Мухи — зрение мухи и почему ее трудно убить. Почему у насекомых глаза круглые? Как видят насекомые

Как видят насекомые ?

Муха резко уворачивается от летящего на нее предмета, бабочка выбирает определенный цветок, а гусеница ползет к самому высокому дереву. У насекомых, как у людей тоже есть органы зрения, но видят и воспринимают они мир по-особому. Своим исключительным зрением, недоступным для человека. Некоторые насекомые могут определять только светлое и темное, а кто-то хорошо разбирается в оттенках. Итак, как же насекомые видят мир?

Способы видеть мир у насекомых

Их возможность видеть делится на три способа.

Всей поверхностью тела

Интересная особенность, при которой не обязательно иметь глаза. Но ее большой минус в том, что насекомое может отличать только свет от темноты. Никаких предметов или цветов оно не видит. Как же это работает? Свет проходит через кутикулу, внешний слой кожи, и проникает к голове насекомого. Там происходит реакция в клетках мозга, и насекомое понимает, что на него падает свет. Такое устройство доступно не для всех, но очень помогает тем насекомым, которые живут под землей, например, дождевым червям или слепым пещерным жукам. Эта разновидность зрения есть у тараканов, тли и гусениц.

Материалы по теме:

Для чего нужна пыльца?

Простыми глазами


Насекомым, у которых простые глазки повезло больше. Они могут не только определять темноту от света, но и различать отдельные объекты и даже их форму. Такие глазки чаще всего встречаются у личинок насекомых. Например, личинки комаров вместо глаз имеют пигментные пятна, которые улавливают свет. Зато у гусениц по пять – шесть глазков с каждой стороны головы. Благодаря этому она хорошо разбирается в формах. Но вертикальные объекты она видит намного лучше, чем горизонтальные. Например, если ей предстоит выбрать дерево, то она скорее поползет к тому, что выше, а не к тому, что шире.

Сложными, или фасеточными, глазами


Такие глаза чаще всего встречаются у взрослых насекомых. Определить их можно сразу – обычно они находятся по бокам головы. Фасеточные глаза намного сложнее и разнообразнее всех остальных. Они могут распознавать формы объектов и определять цвета. Одни насекомые хорошо видят днем, а другие – ночью. Интересная особенность этих глаз и в том, что они не видят всю картину в целом, а только кусочки. И уже в мозгу насекомое собирает пазл из полученных изображений, чтобы увидеть полную картину. Как муха успевает в полете соединить все кусочки фрагмента? Удивительно, но именно в полете она видит лучше, чем в покое. И для места посадки любое насекомое скорее выберет то, что двигается или колышется.

Насекомые. Мы с детства любовались красотой бабочки, ловили «божьих коровок», страдали от укусов комаров. И даже став взрослыми, боимся ос и пауков. Этот класс животных на латыни он звучит очень красиво «insecta» - самый многочисленный. Если рассматривать только описанные виды, то их около миллиона. На самом деле их намного больше. Сейчас ученые склоняются к мнению, что всего на нашей планете насчитывается около восьми миллионов видов насекомых. Мириады крошечных созданий ползают, летают, жужжат, стрекочут и смотрят на мир своими глазами.

Как же видят эти миниатюрные создания? Глаза насекомых, очень важный орган. У взрослых особей многих видов глаза занимают большую часть головы. Если их рассматривать с большим увеличением, то они покажутся похожими на мелкую решетку или сеточку. Это потому, что каждый глаз состоит из множества маленьких глазков. Их называют – фасеточными. Такой крошечный глазок-фасетка, называется омматидий. Длинные узкие конусы, на окончании которых расположены линзы в виде шестигранника, плотно прилегают друг к другу. Оси их, благодаря тому, что глаз круглый, расходятся лучеобразно. И не смотря на то, что у одного омматидия возможность обзора всего от одного до шести градусов, все вместе, а их у разных видов от 100 до 30 000, дают возможность глазу, охватывает предмет в целом. Изображение получается составленным из разных кусочков, как мозаика.

