем крови. Систолический и минутный объем кровотока в покое и при мышечной работе у тренированных и нетренированных спортсменов

Главная / Лекции 2 курс / Физиология / Вопрос 50. Коронарный кровоток. Систолический и минутный объём крови / 3. Систолический и минутный объём крови

Систолический объём и минутный объём — основные показатели, которые характеризуют сократительную функцию миокарда.

Систолический объём — ударный пульсовой объём — тот объём крови, который поступает из желудочка за 1 систолу.

Минутный объём — объём крови, который поступает из сердца за 1 минуту. МО = СО х ЧСС (частота сердечных сокращений)

У взрослого минутный объём приблизительно 5-7 л, у тренированного — 10 — 12 л.

Факторы, влияющине на систолический объём и минутный объём:

    масса тела, которой пропорциональна масса сердца. При массе тела 50-70 кг — объём сердца 70 — 120 мл;

    количество крови, поступающей к сердцу (венозный возврат крови) — чем больше венозный возврат, тем больше систолический объём и минутный объём;

    сила сердечных сокращений влияет на систолический объём, а частота — на минутный объём.

Систолический объём и минутный объём определяются 3-мя следующими методами.

Рассчетные методы (формула Старра): Систолический объём и минутный объём рассчитывается с помощью: массы тела, массы крови, давления крови. Очень приблизительный метод.

Концентрационный метод — зная концентрацию любого вещества в крови и его объём — рассчитывают минутный объём (вводят опредлелённое количество индиферентного вещества).

Разновидность — метод Фика — определяется количество поступившего в организм за 1 минуту О 2 (необходимо знать артериовенозную разницу по О 2).

Инструментальные — кардиография (кривая регистрации электрического сопротивления сердца). Определяется площадь реограммы, а по ней — величина систолического объёма.

Ударный и минутный объемы кровообращения (сердца)

Ударный или систолический объем сердца (УО) — количество крови, выбрасываемое желудочком сердца при каждом сокращении, минутный объем (МОК) — количество крови, выбрасываемое желудочком в минуту. Величина УО зависит от объема сердечных полостей, функционального состояния миокарда, потребности организма в крови.

Минутный объем прежде всего зависит от потребностей организма в кислороде и питательных веществах. Так как потребность организма в кислороде непрерывно изменяется в связи с изменяющимися условиями внешней и внутренней среды, то величина МОК сердца является весьма изменчивой.

Изменение величины МОК происходит двумя путями:

    через изменение величины УО;

    через изменение частоты сердечных сокращений.

Существуют разнообразные методы определения ударного и минутного объемов сердца: газоаналитический, методы разведения красителя, радиоизотопный и физико-математический.

Физико-математические методы в детском возрасте имеют преимущества перед остальными вследствие отсутствия вреда или какого-либо беспокойства для исследуемого, возможности сколь угодно частых определении этих параметров гемодинамики.

Величина ударного и минутного объемов с возрастом увеличивается, при этом УО изменяется более заметно, чем минутный, так как с возрастом ритм сердца замедляется. У новорожденных УО равен 2,5 мл, в возрасте 1 года —10,2 мл, 7 лет — 23 мл, 10 лет — 37 мл 12 лет — 41 мл, от 13 до 16 лет — 59 мл (С. Е. Советов, 1948; Н. А. Шалков, 1957).

У взрослых УО равен 60—80 мл. Показатели МОК, отнесенные к массе тела ребенка (на 1 кг массы), с возрастом не увеличиваются, а, наоборот, уменьшаются.

3. Систолический и минутный объём крови

Таким образом, относительная величина МОК сердца, характеризующая потребности организма в крови, выше у новорожденных и у детей грудного возраста.

Ударный и минутный объемы сердца практически одинаковы у мальчиков и у девочек в возрасте от 7 до 10 лет. С 11 лет оба показателя нарастают как у девочек, так и у мальчиков, по у последних они увеличиваются более значительно (МОК достигает к 14—16 годам у девочек 3,8 л, а у мальчиков — 4,5 л).

Таким образом, половые различия рассматриваемых показателей гемодинамики выявляются после 10 лет. Кроме ударного и минутного объемов, гемодинамику характеризует сердечный индекс (СИ — отношение МОК к поверхности тела), СИ варьирует у детей в широких пределах — от 1,7 до 4,4 л/м 2 , при этом связи его с возрастом не выявляется (средняя величина СИ по возрастным группам в пределах школьного возраста приближается к 3,0 л/м 2).

«Детская торакальная хирургия», В.И.Стручков

Популярные статьи раздела

Расчет работы сердца. Статический и динамический компоненты работы сердца. Мощность сердца

Механическая работа, совершаемая сердцем, развивается за счет сократительной деятельности миокарда. Вслед за распространением возбуждения происходит сокращение миокардиальных волокон.

Систолический объем крови

Работа, совершаемая сердцем, затрачивается, во-первых, на выталкивание крови в магистральные артериальные сосуды против сил давления и, во-вторых, на придание крови кинетической энергии. Первый компонент работы называется статическим (потенциальным), а второй - кинетическим. Статический компонент работы сердца вычисляется по формуле: Аст = РcpVc, где Рср - среднее давление крови в соответствующем магистральном сосуде (аорте - для левого желудочка, легочном артериальном стволе - для правого желудочка), Vc – систолический объем. . Механическая работа, совершаемая сердцем, развивается за счет сократительной деятельности миокарда. A=Nt; А-работа, N-мощность. Она затрачивается на: 1)выталкивание крови в магистральные сосуды 2)придание крови кинетической энергии.

Рср характеризуется постоянством. И. П. Павлов относил его к гомеостатическим константам организма. Величина рср в большом круге кровообращения составляет приблизительно 100 мм рт. ст. (13,3 кПа). В малом круге рср = 15 мм рт. ст. (2 кПа),

2)Статический компонент(Потенциальный). A_ст=p_ср V_c ; p_ср -среднее давление крови Vc-статический объемРср в малом круге:15 мм рт.ст.(2 кПа); p_срв большом круге:100 мм рт.ст.(13,3 кПа).Динамический компонент(Кинетический). A_k=(mv^2)/2=ρ(V_c v^2)/2; p-плотность крови(〖10〗^3кг*м^(-3)); V-скорость кровотока(0,7м*с^(-1));В целом работа левого желудочка за одно сокращение в условиях покоя составляет 1 Дж, а правого – менее 0,2 Дж. Причем статический компонент доминирует, достигая 98% всей работы, тогда на долю кинетического компонента приходится 2%. При физических и психических нагрузках вклад кинетического компонента становиться весомее(до 30%).

