Переливание крови (гемотрансфузия) у животных - кошек и собак. Кровь

С кроветворной системой неразрывно связана клеточная и гуморальная защита организма.

Патология системы крови наиболее часто проявляется анемическим, геморрагическим и иммунодефицитным синдромами.

Анемия - патологическое состояние, характеризующееся уменьшением содержания эритроцитов и гемоглобина в единице объема крови.

Анемии у животных являются, как правило, вторичными заболеваниями, т.е. возникают как следствие каких-либо причин. В зависимости от причин их происхождения анемии делят на три группы: возникающие в результате кровопотерь (постгеморрагические); вызванные повышенным разрушением эритроцитов (гемолитические); наступающие вследствие нарушения кровообращения (алиментарно-токсические и дефицитные).

Постгеморрагическая анемия. Небольшие потери крови у животного не вызывают каких-либо признаков. При потере 1/3 объема крови происходит учащение дыхания, сердечной деятельности, отмечаются возбуждение, пошатывание. Появляются угнетение, бледность слизистых оболочек, исчезает аппетит, снижается температура тела, кожа покрывается холодным липким потом. Вследствие кислородного голодания нарушается работа многих систем.

Алиментарно-токсическая и дефицитная анемии - самая многочисленная группа анемий.

Недостаток витаминов, минеральных веществ, белка в рационе животных вызывает анемии. Исключительно важная роль принадлежит макроэлементам (кобальту, железу, меди).

Клинические признаки развиваются медленно, в выраженной стадии снижаются аппетит, упитанность, продуктивность, качество шерстного покрова, появляется анемия слизистых оболочек, отмечается озноб. Количество эритроцитов и гемоглобина уменьшено.

Геморрагический диатез бывает при заболеваниях различной этиологии, но до некоторой степени общих по клиническим признакам (гемофилия, кровопятнистая болезнь). Сущность заболевания в нарушении свертываемости крови.

При небольших травмах возникают подкожные, внутримышечные кровоизлияния.

Диагноз. При наружной кровопотере диагноз поставить нетрудно. Важно установить основную причину. Необходимо проводить лабораторные исследования. Для кровопятнистой болезни характерны поднимающиеся под поверхностью тела большие симметричные инфильтраты с отчетливым ограничением от здоровой ткани.

Лечение. Прежде всего необходимо остановить кровотечение. Из средств, замещающих кровь, используют полиглюкин. Назначают лечебные средства, стимулирующие кроветворение (препараты кобальта, железа, меди, витамин В 12). Можно использовать смесь микроэлементов. Целесообразны инъекции витамина В 12 , аскорбиновой или фолевой кислоты.

В комплексной терапии широко используют кортикостероидные гормоны (преднизолон, преднизон, дексаметазон, неробол, оксимоталон).

Являются производными мезенхимы. Вместе с органами кроветворения и иммунопоэза., лимфоидными образованиями, ассоциированными со структурами некроветворных органов, они связаны генетически и функционально, обеспечивая поддержание постоянства внутренней среды (гомеостаз), внутреннее дыхание, трофику, регуляцию и интеграцию всех систем организма, экскрецию шлаков и защиту (фагоцитоз, клеточный и гуморальный иммунитет, тромбообразование).

Морфология крови

Кровь состоит из плазмы (55-60%) и форменных элементов (40-45%).

Плазма – жидкая часть крови. В ней содержатся белки (более 100 разновидностей), жиры, углеводы, соли, гормоны, ферменты, антитела, растворенные газы и др. На сухой остаток плазмы приходится 7-10%, остальную часть составляет вода (90-93%). Основным компонентом сухого остатка являются белки (6,5-8,5%). Среда ее слабощелочная (рН 7,4). Белки плазмы делятся на 2 фракции: легкую фракцию составляют альбумины (60%) и тяжелую – глобулины (40%).

Альбумины синтезируются в печени. Они обеспечивают коллоидно-осмотическое давление крови, удерживают воду в кровотоке (при их недостатке – отёки), выполняют транспортную функцию, адсорбируя ряд соединений.

Глобулины имеют двоякое происхождение. Одни из них, γ-глобулины (антитела), продуцируются В-лимфоцитами и плазмоцитами, а другие, β-глобулины, фибриноген и протромбин, образуются в печени. β-глобулины способны связывать и переносить ионы Fe, Cu, Zn и др., а фибриноген и протромбин участвуют в тромбообразовании.

Форменные элементы крови. Д. Л.Романовский в 1891г. предложил окраску мазков крови смесью двух красителей – эозином и азуром-II, что позволило дифференцировать форменные элементы крови, к которым относятся эритроциты, лейкоциты, стволовые клетки и кровяные пластинки.

Эритроциты. У млекопитающих – это безъядерные клетки, у птиц, пресмыкающихся, амфибий и рыб они содержат ядра. Размеры эритроцитов имеют видовые особенности и в каждом конкретном случае они делятся на нормоциты, микроциты и макроциты (разнообразие размеров эритроцитов называется анизоцитозом).

В норме эритроциты имеют форму двояковогнутого диска (дискоциты). Однако при старении и различного рода патологических состояниях они могут изменять свою форму, в связи с чем различают: планициты - с плоской поверхностью, стоматоциты - куполообразной формы, сфероциты – шаровидные, эхиноциты – шиповидные и др.

– (разнообразие форм эритроцитов называется пойкилоцитозом - греч. пойкилис - разновидный).

Функции эритроцитов: транспорт О2 и СО2 (дыхательная), аминокислот, антител, токсинов, лекарственных веществ путём адсорбции. Дыхательная функция связана со способностью гемоглобина (Hb) присоединять к себе кислород (O2) и диоксид углерода (CO2). Однако Hb может образовывать прочные связи и с другими химическими соединениями:

Нb – дезоксигемоглобин,

НbО – оксигемоглобин,

НbСО2 – карбгемоглобин,

НbСО – карбоксигемоглобин (СО - угарный газ, прочность связи с Нb у которго в 300 раз выше, чем с О2),

Нb + сильные окислители (КМnO4; анилин, нитробензол и др.) → НbОН – метгемоглобин (в этих случаях Fe+2→ Fe+3, вследствие чего способность Нb присоединять кислород утрачивается).

Особенности строения плазмолеммы эритроцитов . Плазмолемма эритроцитов представляет собой типичную биологическую мембрану, состоящую из билипидного слоя и белков в комплексе с углеводами. Соотношение липидов и белков в ней 1:1. Углеводы входят в состав гликокаликса. На наружной поверхности мембраны расположены фосфолипиды, сиаловая кислота, антигенные олигосахариды, адсорбированные протеины. На внутренней - гликолитические ферменты, Na+-АТФазы и K+-АТФазы, гликопротеины и цитоскелетные белки.

В состав липидов внешнего слоя плазмолеммы входят фосфатидилхолин и сфингомиелин, содержащие холин, а внутреннего – фосфатидилсерин и фосфатидилэтаноламин, которые на конце молекулы несут аминогруппу. С внешней стороны имеются гликолипиды (5%). К трансмембранным гликопротеинам относится гликофорин. Его 16 олигосахаридных цепей располагаются в гликокаликсе. Среди них сиаловая кислота обеспечивает отрицательный заряд наружной поверхности мембраны зрелых эритроцитов. Это позволяет выходить зрелым клеткам из красного костного мозга. С гликофоринами связывают антигенные свойства различных групп крови.

Примембранный белок спектрин входит в состав цитоскелета и участвует в поддержании формы эритроцита. Спектрин вместе с другим белком – актином связаны белком полосы 4.1 в «узловой комплекс», который соединен с белком гликофорином. Изменение количества спектрина приводит к изменению формы эритроцита (сфероциты).

С плазмолеммой спектриновый цитоскелет связан другим белком – анкирином в зоне локализации трансмембранного белка полосы 3, который участвует в обмене О2 и СО2. Он формирует также гидрофильные «поры» – водные ионные каналы.

Состав цитоплазмы эритроцитов: Вода – 66%, гемоглобин – 33% (гем в нём составляет – 4%).

При различных патологических состояниях эритроциты могут подвергаться:

1. склеиванию, образуя монетные столбики (вследствие утраты заряда, обеспечивающего поверхностное натяжение);

2. гемолизу (при воздействии гипотоническим раствором, плазмой других видов, змеиным ядом гемоглобин поступает в плазму, при этом оболочка остаётся неповрежденной);

3. кренированию – сморщиванию (при воздействии гипертоническим раствором); от греч. сrеnа – вырезка;

Стареющие эритроциты фагоцитируются макрофагами. Продолжительность жизни эритроцитов 120 дней

Лейкоциты. В отличие от эритроцитов, «работающих» непосредственно в крови, лейкоциты «работают» в тканях тела, мигрируя (путем диапедеза) через стенки капилляров. Это ядросодержащие клетки.

Лейкоциты классифицируют на зернистые (гранулоциты) и незернистые (агранулоциты).