Мелких деталей насекомые не различают. Четкость изображения нарушается из за того, что оптические оси омматидий расходятся под углами 1 – 6 градусов. Видят насекомые не далеко. Всего на расстояние нескольких метров. Зато, когда солнца на небосклоне уже не видно, благодаря способности определять плоскость поляризации света, они хорошо ориентируются. Да и мелькания или мигания света они различают с частотой 250 - 300 герц. Для сравнения мы, люди, способны это делать с частотой около 50 герц.

Если говорить о том, различают ли эти крохи цвета, то это да. Конечно же, тоже не так как люди. Больше всего в этом плане были исследованы пчелы. Так из многочисленных опытов ученые узнали, что пчелы видят мир, окрашенный в четыре цвета. Красно–желто-зеленый. Да, да. Именно так. Не каждый отдельно, а неведомый нам цвет, слитый воедино. Еще сине-зеленый, сине-фиолетовый и ультрафиолетовый. Ультрафиолет различают и другие насекомые. Среди них некоторые бабочки, муравьи. Досконально этот вопрос не изучен. Многое только предстоит узнать.

Это еще не все. На лобно-теменной части головы насекомых в виде треугольника расположены еще три глазка. У некоторых два. Диаметр их от 0,03 до 0,5 миллиметра. Они намного проще фасеточных. Но играют не менее важную роль. Эти глазки увеличивают общую светочувствительность, то есть помогают насекомому ориентироваться по отношению к источнику света. Если глазки заклеить, то насекомое будет менее чувствительно к свету.

Изучая строение, привычки и повадки этих удивительных маленьких существ, все больше убеждаемся в том, как неповторим и уникален окружающий нас мир. И как бережно к нему надо относиться, чтобы не нарушить тот баланс, которым окружил нас Создатель.

Мухи живут меньше, чем слоны. В этом нет никаких сомнений. Но, с точки зрения мух, действительно ли их жизнь представляется им гораздо короче? Таким, по сути, был вопрос, который поставил Кевин Гили из Тринити-колледжа в Дублине в своей статье, только что опубликованной в Animal Behaviour. Его ответ: очевидно, нет. Эти небольшие существа мухи с быстрым метаболизмом видят мир в замедленном режиме. Субъективное переживание времени является по сути лишь субъективным. Даже отдельные люди, которые могут обмениваться впечатлениями, разговаривая друг с другом, не могут знать наверняка, совпадает ли их собственный опыт с опытом других людей.

Мухи — зрение мухи и почему ее трудно убить

Но объективный показатель, который, вероятно, коррелирует с субъективным переживанием, все-таки существует. Он называется критической частотой слияния мерцание CFF — critical flicker-fusion frequency, и является самой низкой частотой, при которой мерцающий свет выдается постоянным источником освещения. Он измеряет то, как быстро глаза животных могут обновлять изображения и таким образом обрабатывать информацию.

Для людей средней критической частотой мерцания является 60 герц (то есть 60 раз в секунду). Именно поэтому частота обновления изображения на телевизионном экране, как правило, установлена на этом значении. Псы имеют критическую частоту мерцания в 80 Гц, и поэтому, наверное, кажется, что им не нравится смотреть телевизор. Для собаки телепрограмма выглядит как множество фотокадров, которые быстро меняют собой друг друга.

Высшая критическая частота мерцания должна означать биологические преимущества, поскольку она позволяет быстрее реагировать на угрозы и возможности. Мух, имеющих критическую частоту мерцания в 250 Гц, как известно, трудно прибить. Свернутая газета, которая, как представляется человеку, движется во время удара быстро, мухам кажется такой, будто она движется в мелассе.

Ученый Кевин Гили предположил, что основными факторами, ограничивающими критическую частоту мерцания у животного, является ее размеры и скорость обмена веществ. Небольшой размер означает, что сигналы в мозг проходят меньшее расстояние. Высокая скорость обмена веществ означает, что для их обработки доступно больше энергии. Поиск в литературе, однако, показал, что никто раньше не интересовался этим вопросом.