3)Мощность сердца. N=A/t; Мощность показывает какая работа совершается за единицу времени. Средняя мощность миокарда поддерживается на уровне 1 Вт.При нагрузках мощность возрастает до 8,2 Вт.

Предыдущая25262728293031323334353637383940Следующая

Некоторых показателей гемодинамики

1. Подсчет ЧСС обычно производят путем пальпации пульса на лучевой артерии или непосредственно сердечного толчка.

Для исключения эмоциональной реакции испытуемого подсчет осуществляют не сразу, а по истечении 30 сек. после прижатия лучевой артерии.

2. Определение АД проводят аускультативным методом Короткова. Определяют величины систолического (СД) и диастолического (ДД) давлений.

Расчет гемодинамики проводят по Савицкому.

3.Значение ПД- пульсового давления, и СДД- среднего динамического давления получают по формуле:

ПД=СД-ДД (мм рт.ст.)

СДД=ПД/3+ДД (ммрт.ст.)

У здоровых людей ПД колеблется в пределах от 35 до 55 мм рт. ст.. С ним связано представление о сократительной способности сердца.

Среднее динамическое давление (СДД) отражает условия кровотока в прекапиллярах, это своеобразный потенциал системы кровообращения, определяющий скорость поступления крови в капилляры тканей.

СДД с возрастом несколько повышается от 85 до 110 мм рт.ст. В литературе существует мнение о том, что СДД ниже 70 мм рт.ст. свидетельствует о гипотонии, а выше 110 мм рт.ст.

ПОКАЗАТЕЛИ РАБОТЫ СЕРДЦА

О гипертонии. Являясь самым стабильным из всех показателей АД, СДД при различных воздействиях изменяется незначительно. При физической нагрузке колебания СДД у здоровых людей не превышает 5-10 мм рт.ст., тогда как СД при этих условиях увеличивается на 15-30 мм рт.ст.и больше. Колебания СДД, превышающие 5-10 мм рт.ст., как правило, являются ранним признаком расстройства в системе кровообращения.

4. Систолический объем кровотока (СОК), или систолический выброс (ударный объем крови) определяется количеством крови, которое выбрасывается сердцем во время систолы. Эта величина характеризует сократительную функцию сердца.

Минутный объем кровотока (минутный объем сердца или сердечный выброс) это тот объем крови, который сердце выбрасывает за 1 мин.

Расчет СОК и МОК производят по формуле Старра, используя показатели СД, ДД, ПД, ЧСС с учетом возраста (В) испытуемого:

СОК=100+0,5 ПД-0,6 ДД - 0.6 В (мл)

У здорового человека СОК составляет в среднем 60-70 мл.

МОК=СОК*ЧСС

В покое у здорового человека МОК, в среднем, равен 4,5-5 л. При физической нагрузке МОК возрастает в 4-6 раз. У здоровых людей возрастание МОК происходит за счет увеличения СОК.

У нетренированных и больных МОК увеличивается за счет учащения ритма сердца.

Величина МОК зависит от пола, возраста, массы тела. Поэтому введено понятие минутного объема в расчете на 1 м 2 поверхности тела.

5. Сердечный индекс - величина, характеризующая кровоснабжение единицы поверхности тела в 1 мин.

СИ=МОК/ПТ (л/мин/м 2)

где ПТ- поверхность тела в м 2 , определяемая по таблице Дюбуа. СИ в покое составляет 2,0-4,0 л/мин/м 2 .

Предыдущая12345678910Следующая

ПОСМОТРЕТЬ ЕЩЕ:

Систолический или ударный объем (СО, УО) – это объем крови, который сердце выбрасывает в аорту за время систолы, в покое около 70 мл крови.

Минутный объем кровообращения (МОК) — количество крови, выбрасываемое желудочком сердца в минуту. МОК левого и правого желудочков одинаков. МОК (л/мин) = СО (л) х ЧСС (уд/мин). В среднем 4,5-5 л.

Частота сердечных сокращений (ЧСС). ЧСС в покое составляет около 70 уд/мин (у взрослых).

Регуляция работы сердца.

Внутрисердечные (интракардиальные) механизмы регуляции

9. Систолический и минутный объем сердца.

Гетерометрическая саморегуляция – повышение силы сокращения в ответ на увеличение диастолической длины мышечных волокон.

Закона Франка-Старлинга: сила сокращения миокарда в систолу прямо пропорциональна его наполнению в диастолу.

2. Гомеометрическая саморегуляция – увеличение показателей сократимости без изменения исходной длины мышечного волокна.

а) Эффект Анрепа (зависимость сила-скорость).

При возрастании давления в аорте или легочной артерии происходит увеличение силы сокращения миокарда. Скорость укорочения волокон миокарда обратно пропорциональна силе сокращения.

б) Лестница Боудича (хроноинотропная зависимость).

Увеличение силы сокращения сердечной мышцы при увеличении ЧСС

Внесердечные (экстракардиальные) механизмы регуляции деятельности сердца

I. Нервные механизмы

А. Влияние вегетативной нервной системы

Симпатическая нервная система оказывает эффекты: положительные хронотропный (увеличение частоты сокращений сердца), инотропный (увеличение силы сердечных сокращений), дромотропный (увеличение проводимость) и положительный батмотропный (увеличение возбудимости) эффекты. Медиатор — норадреналин. Адренорецепторы α и b-типов.

Парасимпатическая нервная система оказывает эффекты: отрицательные хронотропный, инотропный, дромотропный, батмотропный . Медиатор – ацетилхолин, М-холинорецепторы.

В. Рефлекторные влияния на сердце.