Гранулоциты. Своё название зернистые лейкоциты (гранулоциты) получили в связи с неоднозначностью окрашиваемости их гранул красителями при разных значениях рН среды, в связи с чем различают базофильные, эозинофильные и нейтрофильные зернистые лейкоциты.

Базофилы – клетки шаровидной формы, диаметром до 10–12 мкм. Ядро имеет лопастную или бобовидную форму (в зависимости от степени зрелости клеток). В их базофильной цитоплазме содержатся довольно крупные гранулы, окрашивающиеся основными красителями. Одной из особенностей содержимого гранул базофилов является метахроматическое их окрашивание красителями тиазинового ряда (метиленовый синий, толуидиновый синий и др., при этом вместо синей окраски гранулы приобретают фиолетовый, розовый или красный цвет).

В гранулах базофилов содержатся биологически активные вещества: протеогликаны, ГАГ (в том числе гепарин), вазоактивный гистамин, нейтральные протеазы, серотонин, пероксидазы, кислая фосфатаза, серотонин (гормон эпифиза, который ослабляет или угнетает секрецию гонадолиберинов в гипоталамусе), гистидиндекарбоксилаза (фермент синтеза гистамина) и др.

Функции базофилов . Базофилы могут фагоцитировать бактерии, препятствуют свёртыванию крови (гепарин), способствуют расширению сосудов и повышают проницаемость их стенки (гистамин), вследствие чего возникают отёки. Они опосредуют воспаление, активируют макрофаги, участвуют в иммунологических реакциях аллергического характера: секретируют эозинофильный хемотаксический фактор, который стимулирет миграцию эозинофилов. При астме, анафилаксии, сыпи наблюдается немедленного типа дегрануляция, пусковым механизмом которой является IgE-рецептор для IgE. Вместе с тучными клетками участвуют в антисвёртывающей системе крови и регуляции проницаемости стенки сосудов, вместе с нейтрофилами образуют биологически активные метаболиты арахидоновой кислоты – лейкотриены и простагландины. Базофильные гранулоциты не являются активными индукторами в развитии гиперчувствительности замедленного типа.

В периферической крови базофилы пребывают примерно 1-2 суток, а затем мигрируют в межклеточное вещество соединительной ткани, где продолжительность их жизни не велика.

Эозинофилы . Размеры этих клеток достигают 12-17 мкм. Ядро зрелых клеток обычно содержит 2 сегмента, но у овец – больше. Очень редко встречаются палочкоядерные и юные эозинофилы. Гранулы в цитоплазме довольно крупные. Различают две их разновидности: первичные азурофильные и вторичные – эозинофильные (модифицированные лизосомы). В центре эозинофильной гранулы содержится кристаллоид, который содержит главный основной белок, богатый аргинином, катионный белок, лизосомные гидролитические ферменты, пероксидазу, гистаминазу и др. Пероксидазная активность эозинофильных гранулоцитов не связана с пресутствием миелопероксидазы, которая строго специфична для системы нейтрофильных гранулоцитов.

В аллергических реакциях принимают участие Fс-рецептор плазмолеммы для IgE, а также С3- и С4– рецепторы.

Эозинофильные гранулоциты в крови находятся около 12-ти часов, а затем мигрируют в межклеточное вещество соединительной ткани, где функционируют до 8-12 суток (в соед. ткани их в 500 раз больше, чем в крови). Пероксидазная активность эозинофильных гранулоцитов не связана с пресутствием миелопероксидазы, которая строго специфична для системы нейтрофильных гранулоцитов.

Нейтрофилы . Размеры этих клеток варьируют в пределах 9–12 мкм. Форма ядра непостоянна и зависит от степени зрелости клеток. В связи с этим различают юные, палочкоядерные и сегментоядерные нейтрофильные гранулоциты. У юных нейтрофилов ядро имеет бобовидную форму, гранул в цитоплазме относительно не много. Ядра палочкоядерных нейтрофилов выглядят в виде в разной степени изогнутой палочки, а в зрелых клетках – оно фрагментировано на сегменты, соединенные между собой тонкими перемычками. В цитоплазме нейтрофилов содержится 2 вида гранул:

1) первичные азурофильные неспецифичные (ПАН), их размеры - 0,4-0,8 мкм (до 20%), представляют собой первичные лизосомы, содержащие ß-глюкуронидазу, кислую ß-глицерофосфатдегидрогеназу, кислую протеазу, лизоцим (мурамидазу), кислую фосфатазу, миелопероксидазу (превращает перекись водорода в молекулярный кислород).

2) вторичные нейтрофильные специфические гранулы (ВНС), размеры которых составляют 0,1-0,3 мкм; они содержат щёлочную фосфатазу, фагоцитины, аминопептидазы, лизоцим, катионные белки и белок лактоферрин, обеспечивающий склеивание бактерий (бактериальная мультипликация) и торможение образования лейкоцитов в красном костном мозге.

Описание нейтрофильных гранулоцитов следует дополнить современными данными о третичных гранулах, секреторных пузырьках и адгезивных молекулах.

Функция нейтрофилов – неспецифическая антибактериальная защита путём фагоцитоза и выделения бактерицидных веществ, участие в воспалительных реакциях (осуществляется вне сосудов, в межклеточном веществе соединительных тканей). В образовании эндогенного пирогена, который теперь идентифицирован как интерлейкин-1, нейтрофильные гранулоциты не участвуют, его продуцируют клетки моноцитарно-макрофагальной системы. В крови они находятся до 8-12 часов, а в тканях - до 9 суток, где они погибают.

Агранулоциты . К незернистым лейкоцитам относятся лимфоциты и моноциты. Обе эти группы клеток принимают активное участие в иммунных реакциях организма. Иммунитет - это способ защиты организма от живых тел и веществ, несущих на себе признаки генетической чужеродности.

Лимфоциты . По степени зрелости лимфоциты делятся на большие (10 мкм), средние ((7-10 мкм) и малые (4,5-6 мкм). Зрелыми являются малые лимфоциты. Они содержат крупное круглое с небольшим вдавлением ядро, занимающее почти всю клетку. Оно окружено узким ободком базофильной цитоплазмы. По происхождению и функциональным свойствам различают 4 основные группы лимфоцитов: В-лимфоциты, Т-лимфоциты, натуральные киллеры (NK) и К-клетки. Все они участвуют в обеспечении иммунных реакций, защите от всего чужеродного, попадающего извне и образующегося в самом организме.

В-лимфоциты Образуются в лимфатических узлах и осуществляют специфический гуморальный иммунитет (поставляют антитела в кровь, лимфу и тканевую жидкость). На поверхности плазмолеммы В-лимфоцитов имеются антигенспецифические рецепторы, представляющие собой антитела – иммуноглобулины (Ig) классов M и D, или поверхностные иммуноглобулины (SIg). Распознаваемые рецепторами антигены присоединяются к ним, вследствие чего В-лимфоциты активируются, многократно пролиферируют и дифференцируются в эффекторные клетки – плазмоциты, или антителообразующие клетки (АОК), способные вырабатывать антитела (иммуноглобулины). Антитела на своей поверхности имеют связующие участки к данному конкретному антигену.

Процесс активации лимфоцитов можно представить в следующей последовательности: Активированный В-лимфоцит → плазмобласт (диаметр до 30 мкм) → проплазмоцит → зрелый плазмоцит (диаметр около 10 мкм).

В-лимфоциты – живут от нескольких недель до десятков месяцев.

Т-лимфоциты, натуральные киллеры ( NK ) и К-клетки образуются в тимусе. Они осуществляют реакции специфического клеточного иммунитета и регулируют гуморальный иммунитет. В плазмолемме Т-лимфоцитов содержатся поверхностные антигенные маркеры (антигены гистосовместимости) и много рецепторов, с помощью которых они распознают чужеродные антигены и иммунные комплексы. После встречи с антигенами Т-лимфоциты превращаются в Т-эффекторы: Т-киллеры, Т-хелперы и Т-супрессоры.

Эффекторные клетки Т-лимфоцитов Т-киллеры (цитотоксические) – обеспечивают клеточный иммунитет. Обладая цитотоксическим эффектом, они взаимодействуют с клетками-мишенями вследствие непосредственного с ними контакта или благодаря вырабатываемым ими близкодействующим токсическим медиаторам. В результате такого взаимодействия изменяется проницаемость мембраны клетки-мишени, что и приводит её к гибели.

При действии антигенов в Т-лимфоцитах вырабатываются особые растворимые вещества лимфокины, которые передают информацию об антигенах В-лимфоцитам.

Т-хелперы являются помощниками В-лимфоцитов, они распознают антиген и усиливают выработку антител; Т-супрессоры, наоборот, подавляют выработку антител В-лимфоцитами.

Продолжительность жизни Т-лимфоцитов до 10 лет.

В последнее время в научных публикациях (Г. М.Могильная и соавт., 2002) указывается, что следует ввести принятую иммунологами классификацию Т-лимфоцитов, которая основывается на определении с помощью иммунноцитохимии поверхностных дифференцировочных антигенов (cluster of differentiation - CD).