К счастью, для Гили, этот самый поиск также показал, что многие люди изучали критическую частоту мерцания у большого количества видов по другим причинам. Многие ученые так же изучали скорости обмена веществ у многих тех же видов. Зато данные о размерах видов общеизвестны. Таким образом, все, что ему нужно было сделать — это построить корреляции и применить с пользой для себя результаты других исследований. Что он и сделал.

Для облегчения задачи к своему исследованию ученый взял данные, касающиеся только позвоночных животных — 34 видов. На нижнем конце шкалы оказался европейский угорь, с критической частотой мерцания в 14 Гц. За ним сразу идет кожистая черепаха, с критической частотой мерцания в 15 Гц. Рептилии вида туатара (гаттерия) имеют CFF в 46 Гц. Акулы-молоты вместе с людьми имеют CFF в 60 Гц, а желтоперые птицы, как и псы, имеют CFF в 80 Гц.

Первое место занял суслик золотистый, с CFF в 120 Гц. И когда Гили построил графики зависимости CFF от размера животного и скорости обмена веществ (которые не являются, что нужно признать, независимыми переменными, поскольку у малых животных, как правило, скорость обмена веществ выше, чем у крупных), он нашел именно те корреляции, которые он и предсказал.

Получается, что его гипотеза — что эволюция заставляет животных видеть мир в как можно более медленном движении — выглядит правильной. Жизнь мухи может показаться людям кратковременной, но с точки зрения самих двукрылых, они могут доживать до глубокой старости. Помните об этом в следующий раз, когда попробуете (неудачно) прибить очередную муху.


Тремя путями воспринимают свет насекомые: всей поверхностью тела, простыми глазками и сложными, так называемыми фасеточными глазами.

Как показали опыты, всей поверхностью тела чувствуют свет гусеницы, личинки водяных жуков, тли, жуки (даже слепые пещерные), мучные черви, тараканы и, конечно, многие другие насекомые. Свет через кутикулу проникает к голове и вызывает соответствующие реакции в воспринимающих его клетках мозга.

Наиболее примитивные простые глазки, пожалуй, у личинок некоторых комаров. Это пигментные пятна с небольшим числом светочувствительных клеток (их нередко всего две или три). У личинок пилильщиков (отряд перепончатокрылых) и жуков глазки более сложные: пятьдесят и больше светочувствительных клеток, прикрытых сверху прозрачной линзой - утолщением кутикулы.

Красные глаза гусеницы. Фото: Jes

С каждой стороны головы личинки жука-скакуна шесть глазков, два из которых много больше других (в них 6 тысяч зрительных клеток). Хорошо ли они видят? Едва ли они способны передать в мозг впечатление о форме предмета. Однако приблизительные размеры увиденного два больших глазка засекают неплохо.

Личинка сидит в вертикальной норке, вырытой в песке. С расстояния в 3-6 сантиметров она замечает жертву или врага. Если проползающее близко насекомое не больше 3-4 миллиметров, личинка хватает его челюстями. Когда больше, прячется в норку.
Пять-шестъ простых глазков на каждой стороне головы гусениц содержат каждый всего по одной «ритинальной палочке» - зрительному элементу - и прикрыты сверху линзой, способной концентрировать свет.

Каждый глаз в отдельности не дает представления о форме наблюдаемого предмета. Однако в опытах гусеница проявляла поразительные способности. Вертикальные предметы она видит лучше, чем горизонтальные. Из двух столбов или деревьев выбирает более высокое и ползет к нему, даже если заклеить черной краской все ее простейшие глазки, оставив лишь один. В каждый данный момент он видит лишь точку света, но гусеница вертит головой, рассматривая единственным своим глазом поочередно разные пункты предмета, и этого достаточно, чтобы в ее мозгу сложилась приблизительная картина увиденного. Конечно, неясная, нечеткая, но все-таки показанный ей объект гусеница замечает.