1. Барорецепторный рефлекс: при снижении давления в аорте и каротидном синусе происходит увеличение частоты сердцебиения.

2. Хеморецепторные рефлексы. В условиях недостатка кислорода происходит увеличение частоты сердцебиения.

3. Рефлекс Гольца. При раздражении механорецепторов брюшины или органов брюшной полости наблюдается брадикардия.

4. Рефлекс Данини-Ашнера. При надавливании на глазные яблоки наблюдается брадикардия.

II. Гуморальная регуляция работы сердца.

Гормоны мозгового вещества надпочечников (адреналин, норадреналин) — влияние на миокард аналогично симпатической стимуляции.

Гормоны коры надпочечников (кортикостероиды) — положительное инотропное действие.

Гормоны коры щитовиднойжелезы (тиреоидные гормоны) — положительное хронотропное.

Ионы: кальций повышает возбудимость клеток миокарда, калий повышает возбудимость миокарда и проводимость. Снижение рН приводит к угнетению сердечной деятельности.

Функциональные группы сосудов:

1. Амортизирующие (эластические) сосуды (аорта с ее отделами, легочная артерия) превращают ритмичный выброс крови в них из сердца в равномерный кровоток. Имеют хорошо выраженный слой эластических волокон.

2. Резистивные сосуды (сосуды сопротивления) (мелкие артерии и артериолы, прекапиллярные сосуды-сфинктеры) создают сопротивление кровотоку, регулируют объем кровотока в различных частях системы. В стенках этих сосудов имеется толстый слой гладкомышечных волокон.

Прекапиллярные сосуды-сфинктеры - регулируют обмен кровотока в капиллярном русле. Cокращение гладкомышечных клеток сфинктеров может приводить к перекрытию просвета мелких сосудов.

3. Обменные сосуды (капилляры), в которых осуществляется обмен между кровью и тканями.

4. Шунтирующие сосуды (артерио-венозные анастомозы), регулируют органный кровоток.

5. Емкостные сосуды (вены), обладают высокой растяжимостью, осуществляют депонирование крови: вены печени, селезенки, кожи.

6. Сосуды возврата (средние и крупные вены).

Определение минутного объема сердца

Точное определение минутного объема сердца возможно лишь при наличии данных о содержании кислорода как в артериальной, так и в венозной крови полостей сердца. Поэтому этот метод не применим в качестве общеклинического метода исследования.

Однако можно составить грубо ориентировочное представление о приспособительной способности нормального сердца при физической работе, если принять, что колебания произведения из частоты пульса на редуцированное артериальное давление происходят параллельно изменениям минутного объема.

Редуцированное артериальное давление = амплитуда артериального давления * 100 / среднее давление.

Среднее давление = (систолическое + диастолическое давление) / 2.

Пример. В покое: пульс 72; артериальное давление 130/80 мм; редуцированное артериальное давление = (50*100)/105 = 47,6; минутный объем = 47,6*72 = 3,43 л.

После нагрузки: пульс 94; артериальное давление 160/80 мм; редуцированное артериальное давление = (80*100)/120 = 66,6; минутный объем = 66,6*94 = 6,2 л.

Само собой разумеется, что с помощью этого способа можно получить не абсолютные, а только относительные показатели. К этому следует добавить, что вычисление по Лильештранду и Цандеру хотя и позволяет в какой-то мере судить о приспособительной способности здорового сердца, тем не менее, при патологических состояниях кровообращения допускает широкую возможность ошибок.

Средним минутным объемом сердца у лиц со здоровым сердцем считается 4,4 л. Более достоверные данные дает способ Биргауза, при котором произведения из амплитуды артериального давления на частоту пульса до и после физической нагрузки сопоставляются с нормальными значениями этих величин, установленными Вецлером. При этом характер нагрузки (подъем на лестницу, приседания, движения рук и ног, приподнимание и опускание верхней половины туловища в кровати) никакой роли не играет, однако необходимо, чтобы у исследуемого после нагрузки появились явные признаки утомления.

Методика выполнения. После 15-минутного пребывания в условиях покоя в постели у исследуемого 3 раза измеряют частоту пульса и артериальное давление; наименьшие значения принимают за исходные величины.

После этого проводят пробу с нагрузкой, как указано выше. Тотчас же после нагрузки снова проводят измерения, причем артериальное давление определяет исследующий врач, а частоту пульса одновременно медицинская сестра.

Расчет. Индекс минутного объема сердца (QV m) определяется по следующей формуле:

QV m = (амплитуда в покое * частота пульса в покое)/(нормальная амплитуда * нормальная частота пульса)

(см. таблицу).

Таким же образом проводят определение и после нагрузки (при этом изменяется только числитель дроби, а знаменатель остается постоянным):

QV m = (амплитуда при нагрузке * частота пульса при нагрузке)/(нормальная амплитуда * нормальная частота пульса)

(см. таблицу).

Возрастные изменения пульса и артериального давления (по Вецлеру)

Оценка. В норме: QVm в покое около 1,0.

Показатели работы сердца. МОК

После нагрузки повышение не менее чем на 0,2.

Патологические изменения: исходное значение индекса в покое ниже 0,7 и выше 1,5 (до 1,8). Снижение индекса после нагрузки (опасность коллапса).

Проба по Биргаузу часто применяется в качестве предоперационной пробы кровообращения.

При этом, по Мейсснеру (Meissner), надо руководствоваться следующими общими положениями: нарушения кровообращения отсутствуют у больных с индексом 1,0 - 1,8, повышающимся после нагрузки.

Больные с индексом выше 1,0, но без повышения его после нагрузки нуждаются в мероприятиях, направленных на улучшение кровообращения. То же необходимо и при индексе ниже 1, но не ниже 0,7, если после нагрузки он повышается не менее чем на 0,2.

В случае отсутствия повышения эти больные нуждаются в предварительном интенсивном лечении до тех пор, пока не будут выполнены указанные условия.

Определение минутного объема сердца, включая и время кругооборота крови, возможно также путем определения периода напряжения и периода изгнания левого желудочка, поскольку, по Блюмбергеру, электрокардиограмма, фонокардиограмма и пульс сонной артерии находятся в определенных взаимоотношениях.