Тимус покидают две субпопуляции нативных Т-лимфоцитов с антигеном CD23. Т-хелперы маркируются антигеном CD4, а Т-киллеры - CD8. Установлено, что в ходе иммунного ответа CD4+ Т-хелперы (ThO) дают начало двум субпопуляциям Th1- и Th2-хелперов с преобладанием одной из них в зависимости от внутри - или внеклеточной локализации возбудителя, или от особенностей антигена. Путём продукции различных наборов цитокинов Th1 (интерферон гама, фактор некроза опухолей-альфа, лимфотоксин, интерлейкин-2) и Th2 (интерлейкины -4, -5, -6, -10, -13 и трансформирующий фактор роста - бета) регулируют развитие иммунного воспаления. Т-лимфоциты гиперчувствительности относятся к классу Th1-хелперов, поэтому их не обязательно выделять в отдельную клеточную форму. Стоит отметить, что после контакта с антигеном и синтеза цитотоксинов (перфорин, гранзимы) CD8+ Т-киллер получает название цитотоксического Т-лимфоцита (ЦТЛ).

В процессе локального контакта ЦТЛ с клеткой-мишенью происходит строгая направленность выброса цитотоксинов в зону пространственной связи Т-клеточного рецептора и антигена. Помимо этого, наблюдается осмотический лизис клетки, обусловленный самостоятельным эффектом перфорина, что ведёт к освобождению и рассеиванию внутриклеточно локализованного возбудителя. Целесообразно указать, что гибель клетки-мишени путём апоптоза, наступающая при сочетанном воздействии перфорина и гранзимов, биологически целесообразна, поскольку она ведёт к мембранной изоляции деградированного возбудителя или другого антигена.

Т - и В-клетки памяти – лимфоциты, возвращающиеся в неактивное состояние, но уже приобретшие информацию (память) от встречи с конкретным антигеном. При повторной встрече с этим антигеном они быстро обеспечивают иммунный ответ значительной интенсивности.

Т - и В-лимфоциты в сосудистом русле – в функциональном плане относительно неактивны. Их активация осуществляется антигенами, в результате чего эти клетки превращаются в эффекторные формы клеточного и гуморального иммунитета, за счёт чего увеличивается фонд клеток памяти.

Моноциты – довольно крупные клетки, в мазке крови их размеры достигают 15-20 мкм. Содержат крупные ядра лопастной, бобовидной и иной формы. Цитоплазма базофильна. Не смотря на то, что эти клетки относятся к агранулоцитам, в их цитоплазме могут обнаруживаться в небольшом количестве мелкие азурофильные гранулы, представляющие собой лизосомы. В функциональном плане – это типичные макрофаги, которые в периферическом русле крови находятся по пути из красного костного мозга в ткани, где они выполняют специфические защитные функции.

Процентное соотношение различных видов лейкоцитов в периферическом кровеносном русле (лейкоцитарная формула) у разных видов животных варьирует (табл. 2):

Таблица 2. Лейкоцитарная формула (в %)

Примечание : Б Базофильный гранулоцит ; Э Эозинофильный гранулоцит; Ю Юный нейтрофильный гранулоцит ; П Палочкоядерный нейтрофильный гранулоцит; С Сегментоядерный нейтрофильный гранулоцит.

Как явствует из таблицы, у одних видов животных среди лейкоцитов преобладающими являются лимфоциты, а у других – зернистые лейкоциты.

Таким образом, в периферической крови циркулирует целый ряд клеток, которые обладают специфическими функциями, направленными на обеспечение защиты организма от чужеродных факторов (антигенов). К таковым относятся различные популяции лимфоцитов, потомки моноцитов – макрофаги и зернистые лейкоциты.

Кровяные пластинки. Кровяные пластинки. У млекопитающих – это обломки цитоплазмы мегакариоцитов. У птиц - это ядросодержащие клетки – тромбоциты. Размеры кровяных пластинок варьируют в пределах 2-4 мкм. Они состоят из периферической зоны – гиаломера и центральной - грануломера. Гиаломер в молодых кровяных пластинках окрашивается базофильно, а в старых – оксифильно. В гиаломере есть актин, который участвует в ретракции (уменьшении объёма) кровяных пластинок.

На поверхности плазмолеммы кровяных пластинок содержится гликоликс, гликопротеины которого представляют рецепторы, принимающие участие в адгезии и агрегации кровяных пластинок (агрегация пластинок - их склеивание).

По степени зрелости различают 5 видов кровяных пластинок: юные, зрелые, старые, дегенеративные и гигантские формы раздражения.

Функция кровяных пластинок : в них содержится примерно 12 факторов свёртывания крови. Они принимают участие в коагуляции фибриногена: фибрин → протромбин → тромбин.

В плазме крови содержится фактор свёртывания фон Виллебранда (vWF), к которому в плазмолемме кровяных пластинок имеется специальный рецептор P Ib. Другой рецептор P IIb – IIIа связывает фибриноген, вследствие чего кровяные пластинки агрегируют.

Кроме того, тубулярная система цитоплазмы кровяных пластинок синтезирует циклоксигеназы и простагландины. Она является также резервуаром для ионов Са.

Тромбоциты птиц и пресмыкающихся выполняют аналогичные функции.

В этой статье мы бы хотели коснуться такой важной составляющей в лечении животных, как лабораторная диагностика. Данный материал предназначен прежде всего для владельцев животных и призван помочь им в понимании такого важного звена в цепи процессов постановки диагноза и лечения животного, как лабораторная диагностика и факторов, влияющих на необходимость сдачи анализов кошки или собаки.

Пусть простят меня коллеги - ветеринарные врачи, читающие эту статью, за некоторый непрофессиональный «жаргон» в тексте. Повторюсь, статья предназначена для обычных владельцев, не владеющих специальной терминологией.

Наука вообще, а вместе с ней и ветеринарная наука, не стоит на месте. С каждым годом усовершенствуются методы лечения животных, уровень ветеринарных специалистов постоянно растет, повышается их квалификация и увеличиваются требования к уровню диагностики болезней кошек и собак, хомячков и морских свинок, кроликов и птиц.

В относительно недавние времена просто невозможно было найти ветеринарную клинику, имеющую такой обычный по сегодняшним меркам аппарат, как ультразвуковой сканер. Сейчас он есть в каждой второй ветеринарной клинике. Более того, в настоящее время есть даже специалисты, умеющие проводить грамотную УЗИ-диагностику состояния органов животных. Тоже самое можно сказать и о рентгеновском аппарате. Все это сейчас есть во многих ветеринарных клиниках, этим умеют пользоваться специалисты, это оборудование в разы улучшает качество лечения животных.

Далеко не так хорошо обстоит дело с лабораторной диагностикой болезней животных. То есть, скажем, биохимический анализатор крови тоже сейчас не редкость, имеется во многих ветеринарных учреждениях. Но… Далеко не все умеют его применять. Далеко не всегда анализы, проведенные кустарно, используя дешевый биохимический анализатор, проводимые не специалистами по лабораторной диагностике, отличаются от анализов, написанных «на коленке», как до сих пор делают наши некоторые коллеги, выдавая такие «анализы» за истину. Такой диагностике не стоит доверять. Гораздо более высокий уровень доверия имеют специализированные ветеринарные лаборатории. По материалам одной из московских ветеринарных лабораторий и написана данная статья.

Итак, чем же отличается ветеринарная лаборатория какой-либо ветеринарной клиники и специализированная ветеринарная лаборатория? Прежде всего – контроль качества исследований. Причем контроль как самой лаборатории независимыми экспертами, так и контроль, выполняемый лабораторией на разных этапах исследований.

Контроль качества исследований включает три этапа:
1. Преаналитический этап – взятие материала, хранение и доставка в лабораторию
2. Аналитический этап – контроль точности оборудования и качества химреактивов, применяемых для лабораторных исследований
3. Постаналитический этап – ретроспективная оценка выдаваемых результатов, анализ полученных результатов, вычисление погрешностей.

Для анализа контроля качества применяются специально разработанные программы.

Все вышесказанное дает независимым лабораториям неоспоримое преимущество в качестве исследований и достоверности результатов лабораторных исследований.

Мы неспроста уделили столько внимания вступлению. Это поможет вам понять отличия в методиках диагностики и, при необходимости, принять верное решение, куда сдавать анализы собаки или кошки, где можно получить наиболее достоверные результаты лабораторных исследований.