Простые глазки типичны для личинок насекомых, есть они, впрочем, и у многих взрослых. У последних главное - так называемые сложные, или фасеточные, глаза: по бокам головы. Сложены они из множества удлиненных простых глазков - омматидиев. В каждом омматидии - соединенная нервом с мозгом воспринимающая свет клетка. Поверх нее - удлиненный хрусталик. Оба, светочувствительная клетка и хрусталик, окружены непроницаемым для света чехлом из пигментных клеток. Лишь сверху оставлено отверстие, но там хрусталик прикрыт прозрачной кутикулярной роговицей. Она общая для всех омматидиев, плотно прилегающих друг к другу и соединенных в один фасеточный глаз. В нем может быть всего 300 омматидиев (самка светлячка), 4000 (комнатная муха), 9000 (жук-плавунец), 17 000 (бабочки) и 10 000-28 000 у разных стрекоз.


Фасеточные глаза у бабочки Монарх. Фото: Monica R.

Каждый омматидий передает в мозг только одну точку из всей сложной окружающей насекомое картины мира. Из множества отдельных точек, увиденных каждым из омматидиев, складывается в мозгу насекомого мозаичное «панно» предметов ландшафта.
У ночных насекомых (светлячков, других жуков, у мотыльков) эта мозаичная картина оптического видения, так сказать, более смазанная. Ночью пигментные клетки, отделяющие омматидии сложного глаза друг от друга, сокращаясь, стягиваются кверху, к роговице. Лучи света, попадающие в каждую фасетку, воспринимаются не только ее светочувствительной клеткой, но и клетками, расположенными в соседних омматидиях. Ведь теперь они не закрыты темными пигментными «шторками». Этим достигается более полное улавливание света, которого не так уж много в ночном мраке.

Днем же пигментные клетки заполняют все промежутки между омматидиями, и каждый из них воспринимает только те лучи, которые концентрирует его собственный хрусталик. Иными словами, «суперпозиционный», так его называют, глаз ночных насекомых, днем функционирует как «аппозиционный» глаз насекомых дневных.

Не менее важна, чем число фасеток, другая их особенность - угол зрения каждого омматидия. Чем он меньше, тем выше разрешающая способность глаза и тем более мелкие детали наблюдаемого объекта он может увидеть. У омматидия уховертки угол зрения - 8 градусов, у пчелы - 1 градус. Подсчитано, что на каждую точку в мозаичной картине увиденного уховерткой у пчелы приходится 64 точки. Следовательно, мелкие детали наблюдаемого предмета глаз пчелы улавливает в десятки раз лучше.
Но в глаз с меньшим углом зрения проникает и меньше света. Поэтому величина фасеток в сложных глазах насекомых неодинакова. В тех направлениях, где нужна более яркая видимость и не так уж необходимо точное рассматривание деталей, располагаются более крупные фасетки. У слепня, например, в верхней половине глаза фасетки заметно крупнее, чем в нижней.
Подобные же четко разделенные арены с разновеликими омматидиями есть и у некоторых мух. У пчелы иное устройство фасеток: их угол зрения в направлении горизонтальной оси тела в два-три раза больше, чем по вертикали.

У жуков-вертячек и самцов-поденок по существу два глаза с каждой стороны: один с крупными, другой с мелкими фасетками.
Помните, как гусеница, рассматривая предмет всего одним глазом (другие были замазаны краской), могла, однако, составить известное, правда очень грубое, представление о его форме. Она, вертя головой, весь объект разглядывала по частям, а запоминающий аппарат мозга складывал в единое впечатление все увиденные в каждый данный момент точки. Так же поступают и насекомые с фасеточными глазами: рассматривая что-либо, вертят головой. Сходный эффект достигается и без поворота головы, когда наблюдаемый объект движется или когда летит само насекомое. На лету фасеточные глаза видят лучше, чем в покое.
Пчела, например, способна постоянно держать в поле зрения предмет, который мелькает 300 раз в секунду. А наш глаз даже и вшестеро более медленного мелькания не заметит.