Но для этого необходима соответствующая аппаратура, что позволяет использовать этот метод только в условиях больших клиник.

Основной физиологической функцией сердца является выброс крови в сосудистую систему. Поэтому количество изгоняемой из желудочка крови является одним из важнейших показателей функционального состояния сердца.

Количество крови, выбрасываемой желудочком сердца в 1 минуту, называется минутным объемом крови. Он одинаков для правого и левого желудочка. Когда человек находится в состоянии покоя, минутный объем составляет в среднем около 4,5-5 л.

Разделив минутный объем на число сокращений сердца в минуту, можно вычислить систолический объем крови . При ритме сердечных сокращений 70-75 в минуту систолический объем равен 65-70 мл крови.

Определение минутного объема крови у человека применяется в клинической практике.

Наиболее точный способ определения минутного объема крови у человека был предложен Фиком. Он состоит в косвенном вычисления минутного объема сердца, которое производят, зная:

  1. разницу между содержанием кислорода в артериальной и венозной крови;
  2. объем кислорода, потребляемого человеком в 1 минуту. Допустим, что в 1 минуту через легкие в кровь поступило 400 мл кислорода и что количество кислорода в артериальной крови на 8 об.% больше, чем в венозной. Это означает, что каждые 100 мл крови поглощают в легких 8 мл кислорода, следовательно, чтобы поглотить все количество кислорода, которое поступило через легкпе в кровь в 1 минуту, т. е. в нашем примере 400 мл, необходимо, чтобы через лёгкие прошло 100·400/8=5000 мл крови. Это количество крови и составляет минутный объем крови, который в данном случае равен 5000 мл.

При использовании этого метода необходимо брать смешанную венозную кровь из правой половины сердца, так как кровь периферических вен имеет неодинаковое содержание кислорода в зависимости от интенсивности работы органов тела. В последние годы смешанную венозную кровь у человека берут прямо из правой половины сердца при помощи зонда, вводимого в правое предсердие через плечевую вену. Однако по понятным причинам этот метод взятия крови не имеет широкого применения.

Для определения минутного, а следовательно, и систолического объема крови разработан еще ряд других методов. Многие из них основаны па методическом припципе, предложенном Стюартом и Гамильтоном. Он состоит в том, что определяют разведение и скорость циркуляции какого-либо вещества, введенного в вену. В настоящее время для этого широко применяют некоторые краски и радиоактивные вещества. Введенное в вену вещество проходит через правое сердце, малый круг кровообращения, левое сердце и поступает в артерии большого круга, где и определяют его концентрацию.

Последняя волнообразно спачала парастает, а затем падает. На фоне умепьшения концентрации определяемого вещества через некоторое время, когда порция крови, содержавшая максимальное его количество, вторично пройдет через левое сердце, его концентрации в артериальной крови вновь немного увеличивается (это так называемая волна рециркуляции) (рис. 28 ). Замечают время от момента введения вещества до начала рециркуляции и вычерчивают кривую разведения, т. е. изменения концентрации (нарастания и убыли) исследуемого вещества в крови. Зная количество вещества, введенного в кровь и содержащегося в артериальной крови, а также время, потребовавшееся на прохождение всего количества через всю систему кровообращения, можно вычислить минутный объем крови но формуле: минутный объем в л/мин= 60·I/C·T, где I - количество введенного вещества в миллиграммах; С - средняя концентрация его в мг/л, вычисленная по кривой разведения; Т - длительность первой волны циркуляции в секундах.

Рис. 28. Полулогарифмическая концентрационная кривая краски, введенной в вену. R - волна рециркуляции.

Сердечно-легочный препарат . Влияние различных условий на величину систолического объема сердца можно исследовать в остром опыте посредством методики сердечно-легочного препарата, разработанной И. II. Павловым и Н. Я. Чистовичем и позднее усовершенствованной Э. Старлингом.

При этой методике у животного выключают большой круг кровообращения путем перевязки аорты и полых вен. Венечное кровообращение, а также кровообращение через легкие, т. е. малый круг, сохраняют неповрежденным. В аорту и полую вену вводят канюли, которые соединяют с системой стеклянных сосудов и резиновых трубок. Кровь, выбрасываемая левым желудочком в аорту, течет по этой искусственной системе, поступает в полые вены и затем в правое предсердие п правый желудочек. Отсюда кровь направляется в легочный круг. Пройдя капилляры легких, которые ритмически раздувают мехами, кровь, обогащенная кислородом и отдавшая углекислоту, так же как и в нормальных условиях, возвращается в левое сердце, откуда она вновь течет в искусственный большой круг из стеклянных и резиновых трубок.

Путем специального приспособления имеется возможность, изменяя сопротивление, встречаемое кровью в искусственном большом круге, увеличивать или уменьшать приток крови к правому предсердию. Таким образом, сердечно-легочный препарат дает возможность по желанию изменять нагрузку сердца.

Опыты с сердечно-легочным препаратом позволили Старлингу установить закон сердца. При увеличении кровенаполнения сердца в диастолу и, следовательно, при увеличенном растяжении мышцы сердца сила сердечных сокращений возрастает, поэтому увеличивается отток крови от сердца, иначе говоря, систолический объем. Эта важная закономерность наблюдается и при работе сердца в целостном организме. Если увеличить массу циркулирующей крови введением физиологического раствора и тем самым увеличить приток крови к сердцу, то увеличивается систолический и минутный объем (рис. 29 ).

Рис. 29. Изменения давления в правом предсердии (1), минутного объема крови (2) и частоты сердечных сокращений (цифры под кривой) при увеличении количества циркулирующей крови в результате введения солевого раствора в вену (по Шарпей - Шеферу). Период введения раствора отмечен черной полосой.

Зависимость силы сердечпых сокращений и величины систолического объёма от кровенаполнения желудочков в диастолу, а следовательно, от растяжения их мышечных волокон наблюдается в ряде случаев патологии.