Ни одна независимая лаборатория не смогла бы существовать, работая самостоятельно, проводя анализы только клиентам - владельцам животных, приводящих своих собак и кошек непосредственно в лабораторию. Поэтому ветеринарные лаборатории тесно сотрудничают с ветеринарными врачами и ветеринарными клиниками, желающими получать достоверные результаты и на основании результатов анализов ставить точный диагноз животному и назначать адекватное лечение. Памятуя о том, что специализированная ветеринарная лаборатория дает более достоверные результаты анализов, такие клиники и частные врачи имеют в своем распоряжении мощную диагностическую базу, помогающую им в работе. Таким образом, данный вид сотрудничества выгоден всем – и ветлаборатории, и врачу, и клинике и вам, дорогие владельцы животных. Ведь прежде всего в качественном лечении и скорейшем выздоровлении животного заинтересованы вы.

Предваряя вопросы, сразу оговорюсь. Мы намеренно не приводим референтные интервалы показателей исследований. Дело в том, что у каждой лаборатории эти интервалы (нормы) свои, полученные аналитическим путем.

В связи с этим сразу совет любителям проконсультироваться в всевозможных форумах - если приводите какие-либо показатели лабораторных анализов собак и кошек, всегда приводите и референтные интервалы той лаборатории, в которой делали анализ.

В противном случае консультация может оказаться практически бесполезной.

Для проведения диагностики берется венозная кровь в специальную пробирку с антикоагулянтом для предотвращения свертывания крови и разрушения форменных элементов. Важный момент – уровень профессиональной подготовленности специалиста, производящего забор анализа у кошки или собаки. Данная процедура требует определенных навыков.
Исследования проводятся на специальных лабораторных автоматических анализаторах крови.

-- Биохимические исследования крови животных
Важнейший метод диагностики патологических состояний животного. Исследование сыворотки крови дает возможность оценить активность тех или иных ферментов в организме, тем самым давая возможность оценить не только какие органы поражены, но и оценить тяжесть патологического состояния. Кроме ферментов при проведении биохимии крови исследуется количество субстратов и жиров, а также электролитов (микроэлементов, растворенных в плазме крови) сыворотки. В комплексной оценке состояния организма проведение биохимии является важнейшим этапом.

Для проведения диагностики берется венозная кровь в специальную пробирку, применение которой дает возможность «отбить» сыворотку крови. Кровь берется натощак! И обязательно ДО проведения каких-либо лечебных процедур.
Важный момент – уровень профессиональной подготовленности специалиста, производящего забор анализа у кошки или собаки. Данная процедура требует определенных навыков. Важно соблюдать сроки доставки анализов в лабораторию.
Исследования проводятся на специальных лабораторных биохимических анализаторах крови.

-- Общий клинический анализ мочи (ОКА мочи)
Незаменимый способ диагностики множества патологий, связанных, прежде всего, с системой мочевыделения. И не только. Важнейший способ диагностики причин непроходимости мочевыводящих протоков, для определения причин закупорки мочевыводящих путей и определения состояния органов мочевыделения (почек). При комплексном проведении ОКА мочи выясняется наличие и тип неорганических соединений в осадке (кристаллы мочевой кислоты, трипельфосфаты, оксалаты кальция и проч.), что дает возможность назначить правильное лечение при мочекаменной болезни кошек и собак.

Оценивается прозрачность, цвет, наличие включений, органические и неорганические составляющие, кислотность мочи и проч.
Для проведения анализа мочи ее собирают утром, в сухую чистую (лучше стерильную) посуду. Желательно, сразу в тот сосуд, в котором моча будет доставлена в лабораторию. Важно (!) Катетером мочу брать нежелательно. Из длительно стоящего в мочевыводящих путях катетера мочу брать нельзя вообще! Наиболее точные результаты анализа мочи получаются, если моча на анализ взята методом прямого прокола мочевого пузыря. Данная манипуляция при должном уровне подготовленности ветеринарного специалиста не представляет никакой угрозы для животного. Зато позволяет оценить реально бакобсемененность мочи, давая ветврачу возможность назначить адекватное лечение.

Исследования мочи проводятся аппаратно, микроскопия осадка проводится экспертами лаборатории визуально.

-- Общий клинический анализ кала (ОКА кала)
С помощью этого анализа можно оценить:

  • ферментативную активность и переваривающую способность желудка и кишечника;
  • характер и интенсивность микробной деятельности (дисбактериоз);
  • наличие воспалительного процесса;
  • эвакуаторную функцию желудка и кишечника (как работает ЖКТ);
  • наличие гельминтов, простейших и их яиц (цист)

Оценивается кислотность, цвет, запах кала, его консистенция, наличие специфичных для кала химических соединений и крови.

Для проведения анализа кала его собирают в одноразовую специальную лабораторную пластиковую посуду. Важно доставить пробу кала не позднее чем через 12 часов после его сбора.

Нельзя (!) направлять для исследования кал, взятый после клизьмирования, а также кал, собранный после проведения диагностических рентгенологических исследований с рентгеноконтрастными веществами. В этом случае результаты ОКА кала грозят оказаться недостоверными.

-- Определение содержания гормонов в крови
Важный диагностический метод для выяснения патологий, связанных с деятельностью желез внутренней секреции. Исследования дорогостоящие, поэтому назначать, на определение каких гормонов сдавать анализ, должен ветеринарный врач-эндокринолог. В противном случае определение ненужных в вашем случае гормонов может болезненно ударить по вашему кошельку.
Материалом для исследования является венозная кровь. Кровь следует взять натощак. Крайне важно тотчас же отделить сыворотку (достигается применением специальных лабораторных пробирок или центрифугированием крови). Сыворотку крови следует немедленно заморозить и как можно скорее доставить в лабораторию.

При повторных исследованиях кровь следует брать при аналогичных первому забору крови условиях.

При бактериологическом исследовании крови или смывов-мазков с пораженных поверхностей производится типизация возбудителя методом посева на питательные среды и определением типа роста колоний микроорганизмов с последующей микроскопией и визуальной типизацией возбудителя. В дальнейшем проводится подтитровка возбудителя на чувствительность к нескольким видам антибиотиком, позволяя определить наиболее подходящий в каждом конкретном случае антибиотик. Срок проведения бакисследования – 5-7 дней.

Аналогично бактериологическому исследованию проводится исследование микологическое. Срок исследования – 14 дней. Связано это с очень медленным ростом грибков. Так же, как и с бакисследованиями, при микологическом исследовании проводится подтитровка чувствительности выделенного гриба к микостатикам.

Материал для микробиологических исследований – кровь, смывы со слизистых, выделения из носовых каналов, из гнойных полостей, смывы с пораженных поверхностей, трахеальная слизь и проч.

-- Исследования на инфекционные заболевания
Наиболее прогрессивным на сегодняшний день методом диагностики инфекционных заболеваний у животных является полимеразная цепная реакция (ПЦР). Данный метод позволяет определить возбудителя (его фрагментов) даже в сверхмалом количестве патматериала.

Исследования методом ПЦР наиболее надежны на сегодняшний день, они дают максимально достоверные результаты исследования в довольно короткие сроки. Срок выполнения анализа на инфекционные заболевания методом ПЦР – от 1 до 3 суток.

Ниже приведены данные по предоставляемым при исследовании на каждую болезнь материалам для исследований на инфекции:

Инфекция

Метод исследования

Материал

Аденовироз респираторный

Выделения из носа, глаз

Бореллиоз (болезнь Лайма)

Кровь, суставная жидкость

Бруцеллез

Кровь, синовиальная жидкость, околоплодная жидкость, абортированный плод

Вирусная лейкемия кошек

Вирусный гепатит собак

Сыворотка крови, кал

Вирусный иммунодефицит кошек

Вирусный перитонит кошек

Асцитная жидкость, кровь

Вирусный ринотрахеит кошек

Смывы со слизистых носа, глаз, мокрота

Герпесвирус (тип 1,2)

Смывы со слизистых

Грипп лошадей

Кровь, смывы со слизистых, мокрота

Грипп птиц

Кровь, выделения из респираторных органов, части органов и тканей

Дирофилляриоз

Калицивироз кошек

Смывы с язв ротовой полости, выделения из носа и рта

Криптоспоридиоз

Короновирусная инфекция

Лейкоз КРС

Лептоспироз

До 5-7 дня болезни кровь, позже - моча

Лямблиоз

Микоплазмоз

Смывы со слизистых, синовиальная жидкость, мокрота, выделения из носа и глаз

Панлейкопения кошек

Кровь представляет собой вязкую непрозрачную жидкость ярко-красного цвета в артериях и темно-красного с фиолетовым оттенком в венах. Она имеет слабосоленый вкус и слабощелочную реакцию. Кровь является внутренней средой организма, которая обеспечивает клетки необходимыми веществами, получаемыми из внешней среды, и отводит продукты жизнедеятельности к выделительным органам.

Кровь выполняет защитные функции организма, участвуя в защите от возбудителей многих заразных болезней и токсинов.

Она представляет собой разновидность соединительной ткани и состоит из клеток и межклеточного вещества. Межклеточное вещество -- жидкая часть крови -- представляет собой плазму. В плазме находятся форменные элементы: эритроциты, лейкоциты и тромбоциты. Содержание крови и ее составных частей у разных животных неодинаково.