Близкие предметы насекомые видят лучше, чем дальние. Они очень близоруки. Четкость увиденного у них намного хуже, чем у нас.
Интересный вопрос: какие цвета различают насекомые? Опыты показали, что пчелы и падальные мухи видят самые коротковолновые лучи спектра (297 миллимикрон), которые только есть в солнечном свете. Ультрафиолет - к нему наш глаз совершенно слеп - различают также муравьи, ночные бабочки и, очевидно, многие другие насекомые.


Глаза насекомого. Фото: USGS Bee Inventory and Monitoring Laboratory

Чувствительность к противоположному концу спектра у насекомых разная. Пчела слепа к красному свету: он для нее все равно, что черный. Самые длинные волны, которые она еще воспринимает, - 650 миллимикрон (где-то на границе между красным и оранжевым). Осы, натренированные прилетать за кормом на черные столики, путают их с красными. Красное не видят и некоторые бабочки, сатиры например. Но другие (крапивница, капустница) красный цвет различают. Рекорд, однако, принадлежит светлячку: он видит темно-красный цвет с длиной волны в 690 миллимикрон. Ни одно из исследованных насекомых на такое не было способно.
Для человеческого глаза самая яркая часть спектра - желтая. Опыты с насекомыми показали, что у одних зеленая часть спектра воспринимается глазом как самая яркая, у пчелы - ультрафиолетовая, у падальной мухи наибольшая яркость отмечалась в красной, сине-зеленой и ультрафиолетовой полосах спектра.

Несомненно, бабочки, шмели, некоторые мухи, пчелы и другие насекомые, посещающие цветы, различают цвета. Но в какой мере и какие именно, мы еще мало знаем. Необходимы дополнительные исследования.
С пчелами в этом отношении были проведены наиболее многочисленные опыты. Пчела видит окружающий мир, окрашенный в четыре основных цвета: красно-желто-зеленый (не каждый из названных в отдельности, а вместе, слитно, как единый неведомый нам цвет), затем - сине-зеленый, сине- фиолетовый и ультрафиолетовый. Тогда как объяснить, что пчелы прилетают и на красные цветы, на маки, например? Они, а также многие белые и желтые цветы отражают много ультрафиолетовых лучей, поэтому пчела их видит. В какой цвет окрашены они для ее глаз, нам неизвестно.

У бабочек, очевидно, цветовое зрение более близкое к нашему, чем у пчелы. Мы уже знаем, что некоторые бабочки (крапивница и капустница) различают красный цвет. Ультрафиолет они видят, но он не играет для них такой большой роли, как в зрительных восприятиях пчелы. Наиболее привлекают этих бабочек два цвета - сине-фиолетовый и желто-красный.
Разными методами было доказано, что и многие другие насекомые различают цвета, и лучшим образом цвета растений, на которых кормятся либо размножаются. Некоторые бражники, жуки- листоеды, тли, шведские мушки, клопы сухопутные и водяной клоп гладыш - вот далеко не полный перечень таких насекомых. Интересно, что у гладыша только верхняя и задняя часть глаза обладает цветовым зрением, нижняя и передняя - нет. Почему так, непонятно.

Помимо восприятия ультрафиолетовых лучей другое свойство глаза насекомых, которого лишены наши глаза, - это чувствительность к поляризованному свету и способность ориентироваться по нему. Не только фасеточные глаза, но и простые глазки, как показали опыты с гусеницами и личинками перепончатокрылых, способны воспринимать поляризованный свет. Рассмотрели под электронным микроскопом глаз некоторых, и нашли в ретинальной светочувствительной палочке молекулярные структуры, действующие, очевидно, как поляроид.

Некоторые наблюдения последних лет убеждают: ночные насекомые обладают органами, улавливающими инфракрасные лучи.



Удивительными, необычными глазами обладает обыкновенная муха!
Впервые люди смогли посмотреть на мир глазами насекомого в 1918 г. благодаря немецкому ученому Екснеру. Экснер доказал наличие необычного мозаичного зрения у насекомых. Он сфотографировал окно сквозь фасеточный глаз светляка, помещенный на предметное стекло микроскопа. На фотографии было видно изображение оконного переплета, а за ним расплывчатые очертания собора.