При недостаточности полулунного клапана аорты, когда имеется дефект этого клапана, левый желудочек во время диастолы получает кровь не только из предсердия, но и из аорты, так как часть выброшенной в аорту крови возвращается в желудочек обратно через отверстие в клапане. Желудочек поэтому перерастягивается избыточным количеством крови; соответственно, но закону Старлинга, нарастает сила сердечных сокращений. В итоге благодаря увеличенной систоле, несмотря на дефект аортального клапана и возврат части крови в желудочек из аорты, кровоснабжение органов сохраняется на нормальном уровне.

Изменения минутного объема крови при работе . Систолический и минутный объемы крови не являются постоянными величинами, напротив, они весьма изменчивы в зависимости от того, в каких условиях находится организм и какую работу он совершает. При мышечной работе происходит очень значительное увеличение минутного объема (до 25-30 л). Это может быть обусловлено учащением сердечных сокращений п увеличением систолического объема. У нетренированных людей увеличение минутного объема обычно происходит за счет учащения ритма сердечных сокращений.

У тренированных же людей при работе средней тяжести происходит увеличение систолического объема и гораздо меньшее, чем у нетренированных, учащение ритма сердечных сокращений. При очень большой работе, например при требующих огромного напряжения спортивных соревнованиях, даже у хорошо тренированных спортсменов наряду с увеличением систолического объема отмечается также учащение сердечных сокращений. Учащение сердечного ритма в сочетании с увеличением систолического объема обусловливает очень большое увеличение минутного объема, а следовательно, и увеличение кровоснабжения работающих мышц, чем создаются условия, обеспечивающие большую работоспособность. Число сердечных сокращений у тренированных людей может достигать при очень большой нагрузке 200 и более в минуту.

Систолический (ударный) объем сердца - это количество крови, выбрасываемое каждым желудочком за одно сокращение. Наряду с ЧСС СО оказывает существенное влияние на величину МОК. У взрослых мужчин СО может меняться от 60-70 до 120-190 мл, а у женщин - от 40-50 до 90-150 мл (см. табл. 7.1).

СО - это разность между конечно-диастолическим и конечно-систолическим объемами. Следовательно, увеличение СО может происходить как посредством большего заполнения полостей желудочков в диастолу (увеличение конечно-диастолического объема), так и посредством увеличения силы сокращения и уменьшения количества крови, остающейся в желудочках в конце систолы (уменьшение конечно-систолического объема). Изменения СО при мышечной работе. В самом начале работы из-за относительной инертности механизмов, приводящих к увеличению кровоснабжения скелетных мышц, венозный возврат возрастает сравнительно медленно. В это время увеличение СО происходит в основном благодаря увеличению силы сокращения миокарда и уменьшению конечно-систолического объема. По мере продолжения циклической работы, выполняемой в вертикальном положении тела, благодаря значительному увеличению потока крови через работающие мышцы и активации мышечного насоса, возрастает венозный возврат к сердцу. Вследствие этого конечно-диастолический объем желудочков у нетренированных лиц со 120-130 мл в покое повышается до 160-170 мл, а у хорошо тренированных спортсменов даже до 200-220 мл. В это же время происходит увеличение силы сокращения сердечной мышцы. Это, в свою очередь, приводит к более полному опорожнению желудочков во время систолы. Конечно-систолический объем при очень тяжелой мышечной работе может уменьшиться у нетренированных до 40 мл, а у тренированных до 10-30 мл. То есть увеличение конечно-диастолического объема и уменьшение конечно-систолического приводят к значительному повышению СО (рис. 7.9).

В зависимости от мощности работы (потребления О2) происходят довольно характерные изменения СО. У нетренированных людей СО максимально увеличивается по сравнению с его уровне м в покое на 50-60%. У большинства людей при работе на велоэргометре СО достигает своего максимума при нагрузках с потреблением кислорода на уровне 40-50% от МПК (см. рис. 7.7). Иначе говоря, при увеличении интенсивности (мощности) циклической работы в механизме увеличения МОК в первую очередь используется более экономичный путь увеличения выброса крови сердцем за каждую систолу. Этот механизм исчерпывает свои резервы при ЧСС, равной 130-140 уд/мин.

У нетренированных людей максимальные величины СО уменьшаются с возрастом (см. рис. 7.8). У людей старше 50 лет, выполняющих работу с тем же уровнем потребления кислорода, что и 20-летние, СО на 15-25% меньше. Можно считать, что возрастное уменьшение СО является результатом снижения сократительной функции сердца и, по-видимому, уменьшения скорости расслабления сердечной мышцы.

Оглавление темы "Функции систем кровообращения и лимфообращения. Система кровообращения. Системная гемодинамика. Сердечный выброс.":
1. Функции систем кровообращения и лимфообращения. Система кровообращения. Центральное венозное давление.
2. Классификация системы кровообращения. Функциональные классификации системы кровообращения (Фолкова, Ткаченко).
3. Характеристика движения крови по сосудам. Гидродинамические характеристики сосудистого русла. Линейная скорость кровотока. Что такое сердечный выброс?
4. Давление кровотока. Скорость кровотока. Схема сердечно-сосудистой системы (ССС).
5. Системная гемодинамика. Параметры гемодинамики. Системное артериальное давление. Систолическое, диастолическое давление. Среднее давление. Пульсовое давление.
6. Общее периферическое сопротивление сосудов (ОПСС). Уравнение Франка.

8. Частота сердечных сокращений (пульс). Работа сердца.
9. Сократимость. Сократимость сердца. Сократимость миокарда. Автоматизм миокарда. Проводимость миокарда.
10. Мембранная природа автоматии сердца. Водитель ритма. Пейсмекер. Проводимость миокарда. Истинный водитель ритма. Латентный водитель ритма.

В клинической литературе чаще используют понятие «минутный объем кровообращения » (МОК ).

Минутный объем кровообращения характеризует общее количество крови, перекачиваемое правым и левым отделом сердца в течение одной минуты в сердечно-сосудистой системе. Размерность минутного объема кровообращения - л/мин или мл/мин. Чтобы нивелировать влияние индивидуальных антропометрических различий на величину МОК, его выражают в виде сердечного индекса . Сердечный индекс - это величина минутного объема кровообращения, деленная на площадь поверхности тела в м. Размерность сердечного индекса - л/(мин м2).