Практически у всех животных 50% крови циркулирует в кровеносной системе, 16% находится в селезенке, 20% -в паренхиме печени и 14% -- в коже. кровь ветеринарный санитарный меховой

Размер частиц форменных элементов крови зависит от вида животных. Разделение крови на сыворотку и сгусток с форменными элементами возможно только вне организма. Масса эритроцитов и их способность склеиваться друг с другом влияют на скорость их оседания и на разделение плазмы и форменных элементов. Плазма без фибриногена представляет собой сыворотку крови.

Полное разделение фракций крови лошадей происходит через 45 мин, затем по времени следует кровь свиней. Наиболее трудно разделяется кровь крупного и мелкого рогатого скота.

Химический состав крови, циркулирующей в теле, животного, постоянен. В крови содержатся белки, жиры, углеводы, минеральные вещества, ферменты, витамины и гормоны. У животных разных видов содержание указанных компонентов неодинаково.

Количество воды в крови крупного рогатого скота с возрастом уменьшается. Наоборот, содержание общего азота и сухого остатка в целом у взрослого скота выше, чем у телят. Увеличение содержания общего азота отмечается и с повышением упитанности. Наибольшее количество белка в крови крупного рогатого скота установлено в возрасте до 3 лет, в дальнейшем оно снижается и достигает минимума к 12 годам.

Минеральный состав крови довольно разнообразен. При этом наибольшее количество неорганических веществ содержится в форменных элементах. Так, общее содержание минеральных веществ в крови составляет 0,85--0,9% (в форменных элементах 1,2%), воды 79,0--81,2%, сухого остатка 17,9--21,0% (у лошадей соответственно 74,9% и 25,1%), общего количества белков 16,4--18,9% (у лошадей--23,6%), содержание гемоглобина колеблется от 9,3% до 14,2% (у лошадей до 16,7;%).[ Ветеринарно-санитарная экспертиза крови. Методические указания к самостоятельной работе. - пос. Персиановский, Донской ГАУ, 2003 г. - с.]

Основными белками плазмы являются альбумины, глобулины и фибриноген.

Фибриноген содержится в плазме и отсутствует в сыворотке крови. Он участвует в свертывании крови, превращаясь в фибрин.

Перечисленные белки плазмы являются полноценными, так как содержат весь комплекс незаменимых аминокислот. Наиболее ценным из них является фибриноген в котором содержится больше триптофана, лизина и метионина.

Основным белком форменных элементов является гемоглобин. Это сложный белок, состоящий из белковой части -- глобина и небелковой части -- гема. Гемоглобин является основной частью эритроцитов и содержится в них в количестве 30--40%. Гемоглобин осуществляет перенос кислорода к клеткам, где протекают интенсивные процессы биологического окисления. Концентрация его в крови различных животных неодинакова вследствие различий в количестве эритроцитов и их величине. В результате окисления гема происходит его обесцвечивание, что имеет важное практическое значение для расширения сферы использования крови и форменных элементов на пищевые цели.[ Ветеринарно-санитарная экспертиза крови. Методические указания к самостоятельной работе. - пос. Персиановский, Донской ГАУ, 2003 г. - с.]

Наряду с белковыми веществами в состав крови и ее фракций входят небелковые азотистые и безазотистые вещества, минеральные вещества, пигменты, витамины, липиды.

К азотистым небелковым веществам относятся мочевина, аммиак, аминокислоты, креатин, креатинин, мочевая кислота, пурины и другие соединения. Безазотистые вещества включают в основном глюкозу, фруктозу, гликоген, а также молочную и пировиноградную кислоты.

К минеральным веществам относятся хлориды натрия, калия, магния, бикарбонат натрия, карбонат кальция, сульфат натрия, фосфат кальция, фосфорнокислые соли калия, натрия и др.

Пигменты крови включают гемоглобин, билирубин, биливердин, липохром, лютеин, уробилин.

Плотность крови различных убойных животных имеет близкие показатели 1040--1065 кг/м3.

Вязкость крови в основном зависит от содержания форменных элементов и, в меньшей степени, от концентрация белка в плазме. С увеличением упитанности крупного рогатого скота вязкость сыворотки крови возрастает. Цельная кровь имеет вязкость 3,4--6,8 ед., сыворотка -- 1,55--1,90 ед. по отношению к воде.

Реакция среды крови убойных животных слабощелочная, рН крови крупного рогатого скота --7,4, мелкого рогатого окота -- 7,5, свиней -- 7,49, лошадей -- 7,42, кроликов -- 7,58.

При нагревании происходит коагуляция белков крови, в результате они теряют растворимость и выпадают в осадок. Температура коагуляции белков специфична: альбумин коагулирует при температуре 67°С, фибриноген -- 56°С. Полная коагуляция белков крови про-исходит при температуре 80°С.

Выпущенная из кровеносного сосуда кровь вначале быстро вытекает, но спустя короткий промежуток времени теряет свойства жидкости и свертывается, образуя сгусток. Свертывание крови разных животных происходит с различной скоростью. Так, .кровь крупного рогатого скота свертывается через 6,5 мин, .мелкого рогатого скота -- 2,6 мин, свиней-- 3,5 мин, лошадей--11,5 мин.

Свертывание крови является сложным ферментативным процессом, состоящим из цепи взаимосвязанных реакций. В данном процессе участвуют 13 факторов. В результате протекания процессов свертывания крови, содержащийся в плазме, растворимый белок фибриноген превращается в нерастворимый фибрин. Если свежевыпущенную кровь перемешивать, то образующиеся нити фибрина наматываются на мешалку и кровь остается жидкой. Такая кровь, лишенная фибрина, называется дефибринированной. При понижении температуры свертывание крови замедляется. Так, кровь разных животных при температуре 10°С -свертывается только через 10--20 мин, скорость свертывания крови при температуре 13,7°С равна 18,5 мин, при температуре 39,9°С--2,75 мин.

Процесс свертывания крови можно ускорить различными факторами. К их числу можно отнести применение витамина К, способствующего образованию белка протромбина в печени.

Основными причинами, замедляющими свертывание крови, является недостаток одного или нескольких факторов свертывания крови, избыток антикоагулянтов. Кроме того, за-медлению свертывания крови способствует недостаточное количество тромбоцитов--болезнь Верльгофа, гепатиты, отравление фосфором и др., авитаминозы и гиповитаминоз К, а также причины, нарушающие синтез тромбина, проконвертина и фибриногена, избыточное образование гепарина, инактивация протромбина, тромбина, большое поступление в кровь тканевой фибринокиназы.

В практике важное значение имеет искусственное предотвращение свертывания крови. Процесс предотвращения свертывания крови введением в кровь определенных веществ называется стабилизацией. Стабилизация крови обусловлена исключением одного из компонентов, входящих в систему свертывания крови. Из наиболее распространенных методов стабилизации следует назвать те, которые основываются на исключении ионов кальция из системы свертывания крови. В качестве стабилизаторов такого типа следует назвать соли щавелевой, фосфорной, фтористоводородной, лимонной и триоксиглутаровой кислот. Для лечебных и исследовательских целей кровь стабилизируют лимоннокислым натрием, а для пищевых целей -- солями пирофосфорной кислоты.

Гепарин, содержащийся в печени, легких и мышцах, гирудин, образующийся в ротовой полости пиявок, являются естественными стабилизаторами крови. Гепарин задерживает свертывание крови в сосудах, которое может наступать в результате разрушения тромбоцитов и активации тромбокиназы. Активность гепарина крупного рогатого скота вдвое больше, чем гепарина свиней, поэтому свиная кровь свертывается быстрее.

В систему крови входят: кровь, тканевая жидкость, лимфа, органы кроветворения и кроверазрушения, форменные элементы крови.

Кровь - основная составная часть системы крови, представляющая собой жидкость (суспензию) красного цвета, которая находится в состоянии непрерывного движения. Кровь принадлежит к опорно-трофическим тканям. Она состоит из клеток - форменных элементов (эритроцитов, лейкоцитов и тромбоцитов) и межклеточного вещества - плазмы. Доминирующими в крови форменными элементами являются эритроциты: их число измеряется миллионами в 1 микролитре (млн/мкл).

Если взятую у животного кровь предохранить от свертывания и оставить отстояться (или отцентрифугировать), то она расслаивается: форменные элементы (основную часть из них составляют эритроциты) оседают, а над ними остается жидкость соломенно-желтого цвета - плазма. Скорость оседания эритроцитов (СОЭ) используют как диагностический тест в ветеринарной и медицинской практике. У лошадей в норме СОЭ имеет самые высокие значения среди животных других видов и составляет 40...70 мм/ч. На СОЭ оказывает влияние физиологическое состояние организма. Например, после активной двухчасовой тренировки у спортивных лошадей СОЭ снижается в 4 раза. Это объясняется сгущением крови и накоплением в ней большого количества недоокис-ленных продуктов (молочной кислоты), образующихся в результате интенсивной мышечной нагрузки. Кроме того, СОЭ повышается во время беременности и при патологических состояниях организма (инфекции, хронические воспалительные процессы, злокачественные опухоли), что связано с увеличением содержания в крови крупномолекулярных белков (особенно у-глобули-нов). Последние, вероятно, уменьшают электрический заряд эритроцитов и тем самым способствуют более быстрому их оседанию.