Сложные глаза мухи называются фасеточными, состоят они из многих тысяч крохотных, отдельных шестиугольных глазков-фасеток, называемых омматидиями. Каждый омматидий состоит из линзочки и примыкающего к ней длинного прозрачного кристаллического конуса.

У насекомых фасеточный глаз может иметь от 5000 до 25 000 фасеток. Глаз комнатной мухи состоит из 4000 фасеток. Острота зрения у мухи низкая, видит она в 100 раз хуже человека. Интересно, что у насекомых острота зрения зависит от числа фасеток в глазу!
Каждая фасетка воспринимает лишь часть изображения. Части складываются в одну картину, и муха видит "мозаичную картину" окружающего мира.

Благодаря этому муха имеет почти круговое поле зрения на 360 градусов. Она видит не только то, что находится впереди нее, но и то, что творится вокруг и сзади, т.е. крупные фасеточные глаза позволяют мухе одновременно смотреть в разные стороны.

В глазах мухи отражение и преломление света происходит таким образом, что максимальная его часть попадает внутрь глаза под прямым углом, вне зависимости от угла падения.

Фасеточный глаз - это растровая оптическая система, в которой в отличие от глаза человека нет единой сетчатки.
Каждый омматидий имеет свой диоптрический аппарат. Кстати, понятия аккомодации, близорукости или дальнозоркости для мухи не существует.

Муха, как и человек, видит все цвета видимого спектра. Кроме того муха способна различать ультрафиолет и поляризованный свет.

Понятия аккомодации, близорукости или дальнозоркости мухе не знакомы.
Глаза мухи очень чувствительны к изменению яркости света.

Изучение фасеточных глаз мухи показало инженерам, что муха способна очень точно определять скорость объектов, движущихся на огромной скорости. Инженеры скопировали принцип мушиных глаз для создания быстродействующих детекторов, определяющих скорость летящих самолетов. Такой прибор получил название "глаз мухи"

Панорамная камера «глаз мухи»

Ученые Федеральной политехнической школы Лозанны изобрели камеру с обзором на 360 градусов, позволяющую трансформировать изображение в формат 3D, не искажая его. Они предложили совершенно новую конструкцию, источником вдохновения послужило устройство глаза мухи.
По форме камера напоминает маленькую полусферу размером с апельсин, по поверхности расположены 104 мини-камеры, наподобие тех, что встроены в мобильные телефоны.

Эта панорамная камера дает трехмерное изображение на 360 градусов. Однако каждую из составных камер можно использовать и отдельно, перенося внимание зрителя на определенные участки пространства.
Этим изобретением ученые разрешили две основные проблемы традиционных кинокамер: неограниченного в пространстве ракурса и глубины резкости.


ГИБКАЯ КАМЕРА НА 180 ГРАДУСОВ

Группа исследователей из университета Иллинойса под руководством профессора Джона Роджерса создали фасетчатую камеру, работающую принципу глаза насекомого.
Новое устройство внешне, и по своиму внутреннему строению напоминает глаз насекомого.


Камера состоит из 180 крошечных линз, у каждой из которых есть свой собственный фотодатчик. Это позволяет каждой из 180 микрокамер действовать автономно, в отличие от обычных камер. Если проводить аналогию с миром животных, то 1 микролинза - это 1 фасетка глаза мухи. Далее данные в низком разрешении, полученные микрокамерами, поступают в процессор, где эти 180 маленьких картинок собираются в панораму, ширина которой соответствует углу обзора в 180 градусов.

Камера не требует фокусировки, т.е. объекты, находящиеся близко, видно так же хорошо, как и объекты, находящиеся вдали. Форма камеры может быть не только полусферической. Ей можно придать практически любую форму. . Все оптические элементы выполнены из эластичного полимера, который используют при изготовлении контактных линз.
Новое изобретение может найти широкое применение не только в системах охраны и наблюдения, но и в компьютерах нового поколения.