В системе транспорта кислорода аппарат кровообращения является лимитирующим звеном, поэтому соотношение максимальной величины МОК, проявляющейся при максимально напряженной мышечной работе, с его значением в условиях основного обмена дает представление о функциональном резерве сердечно-сосудистой системы. Это же соотношение отражает и функциональный резерв сердца в его гемодинамической функции. Гемодинамический функциональный резерв сердца у здоровых людей составляет 300-400 %. Это означает, что МОК покоя может быть увеличен в 3-4 раза. У физически тренированных лиц функциональный резерв выше - он достигает 500-700 %.

Для условий физического покоя и горизонтального положения тела испытуемого нормальные величины минутного объема кровообращения (МОК) соответствуют диапазону 4-6 л/ мин (чаще приводятся величины 5-5,5 л/мин). Средние величины сердечного индекса колеблются от 2 до 4 л/(мин м2) - чаще приводятся величины порядка 3-3,5 л/(мин м2).

Рис. 9.4. Фракции диастолической емкости левого желудочка.

Поскольку объем крови у человека составляет только 5-6 л, полный кругооборот всего объема крови происходит примерно за 1 мин. В период тяжелой работы МОК у здорового человека может увеличиваться до 25- 30 л/мин, а у спортсменов - до 30-40 л/мин.

Факторами, определяющими величину величины минутного объема кровообращения (МОК) , являются систолический объем крови, частота сердечных сокращений и венозный возврат крови к сердцу.

Систолический объем крови . Объем крови, нагнетаемый каждым желудочком в магистральный сосуд (аорту или легочную артерию) при одном сокращении сердца, обозначают как систолический, или ударный, объем крови.

В покое объем крови , выбрасываемый из желудочка, составляет в норме от трети до половины общего количества крови, содержащейся в этой камере сердца к концу диастолы. Оставшийся в сердце после систолы резервный объем крови является своеобразным депо, обеспечивающим увеличение сердечного выброса при ситуациях, в которых требуется быстрая интенсификация гемодинамики (например, при физической нагрузке, эмоциональном стрессе и др.).

Таблица 9.3. Некоторые параметры системной гемодинамики и насосной функции сердца у человека (в условиях основного обмена)

Величина систолического (ударного) объема крови во многом предопределена конечным диастолическим объемом желудочков. В условиях покоя диастолическая емкость желудочков сердца подразделяется на три фракции: ударного объема, базального резервного объема и остаточного объема. Все эти три фракции суммарно составляют конечно-диастолический объем крови, содержащийся в желудочках (рис. 9.4).

После выброса в аорту систолического объема крови оставшейся в желудочке объем крови - это конечно-систолический объем. Он подразделяется на базальный резервный объем и остаточный объем. Базальный резервный объем - это количество крови, которое может быть дополнительно выброшено из желудочка при увеличении силы сокращений миокарда (например, при физической нагрузке организма). Остаточный объем - это то количество крови, которое не может быть вытолкнуто из желудочка даже при самом мощном сердечном сокращении (см. рис. 9.4).

Величина резервного объема крови является одной из главных детерминант функционального резерва сердца по его специфической функции - перемещению крови в системе. При увеличении резервного объема, соответственно, увеличивается максимальный систолический объем, который может быть выброшен из сердца в условиях его интенсивной деятельности.

Регуляторные влияния на сердце реализуются в изменении систолического объема путем воздействия на сократительную силу миокарда. При уменьшении мощности сердечного сокращения систолический объем снижается.

У человека при горизонтальном положении тела в условиях покоя систолический объем составляет от 60 до 90 мл (табл. 9.3).

Выбрасывает в сосуды определенное количество крови. В этом основная функция сердца . Поэтому одним из показателей функционального состояния сердца является величина минутного и ударного (систолического) объемов. Исследование величины минутного объема имеет практическое значение и применяется в физиологии спорта, клинической медицине и профессиональной гигиене.

Количество крови, выбрасываемое сердцем за минуту, называют минутным объемом крови (МОК). Количество крови, которое выбрасывает сердце за одно сокращение, называют ударным (систолическим) объемом крови (УОК).

Минутный объем крови у человека в состоянии относительного покоя равен 4,5-5 л. Он одинаков для правого и левого желудочков. Ударный объем крови можно легко рассчитать, разделив МОК на число сердечных сокращений.

Большое значение в изменении величины минутного и ударного объемов крови имеет тренировка. При выполнении одной и той же работы у тренированного человека значительно возрастает величина систолического и минутного объемов сердца при незначительном увеличении числа сердечных сокращений; у нетренированного человека, наоборот, значительно увеличивается частота сердечных сокращений и почти не изменяется систолический объем крови.

УОК увеличивается при повышении притока крови к сердцу. С увеличением систолического объема растет и МОК.

Ударный объем сердца

Важную характеристику насосной функции сердца дает ударный объем, называемый также систолическим объемом.

Ударный объем (УО) — количество крови, выбрасываемое желудочком сердца в артериальную систему за одну систолу (иногда используется название систолический выброс ).

Поскольку большой и малый соединены последовательно, то в устоявшемся режиме гемодинамики ударные объемы левого и правого желудочков обычно равны. Лишь на короткое время в период резкого изменения работы сердца и гемодинамики между ними может возникать небольшое различие. Величина УО взрослого человека в покое составляет 55-90 мл, а при физической нагрузке может возрастать до 120 мл (у спортсменов до 200 мл).

Формула Старра (систолический объем) :

СО = 90,97 + 0,54 . ПД — 0,57 . ДД — 0,61 . В,

где СО — систолический объем, мл; ПД — пульсовое давление, мм рт. ст.; ДД — диастолическое давление, мм рт. ст.; В — возраст, годы.

В норме СО в покое — 70-80 мл, а при нагрузке — 140- 170 мл.

Конечный диастолический объем

Конечно-диастолический объем (КДО) — это количество крови, находящееся в желудочке в конце диастолы (в покое около 130-150 мл, но в зависимости от пола, возраста может колебаться в пределах 90-150 мл). Он формируется тремя объемами крови: оставшейся в желудочке после предыдущей систолы, притекшей из венозной системы во время общей диастолы и перекачанной в желудочек во время систолы предсердий.