Соотношение (%) объема форменных элементов и плазмы называется гематокритной величиной; у лошади она составляет 30...40 %. Например, работающая лошадь сильно потеет и теряет много жидкости, что приводит к увеличению гематокритной величины. Следует отметить, что такое состояние неблагоприятно для организма животного, так как «густая» кровь вследствие повышения ее сопротивления при движении по кровеносным сосудам увеличивает нагрузку на сердце. Для компенсации этого состояния в кровь начинает поступать вода из тканевой жидкости, ограничивается выделение воды почками и возникает жажда. Уменьшение гематокрита чаше всего отмечают при заболеваниях (например, инфекционной анемии лошадей).

Важнейшая функция крови - транспортная, которая обеспечивает доставку к каждой клетке организма животного кислорода и питательных веществ и своевременный вынос из клетки к органам выделения продуктов ее жизнедеятельности. Кроме того, кровь разносит по всему организму биологически активные вещества (прежде всего гормоны), благодаря которым обеспечивается гуморальное звено регуляции физиологических функций.

Кровь выполняет и защитную функцию, так как она участвует в клеточном и гуморальном иммунитете. Клеточный иммунитет обеспечивают главным образом лейкоциты (борьба с чужеродными телами, клетками и их токсинами), гуморальный - антитела (иммуноглобулины), находящиеся в крови на протяжении всей жизни или образующиеся в организме при внедрении антигенов.

Терморегулирующая функция крови заключается в поддержании постоянства температуры тела: кровь относит теплоту от более нагретых органов и распределяет ее равномерно по организму животного.

И, наконец, кровь выполняет коррелятивную функцию. Омывая каждую клетку, она обеспечивает связь между различными органами и тканями, благодаря чему организм функционирует как единое целое.

У лошади объем крови в сравнении с другими животными больший и составляет около 9,8 % от массы тела. Примерно половина ее находится в состоянии непрерывного движения по кровеносным сосудам, а остальная депонирована в печени (до 20 %), в селезенке (до 16 %) и коже (до 10 %). При необходимости увеличения объема циркулирующей крови (различные физиологические нагрузки: мышечная работа, страх, ярость, боль; кровопотери и др.) кровяные депо выбрасывают дополнительное количество крови в общий кровоток.

Физико-химические свойства крови. Кровь лошади обладает теми же физико-химическими свойствами, что и у других животных: плотностью (удельная масса), вязкостью, кислотно-основным равновесием (рН), коллоидно-осмотическим давлением и свертыванием.

Плотность. Плотность цельной крови лошади составляет 1,040...1,060 г/мл, плазмы - 1,026, эритроцитов - 1,090 г/мл. Поскольку эритроциты имеют большую плотность, чем плазма и другие форменные элементы, при отстаивании крови они оседают на дно сосуда. Плотность крови зависит от числа эритроцитов, содержания в крови гемоглобина, белков и солей. Так, при потерях лошадью большого количества воды (обильное потоотделение) или задержке в организме конечных продуктов метаболизма, своевременное удаление которых ограничивается или прекращается вследствие нарушения функций почек (нефриты, нефрозы), плотность крови повышается. Понижение плотности крови у лошади наблюдают при различного вида анемиях (малокровии) и кахекси-ях (истощении).

Вязкость. У лошади вязкость крови при нормальных условиях составляет 4,7 (за единицу принимается вязкость воды). Этот показатель зависит от многих факторов, в первую очередь от числа форменных элементов и коллоидов плазмы крови.

К и с л о т н о-о сновное равновесие. Кислотно-основное равновесие крови определяется соотношением в ней кислотных и щелочных компонентов. При этом суммарный заряд щелочных ионов больше, чем кислотных, поэтому кровь имеет слабощелочную реакцию. У лошади в норме рН (показатель концентрации водородных ионов) в среднем равняется 7,36. Это одна из самых жестких констант организма: рН крови постоянный. Лишь при условии оптимального рН возможно протекание многочисленных химических реакций, и всякое изменение его ведет к нарушению деятельности жизненно важных органов (мозг, сердце), дыхательной функции, работы печени и др. Сдвиг рНкрови животного на несколько десятых, особенно в кислую сторону, несовместим с жизнью!

Между тем в кровь животного постоянно поступают продукты обмена веществ, имеющие преимущественно кислую реакцию (например, молочная кислота), поэтому всегда существует возможность изменения реакции в кислую сторону. Однако постоянство равновесия поддерживается за счет определенных химических и физиологических механизмов регуляции - буферных систем. Химические механизмы регуляции протекают на молекулярном уровне. Они включают в себя четыре основные буферные системы крови (гемоглобиновую, бикарбонатную, фосфатную и белковую) и щелочной резерв. Буферные системы крови у лошади те же, что и у других животных, и «работают» по тому же принципу. Щелочной резерв представляет собой сумму всех щелочных веществ в крови, главным образом бикарбонатов. Его величину определяют по количеству диоксида углерода, которое может выделиться из бикарбонатов при взаимодействии с кислотой. Щелочной резерв крови у лошади колеблется от 60 до 80 см3.

Как уже отмечалось ранее, в процессе обмена (особенно при напряженной мышечной работе, что характерно для лошади) в кровь в изобилии поступают кислые продукты (молочная, фосфорная и другие кислоты). Они нейтрализуются обычно щелочами крови. Следовательно, чем выше резервная щелочность, тем эффективнее нейтрализация этих кислых продуктов без тяжелых последствий для организма.

Поэтому обычно у лошадей степень утомляемости определяют по резервной щелочности, так как существует зависимость между этим показателем и работоспособностью животного. Установлено, что у лошадей после скачек на ипподроме резервная щелочность уменьшается в 2 раза и более по сравнению с исходным значением. Таким образом, чем выше у лошади этот показатель, тем лучше она переносит напряженную мышечную работу.

Физиологическая регуляция включает сложные нейрогумо-ральные механизмы, ведущие к активным изменениям в работе, прежде всего органов выделения (почки, потовые железы).

Коллоидно-осмотическое давление. Коллоидно-осмотическое давление крови - это сила, вызывающая перемещение растворителя (воды) через полупроницаемую мембрану клетки в сторону с большей концентрацией растворенных в воде веществ. Различают осмотическое и онкотическое давление.

Осмотическое давление крови, равное 7,6 атмосферы, обусловлено наличием в основном минеральных веществ. Их суммарное количество в плазме крови составляет 0,9 г/100 мл (доминирует хлорид натрия).

Постоянство осмотического давления имеет большое значение для обмена веществами между кровью, тканевой жидкостью и клетками, а также для клеточных элементов крови, особенно эритроцитов, для которых необходима изотоническая среда. В гипотонических условиях эритроциты набухают и разрушаются (гемолиз), а в гипертонических, наоборот, теряя воду, сморщиваются. Поэтому быстрое внутривенное введение в кровь больших объемов гипо- и гипертонических растворов (а это приходится делать ветеринарному врачу довольно часто с лечебной целью) представляет опасность для жизни животного.

Онкотическое давление - V220 часть общего коллоидно-осмотического давления крови, создаваемая белками (коллоидами) плазмы. У лошади онкотическое давление крови в норме колеблется от 15 до 35 мм рт. ст. Его постоянство также имеет очень большое значение. Так, онкотическое давление препятствует чрезмерному переходу воды из крови в ткани («удерживает» воду в просвете кровеносных сосудов) и способствует реабсорбции ее из тканевого пространства. В том случае, когда уменьшается количество белков в плазме крови, развиваются отеки тканей. Отсюда и происходит название этого давления, так как onkos с греческого означает «опухоль».

Необходимо отметить, что в организме животных имеются надежные механизмы компенсации, не допускающие серьезных изменений коллоидно-осмотического давления. Например, лошади внутривенно ввели 7 л 5%-го раствора сульфата натрия. Теоретически это должно повысить осмотическое давление в 2 раза. Однако, слегка поднявшись, оно уже через 10 мин возвратилось к исходному значению. Как объяснить данный факт?

В первую очередь происходит перераспределение воды между кровью и тканевой жидкостью. Если этого недостаточно, то вступают в действие более сложные регуляторные механизмы, такие, как многочисленные осморецепторы кровеносных сосудов и гипоталамуса. Это приводит к ограничению выделения в кровь антидиуретического гормона нейрогипофиза и вода, не реабсорби-руясь в почках, выделяется из организма.