Таблица. Конечно-диастолический объем крови и её составные части

Конечный систолический объем

Конечно-систолический объем (КСО) — это количество крови, остающееся в желудочке сразу после . В покое он составляет менее 50%, от величины конечно-диастолического объема или 50-60 мл. Часть этого объема крови является резервным объемом, который может изгоняться при увеличении силы сердечных сокращений (например, при физической нагрузке, увеличении тонуса центров симпатической нервной системы, действии на сердце адреналина, тиреоидных гормонов).

Ряд количественных показателей, измеряемых в настоящее время при УЗИ или при зондировании полостей сердца, используют для оценки сократимости сердечной мышцы. К ним относят показатели фракции выброса, скорости изгнания крови в фазу быстрого изгнания, скорость прироста давления в желудочке в период напряжения (измеряется при зондировании желудочка) и ряд сердечных индексов.

Фракция выброса (ФВ) — выраженное в процентах отношение ударного объема к конечно-диастолическому объему желудочка. Фракция выброса у здорового человека в покое составляет 50-75%, а при физической нагрузке может достигать 80%.

Скорость изгнания крови измеряется методом Допплера при УЗИ сердца.

Скорость прироста давления в полостях желудочков считается одним из наиболее достоверных показателей сократимости миокарда. Для левого желудочка величина этого показа- геля в норме составляет 2000-2500 мм рт. ст./с.

Снижение фракции выброса ниже 50%, снижение скорости изгнания крови, скорости прироста давления свидетельствуют о понижении сократимости миокарда и возможности развития недостаточности насосной функции сердца.

Минутный объем кровотока

Минутный объем кровотока (МОК) — показатель насосной функции сердца, равный объему крови, изгоняемой желудочком в сосудистую систему за 1 минуту (применяется также название минутный выброс ).

МОК = УО. ЧСС.

Поскольку УО и ЧСС левого и правого желудочка равны, то их МОК также одинаков. Таким образом, через малый и большой круги кровообращения за один и гот же промежуток времени протекает одинаковый объем крови. В покос МОК равен 4-6 л, при физической нагрузке он может достигать 20- 25 л, а у спортсменов — 30 л и более.

Методы определения минутного объема кровообращения

Прямые методы : катетеризация полостей сердца с введением датчиков — флоуметров.

Непрямые методы :

  • Метод Фика:

где МОК — минутный объем кровообращения, мл/мин; VO 2 — потребление кислорода за 1 мин, мл/мин; СaO 2 — содержание кислорода в 100 мл артериальной крови; CvO 2 — содержание кислорода в 100 мл венозной крови

  • Метод разведения индикаторов:

где J — количество введенного вещества, мг; С — средняя концентрация вещества, вычисленная по кривой разведения, мг/л; Т-длительность первой волны циркуляции, с

  • Ультразвуковая флоуметрия
  • Тетраполярная грудная реография

Сердечный индекс

Сердечный индекс (СИ) — отношение минутного объема кровотока к площади поверхности тела (S):

СИ = МОК / S (л/мин/м 2).

где МОК — минутный объем кровообращения, л/мин; S — площадь поверхности тела, м 2 .

В норме СИ = 3-4 л/мин/м 2 .

Благодаря работе сердца обеспечивается движение крови по системе кровеносных сосудов. Даже в условиях жизнедеятельности без физических нагрузок за сутки сердце перекачивает до 10 т крови. Полезная работа сердца затрачивается на создание давления крови и придание ей ускорения.

На придание ускорения порциям выбрасываемой крови желудочки тратят около 1% от общей работы и энергетических затрат сердца. Поэтому при расчетах этой величиной можно пренебречь. Почти вся полезная работа сердца затрачивается на создание давления — движущей силы кровотока. Работа (А), выполняемая левым желудочком сердца за время одного сердечного цикла, равна произведению среднего давления (Р) в аорте на ударный объем (УО):

В покое за одну систолу левый желудочек совершает работу около 1 Н/м (1 Н = 0,1 кг), а правый желудочек приблизительно в 7 раз меньшую. Это обусловлено низким сопротивлением сосудов малого круга кровообращения, в результате чего кровоток в легочных сосудах обеспечивается при среднем давлении 13-15 мм рт. ст., в то время как в большом круге кровообращения среднее давление составляет 80-100 мм рт. ст. Таким образом, левому желудочку для изгнания УО крови необходимо затрачивать приблизительно в 7 раз большую работу, чем правому. Это и обусловливает развитие большей мышечной массы левого желудочка, по сравнению с правым.

Выполнение работы требует энергетических затрат. Они идут не только на обеспечение полезной работы, но и на поддержание основных жизненных процессов, транспорт ионов, обновление клеточных структур, синтез органических веществ. Коэффициент полезного действия сердечной мышцы находится в пределах 15-40%.

Энергия АТФ, необходимая для жизнедеятельности сердца, получается преимущественно в ходе окислительного фосфорилирования, осуществляемого с обязательным потреблением кислорода. При этом в митохондриях кардиомиоцитов могут окисляться разнообразные вещества: глюкоза, свободные жирные кислоты, аминокислоты, молочная кислота, кетоновые тела. В этом отношении миокард (в отличие от нервной ткани, использующей для получения энергии глюкозу) является «всеядным органом». На обеспечение энергетических потребностей сердца в условиях покоя в 1 мин требуется 24- 30 мл кислорода, что составляет около 10% от общего потребления кислорода организмом взрослого человека за то же время. Из протекающей по капиллярам сердца крови извлекается до 80% кислорода. В других органах этот показатель гораздо меньше. Доставка кислорода является наиболее слабым звеном в механизмах, обеспечивающих снабжение сердца энергией. Это связано с особенностями сердечного кровотока. Недостаточность доставки кислорода к миокарду, связанная с нарушением коронарного кровотока, является самой распространенной патологией, приводящей к развитию инфаркта миокарда.

Фракция выброса

Фракция выброса = СО / КДО

где СО — систолический объем, мл; КДО — конечный диастолический объем, мл.

Фракция выброса в покое составляет 50-60 %.

Скорость кровотока

Согласно законам гидродинамики количество жидкости (Q), протекающее через любую трубу, прямо пропорционально разности давлений в начале (Р 1) и в конце (Р 2) трубы и обратно пропорционально сопротивлению (R) току жидкости:

Q = (P 1 -P 2)/R.

Если применить это уравнение к сосудистой системе, то следует иметь в виду, что давление в конце данной системы, т.е. в месте впадения полых вен в сердце, близко к нулю. В этом случае уравнение можно записать так:

Q = P/R,

гдеQ - количество крови, изгнанное сердцем в минуту; Р — величина среднего давления в аорте; R — величина сосудистого сопротивления.

Из этого уравнения следует, что Р = Q*R, т.е. давление (Р) в устье аорты прямо пропорционально объему крови, выбрасываемому сердцем в артерии в минуту (Q), и величине периферического сопротивления (R). Давление в аорте (Р) и минутный объем крови (Q) можно измерить непосредственно. Зная эти величины, вычисляют периферическое сопротивление — важнейший показатель состояния сосудистой системы.

Периферическое сопротивление сосудистой системы складывается из множества отдельных сопротивлений каждого сосуда. Любой из таких сосудов можно уподобить трубке, сопротивление которой определяется по формуле Пуазейля:

гдеL — длина трубки; η — вязкость протекающей в ней жидкости; Π — отношение окружности к диаметру; r — радиус трубки.

Разность кровяного давления, определяющая скорость движения крови по сосудам, у человека велика. У взрослого человека максимальное давление в аорте составляет 150 мм рт. ст., а в крупных артериях — 120-130 мм рт. ст. В более мелких артериях кровь встречает большее сопротивление и давление здесь значительно падает — до 60-80 мм. рт ст. Самое резкое уменьшение давления отмечается в артериолах и капиллярах: в артериолах оно составляет 20-40 мм рт. ст., а в капиллярах — 15-25 мм рт. ст. В венах давление уменьшается до 3-8 мм рт. ст., в полых венах давление отрицательное: -2-4 мм рт. ст., т.е. на 2-4 мм рт. ст. ниже атмосферного. Это связано с изменением давления в грудной полости. Во время вдоха, когда давление в грудной полости значительно уменьшается, снижается и кровяное давление в полых венах.

Из приведенных данных видно, что кровяное давление в разных участках кровяного русла неодинаково, и оно уменьшается от артериального конца сосудистой системы к венозному. В крупных и средних артериях оно уменьшается незначительно, приблизительно на 10%, а в артериолах и капиллярах — на 85%. Это свидетельствует о том, что 10% энергии, развиваемой сердцем при сокращении, расходуется на продвижение крови в крупных артериях, а 85% — на ее продвижение по артериолам и капиллярам (рис. 1).

Рис. 1. Изменение давления, сопротивления и просвета сосудов на различных участках сосудистой системы

Основное сопротивление току крови возникает в артериолах. Систему артерий и артериол называют сосудами сопротивления или резистивными сосудами.

Артериолы представляют собой сосуды малого диаметра — 15-70 мкм. Стенка их содержит толстый слой циркулярно расположенных гладких мышечных клеток, при сокращении которых просвет сосуда может значительно уменьшаться. При этом резко повышается сопротивление артериол, что затрудняет отток крови из артерий, и давление в них повышается.

Падение тонуса артериол увеличивает отток крови из артерий, что приводит к уменьшению артериального давления (АД). Наибольшим сопротивлением среди всех участков сосудистой системы обладают именно артериолы, поэтому изменение их просвета является главным регулятором уровня общего артериального давления. Артериолы — «краны кровеносной системы». Открытие этих «кранов» увеличивает отток крови в капилляры соответствующей области, улучшая местное кровообращение, а закрытие — резко ухудшает кровообращение данной сосудистой зоны.

Таким образом, артериолы играют двоякую роль:

  • участвуют в поддержании необходимого организму уровня общего артериального давления;
  • участвуют в регуляции величины местного кровотока через тот или иной орган или ткань.

Величина органного кровотока соответствует потребности органа в кислороде и питательных веществах, определяемой уровнем активности органа.

В работающем органе тонус артериол уменьшается, что обеспечивает повышение притока крови. Чтобы общее АД при этом не снизилось в других (неработающих) органах, тонус артериол повышается. Суммарная величина общего периферического сопротивления и общий уровень АД остаются примерно постоянными, несмотря на непрерывное перераспределение крови между работающими и неработающими органами.

Объемная и линейная скорость движения крови

Объемной скоростью движения крови называют количество крови, протекающей в единицу времени через сумму поперечных сечений сосудов данного участка сосудистого русла. Через аорту, легочные артерии, полые вены и капилляры за одну минуту протекает одинаковый объем крови. Поэтому к сердцу всегда возвращается такое же количество крови, какое было им выброшено в сосуды во время систолы.

Объемная скорость в различных органах может изменяться в зависимости от работы органа и величины ею сосудистой сети. В работающем органе может увеличиваться просвет сосудов и вместе с ним — объемная скорость движения крови.

Линейной скоростью движения крови называют путь, пройденный кровью за единицу времени. Линейная скорость (V) отражает скорость продвижения частиц крови вдоль сосуда и равна объемной (Q), деленной на площадь сечения кровеносного сосуда:

Ее величина зависит от просвета сосудов: линейная скорость обратно пропорциональна площади поперечного сечения сосуда. Чем шире суммарный просвет сосудов, тем медленнее движение крови, а чем он уже, тем больше скорость движения крови (рис. 2). По мере разветвления артерий скорость движения в них уменьшается, так как суммарный просвет ветвей сосудов больше, чем просвет исходного ствола. У взрослого человека просвет аорты составляет приблизительно 8 см 2 , а сумма просветов капилляров в 500-1000 раз больше — 4000-8000 см 2 . Следовательно, линейная скорость движения крови в аорте в 500-1000 раз больше, чем в 500 мм/с, а в капиллярах — только 0,5 мм/с.

Рис. 2. Знамения АД (А) и линейной скорости кровотока (Б) в различных участках сосудистой системы