Свертывание крови. При повреждении кровеносных сосудов вытекающая из них кровь у любого животного в норме должна свертываться; у лошади это происходит за 10... 14 мин. Образующийся сгусток крови закупоривает поврежденный сосуд, в результате чего прекращается кровотечение. Свертывание крови играет огромную роль: спасает животное от гибели, которая была бы неизбежной вследствие обильной кровопотери, а при незначительном ранении кровеносных сосудов - от постепенного обескровливания. При поражении внутренней сосудистой стенки (эндотелия), даже без наружного кровотечения, кровь может свертываться внутри сосуда с образованием тромба.

Свертывание крови представляет собой сложный каскадный ферментативный процесс. Суть его заключается в образовании белка - фибрина из фибриногена. Фибрин выпадает в виде нитей, в которых задерживаются форменные элементы, т. е. образуется сгусток. Многочисленные вещества (факторы), участвующие в свертывании крови, всегда присутствуют в крови в неактивном состоянии. При отсутствии хотя бы одного из этих факторов кровь теряет способность свертываться. У лошадей, так же как и у людей, возможна гемофилия (наследственная несвертываемость крови). Свертывание крови нарушается при недостатке витамина К. Важную роль в этом процессе выполняют тромбоциты.

Кровь должна быть жидкой, чтобы двигаться по сосудам и выполнять свои основные функции. Это состояние обеспечивает присутствующая в крови противосвертывающая система.

Форменные элементы крови. В крови лошади находятся 3 типа клеток: эритроциты, лейкоциты и тромбоциты (цв. вкл., рис. 2).

Эритроциты. Эритроциты лошади, как и у других млекопитающих, в процессе эволюционного развития специфически дифференцировались. Они в значительной степени утратили обычную клеточную структуру и функцию, преимущественно приспособившись для связывания и переноса газов крови (кислорода и диоксида углерода). У эритроцитов отсутствуют ядра, форма их округлая. Внешне они напоминают пластинки с утолщениями по краям. Сбоку они похожи на двояковогнутую линзу.

Эритроциты у лошади довольно крупные. Их диаметр в среднем 6...8 мкм, а толщина 2...2,5 мкм. Интересно, что у верховых лошадей эритроциты несколько крупнее, чем у лошадей других пород. Основная составляющая часть эритроцита сложный белок-хромопротеид - гемоглобин. По-другому его называют дыхательным ферментом. Эритроциты образуются в красном костном мозге. Средняя продолжительность их «жизни» у лошади составляет около 100 сут.

Количество эритроцитов в крови лошади огромно; в норме оно колеблется в следующих пределах: у рабочих и тяжеловозов - (6...8)- 1012/л, У рысистых - (8...10)-1012/л, у верховых - до 11 1012/л. Из этого можно сделать вывод, что с увеличением потребности организма в кислороде и питательных веществах возрастает число эритроцитов в крови. У новорожденных жеребят количество эритроцитов всегда больше, чем у взрослых животных.

Следует отметить, что за счет колоссального количества эритроцитов формируется огромнейшая поверхность соприкосновения с окружающими факторами (плазмой, эндотелием капилляров). Установлено, что у лошади площадь всей поверхности достигает 15 ООО м2 (1,5 га), т. е. в 2 тысячи раз больше поверхности тела. Количество эритроцитов в крови лошади, как и у других животных, непостоянно. Уменьшение их количества (эритроцитопе-ния) обычно происходит только при заболеваниях (анемия), а увеличение (эритроцитоз) может быть и у здоровых животных.

Эритропоэз бывает перераспределительный, истинный и относительный. Перераспределительный эритроцитоз возникает быстро в результате мгновенного выброса дополнительного количества эритроцитов из депо крови. Это бывает крайне необходимо для усиления дыхательной и трофической функций крови при физических и эмоциональных нагрузках. Так, у рысаков после интенсивной пробежки на ипподроме количество эритроцитов может достигать 12...14Т012/л, т. е. возрастает на 50 % и больше в сравнении с обычным уровнем. Доказано, что данный показатель находится в прямой зависимости от степени напряженности работы; чем с большим напряжением лошадь выполняет ту или иную работу, тем в большей степени у нее увеличивается количество эритроцитов в циркулирующей крови. Однако у лошадей, хорошо тренированных и лучше подготовленных к выполнению определенного вида работ, происходит меньший сдвиг количества эритроцитов при выполнении этой работы.

Истинный эритроцитоз является результатом усиления эритро-поэза. Для этого требуется более продолжительное время, чем при перераспределительном эритроцитозе. Истинный эритроцитоз обычно развивается при систематических мышечных тренировках, длительном содержании животных в условиях пониженного атмосферного давления (например, горные переходы).

Относительный эритроцитоз не связан ни с перераспределением крови, ни с выработкой новых эритроцитов. Он обусловлен обезвоживанием животного (сильное потоотделение, диарея, развитие отеков и водянок).

Как уже отмечалось, основу сухого вещества эритроцитов (90 %) составляет гемоглобин- Гемоглобин состоит из четырех молекул тема (небелковая группа) и глобина (простатическая группа). Гем содержит двухвалентное железо, за счет которого гемоглобин соединяется с кислородом и диоксидом углерода. В первом случае образуется окси-, а во втором - карбогемоглобин. Эти соединения нестойкие и легко отдают переносимые ими газы.

К стойкой форме гемоглобина относят его соединение с оксидом углерода (СО) - карбоксигемоглобин. Это соединение блокирует гемоглобин и нарушает его дыхательную функцию. Установлено, что при связывании 60...70 % гемоглобина с СО наступает гибель животного от кислородного голодания тканей (гипоксии). Следует отметить, что, несмотря на сродство гемоглобина с кислородом, его способность соединяться с СО в 300 раз выше, поэтому при вдыхании животным воздуха, содержащего всего 0,1 % СО, 80 % гемоглобина связывается с оксидом углерода. Следовательно, даже незначительное количества оксида углерода, содержащегося в окружающей атмосфере, опасно для жизни. Оказывая помощь пострадавшему животному, нужно помнить, что карбоксигемоглобин очень медленно отдает оксид углерода и только при большом количестве кислорода, поэтому необходимо обеспечить доступ свежего воздуха, лучше с добавлением чистого кислорода.

Количество гемоглобина в крови является важным клиническим показателем дыхательной функции крови. У лошади уровень гемоглобина в среднем составляет 90... 150 г/л, зависит от таких факторов, как кормление, содержание, работа, возраст, порода, продуктивность и др. При этом нужно учитывать его непостоянство даже у одного и того же животного.

Лейкоциты. Белые кровяные клетки - лейкоциты, в отличие от эритроцитов, кроме цитоплазмы имеют ядро. Их подразделяют на две группы: зернистые (гранулоциты) и незернистые (агранулоциты) лейкоциты. Различают следующие разновидности гранулоцитов: базофилы, эозинофилы и нейтрофилы (юные, па-лочкоядерные, сегментоядерные). Агранулоциты бывают только двух видов: лимфоциты и моноциты.

В мазке крови (цв. вкл., рис. 2) лошади сразу обращает на себя внимание характерное расположение эритроцитов - соединяясь друг с другом, они образуют длинные цепочки («монетные столбики»); у крупного рогатого скота эритроциты всегда располагаются отдельно друг от друга. Видовую отличительную особенность имеют и эозинофилы: крупная зернистость цитоплазмы (диаметр зерен достигает 2...3 мкм при размерах клетки 8... 16 мкм). Следует отметить, что цитоплазма буквально нафарширована зернами, которые полностью закрывают ядро клетки и окрашиваются в сочный ярко-розовый цвет. Поэтому эозинофил лошади напоминает ягоду малины.

Количество лейкоцитов в крови лошади в норме составляет (6...10) 109/л. Уменьшение количества лейкоцитов в крови - лейкопения, увеличение - лейкоцитоз. Для того чтобы правильно поставить диагноз, ветеринарный врач должен учитывать физиологический лейкоцитоз, который у здоровых лошадей наблюдают после приема корма (алиментарный), при мышечной нагрузке (миогенный), у беременных, новорожденных, при сильных эмоциональных перегрузках и болевых раздражениях (условно-рефлекторный).

Лейкоциты выполняют в организме животных защитную функцию, и в зависимости от разновидностей каждый из них выполняет строго определенную.

Базофилы, например, синтезируют в своих гранулах и выделяют в кровь гепарин и гистамин. Гепарин является основным антикоагулянтом противосвертывающей системы крови. Гистамин - антагонист гепарина. Кроме того, это один из самых активных аминов в организме, принимающий участие в регуляции многих физиологических процессов (кровообращение, пищеварение, фагоцитоз и др.).

Эозинофилы обладают антитоксическими свойствами. Они способны адсорбировать на своей поверхности токсины и нейтрализовывать их. Уменьшение числа эозинофилов (эозинопения) наблюдают при стрессах различной этиологии, обусловленной активацией гипофизарно-надпочечниковой системы. Увеличение количества эозинофилов (эозинофилия) сопровождает любую интоксикацию и возможно при аллергических реакциях (обычно в сочетании с базофилией).

Нейтрофил - главная клетка белой крови, ответственная за фагоцитоз. Различают следующие разновидности нейтрофилов: ней-трофильный миелоцит, юный нейтрофил, палочкоядерный и сег-ментоядерный нейтрофил.

Особенность этой клетки состоит в том, что она способна к самостоятельному амебовидному передвижению, обладает хемотаксисом. Переваривание патогенных микроорганизмов, собственных отмерших и мутантных клеток, т. е. фагоцитоз, обеспечивается нейтрофилами благодаря содержанию в них ферментов, расщепляющих белки, жиры и углеводы.

Кроме своей важнейшей функции - фагоцитоза, нейтрофилы вырабатывают различные биологически активные вещества (бактерицидные, антитоксические, пирогенные), принимающие участие в патогенезе инфекционных заболеваний и развитии воспаления.

Таким образом, число нейтрофилов в крови лошади может изменяться в сторону увеличения в связи с различными воспалительными и инфекционными процессами в организме. Кроме того, известно, что злокачественные образования (рак, саркома) сопровождаются появлением в лейкоцитарной формуле юных и увеличением доли палочкоядерных нейтрофилов («сдвиг ядра влево»).

Следует отметить, что все зернистые лейкоциты (гранулоциты) образуются в красном костном мозге.

К незернистым лейкоцитам (агранулоцитам) относятся лимфоциты и моноциты.

Лимфоциты - незернистые лейкоциты, так же как и зернистые, образуются в красном костном мозге лошади, но в последующем одна часть их попадает в тимус (Т-лимфоциты), а другая - в лимфатические узлы кишечника и миндалины (В-лимфоциты). Там заканчивается процесс их созревания. Установлено, что Т-лимфоциты «отвечают» за клеточный иммунитет, а В-лимфоциты - за гуморальный.

Моноциты - незернистые лейкоциты, обладают высокой фагоцитарной активностью. Их называют «санитарами» кровяного русла, так как они очищают его, разрушая живые и погибшие микроорганизмы, уничтожая обрывки тканей и отмершие клетки организма.

Большинство из лейкоцитов существует недолго. При помощи методики меченых атомов установлено, что продолжительность жизни гранулоцитов и В-лимфоцитов колеблется от нескольких часов до нескольких дней, Т-лимфоцитов - месяцы и даже годы.

Тромбоциты. Тромбоциты, или кровяные пластинки, образуются в красном костном мозге из мегакариоцитов в процессе гемопоэза. Диаметр тромбоцитов в среднем 3 мк (в среднем от 1 до 20 мк). Они крайне нестойки и чрезвычайно легко распадаются. Основная их функция - участие в процессе свертывания крови. Кроме того, тромбоциты выполняют роль «кормильцев» эндотелия кровеносных сосудов, прилипая к нему и изливая в него свое содержимое. Они могут также, наряду с гемоглобином, транспортировать кислород. Появились новые данные о способности тромбоцитов фагоцитировать. Число тромбоцитов в крови лошади в норме колеблется в пределах (300...800) 1012/л.

Химический состав плазмы крови. Плазма крови лошади примерно на 90 % состоит из воды. Сухой остаток (10 %) составляют белки, жиры (липиды), углеводы, различные промежуточные и конечные продукты обмена, соли, макро- и микроэлементы, витамины и многочисленные биологически активные вещества (гормоны, ферменты и др.). Содержание этих химических компонентов плазмы достаточно стабильно и колеблется весьма незначительно. Нужно помнить, что любые отклонения от их физиологического уровня могут привести к серьезным нарушениям в работе отдельных систем и организма в целом.

Необходимо знать, в каких пределах у нормальной здоровой лошади допустимо изменение концентрации различных веществ, содержащихся в крови. Итак, содержание общего белка в плазме крови данного вида животного составляет в среднем 68 г/л (в том числе альбуминов - 40 %, альфа-глобулинов - 16, бета-глобулинов - 23, гамма-глобулинов - 21 %). Отношение количества альбуминов к глобулинам называется белковым коэффициентом. Видовая особенность лошадей заключается в том, что у них более низкие значения белкового коэффициента в сравнении с другими животными. При этом необходимо отметить, что у новорожденных фракция самых «тяжелых» белков - гамма-глобулинов - совсем отсутствует. Она появляется в крови лишь с началом выпаивания жеребятам первых порций молозива. Количество фибриногена (составная часть глобулиновой фракции, принимающая участие в свертывании крови) в плазме крови лошади - около 300 мг/100 мл.

Как известно, характерной особенностью химического состава белков является наличие азота. Однако азот присутствует и во многих других органических веществах, являющихся продуктами расщепления белков (аминокислотах, мочевой кислоте, мочевине, креатине, индикане и др.). Совокупный азот всех этих веществ (за исключением белкового азота) называется небелковым, или остаточным. У взрослой лошади его количество в среднем составляет 34 мг/100 мл (на долю доминирующего компонента остаточного азота - мочевины приходится 3,6...8,6 ммоль/л). Остаточный азот в крови определяют в целях оценки состояния белкового обмена: при усиленном распаде белка в организме значения этого показателя возрастают.

Липиды плазмы крови животных представлены следующими классами: моно-, ди-, триглицеридами, фосфолипидами, холестерином и свободными жирными кислотами. Содержание общих липидов в крови лошади существенно не отличается от других животных и колеблется в пределах от 1 до 10 г/л. Содержание холестерина у этого вида животных обычно находится в пределах 1,9...3,9 ммоль/л.

Углеводы крови лошади главным образом представлены глюкозой. Следует помнить, что ее содержание принято определять только в цельной крови, так как она частично адсорбируется на эритроцитах. Итак, в норме уровень глюкозы в крови составляет 55...95 мг/100 мл (4,1...6,4 ммоль/л). Из других углеводов присутствуют в плазме крови гликоген, фруктоза, молочная и пирови-ноградная кислоты, кетоновые тела, летучие жирные кислоты и др.

Физиологические колебания содержания минеральных веществ в крови лошади обусловлены многими факторами: питанием, возрастом, физиологическим состоянием и др.

Группы крови и переливание крови. В ветеринарной практике для лечения лошадей издавна применяется переливание крови. Особенно актуальным это всегда было во время войны. Однако в любом случае при этом необходимо, чтобы переливаемая кровь от одного животного (донора) имела группу, соответствующую группе крови животного, которому производят переливание (реципиенту). Переливание крови без учета ее совместимости опасно и может быть даже смертельно для животного, получающего кровь. Опасность заключается в том, что плазма реципиента может склеивать (агглютинировать) в комочки эритроциты донора, т. е. происходит агглютинация. После агглютинации эритроциты разрушаются (гемолизируются) и выделяют свои внутриклеточные вещества, в обычном состоянии отсутствующие в плазме крови. Эти соединения действуют, как яды, и отравляют организм реципиента. Кроме того, образовавшиеся комочки эритроцитов могут закупоривать кровеносные капилляры органов (в том числе и жизненно важных, к которым относятся мозг и сердце), что представляет опасность не только для здоровья, но даже для жизни животного.

Комплекс описанных выше явлений, приводящих к таким серьезнейшим изменениям в организме животного в результате переливания несовместимой крови, принято называть гемот-рансфузионным шоком. Агглютинация происходит потому, что в плазме крови содержатся особые вещества (белковой природы), называемые агглютининами {склеивающие), а на поверхности эритроцитов - агглютиногены {склеиваемые). В крови лошади присутствуют два агглютиногена (А и В) и два агглютинина (а и Р). В зависимости от того, какие агглютиногены и агглютинины имеются у конкретного животного, различают 4 группы крови. В I группе крови отсутствуют агглютиногены, но представлены все агглютинины; во II группе есть агглютиноген А и р-агглю-тинин; в III группе есть агглютиноген В и а-агглютинин; в IV группе нет агглютининов, но представлены все агглютиногены. Феномен агглютинации наступает только в том случае, если при переливании крови происходит «встреча» одноименно обозначенных агглютиногенов с агглютининами. При этом склеиваются переливаемые эритроциты, имеющие одноименный агглютиноген с агглютинином реципиента (например, А и а; В и Р).

Таким образом, кровь лошадей I группы можно переливать лошадям с любой группой крови; кровь II группы - только лошадям, имеющим II и IV группы; кровь III группы - лошадям с III и IV группой; кровь IV группы - только лошадям, имеющим IV группу крови. Из этого же следует, что лошадям с I группой крови можно переливать кровь только I группы; лошадям со II группой - кровь II и I групп; лошадям с III группой - кровь III и I групп; лошадям с IV группой - кровь любой группы.

Лошадь, имеющую I группу крови, называют универсальным донором, IV группу - универсальным реципиентом. Следует отметить, что большинство лошадей имеют свою, четко выраженную, одну из четырех групп крови. Лишь у некоторых лошадей (6... 10 %) группы не всегда четко разграничены. Поэтому при переливании крови у лошадей в каждом случае делают пробу на совместимость крови донора и реципиента.