Рефракция — что это такое? Что такое рефракция.

Рефракция глаза – это процесс преломления световых лучей, которые воспринимаются оптической системой органа зрения. Ее уровень можно определить кривизной хрусталика и роговой оболочки, а также расстоянием, на которое друг от друга удалены эти объекты глазной оптики.

Рефракция глаза подразделяется на физическую и клиническую. Клиническая может быть статической и динамической.

Физическая

Физической рефракцией оптической системы называют ее преломляющую силу, обозначенную с помощью диоптрий . В качестве одной единицы этого показателя берется сила линзы, имеющая фокусное расстояние один метр (это значение – противоположность фокусного расстояния). За норму физической рефракции человеческого органа зрения принята величина, находящаяся в пределах значений от 51.8 до 71.3 диоптрий.

Для обеспечения точного восприятия картинки органом зрения в приоритете не преломляющая сила его оптической системы, а ее возможность фокусировки лучей на области сетчатки. Поэтому в офтальмологической практике чаще обращаются к понятию клинической рефракции глаза.

Клиническая

Клинической рефракцией принято называть соотношение силы преломляющего действия оптической системы к длине оси глаза. При этом, входящие в глаз лучи, имеющее параллельное направление, собираются точно в области сетчатки (эмметропия), впереди нее (миопия) или позади (гиперметропия) в покое аккомодации. Аккомодация – это обозначение единой функционирующей системы глазной оптической установки к различным расстояниям, в которой, взаимодействуя, участвуют отделы вегетативной нервной системы (парасимпатический и симпатический).

Каждый из перечисленных видов рефракции клинического типа можно охарактеризовать собственным расположением в пространстве, а именно дальней точкой ясного видения (наиболее удаленной от органа зрения точки, лучи которой собираются в области сетчатки глаза при покое аккомодации).

Выделяют несколько разновидностей клинической рефракции.

  • Осевая – характеризуется уменьшением величины дальнозоркости с возрастом при росте глаза.
  • Оптическая – заключается в изменении силы преломляющего действия глазных оптических сред.
  • Смешанная – имеет признаки обоих вариантов.

Также стоит выделить статический и динамический тип.

Статическая

Этот тип рефракции заключается в характеристике пути получения картины на области сетчатки во время максимального расслабления аккомодации. Данное понятие является искусственным. Она служит для отражения структурных особенностей органа зрения как оптической камеры, которая формирует изображение ретинального типа.

Статический тип принято определять отношением расположения заднего главного фокуса глазной оптической системы и области сетчатки. При наличии эмметропии фокус и сетчатка совпадают, а при аметропии фокус находится или впереди (близорукость), или сзади (дальнозоркость) сетчатки. Эмметропия характеризуется нахождением в условиях бесконечности дальней точки ясного видения; при наличии близорукости она располагается перед органом зрения на конечной удаленности; при дальнозоркости – позади.

Динамическая

Динамическая рефракция глаза – это преломляющая сила глазной оптической системы, в отношении сетчатки при действующей аккомодации.

Эта действующая сила подвержена постоянным изменениям в естественных условиях при выполнении задач зрительной деятельности. Это обусловлено тем, что в действии оказывается не статическая, а динамическая рефракция, которая связана с аккомодацией.

Данная разновидность выполняет следящую функцию (во время перемещения объекта в направлении вперед-назад) и стабилизирующую (с целью фиксации предмета без движения).

Во время полного ослабления динамическое преломление практически совпадает со статическим, а глаз устанавливается в области дальней точки ясного видения. Если произошло усиление рефракции динамического типа в процессе нарастания напряжения аккомодации, происходит устремление к глазу точки ясного зрения. Когда усиление достигает максимального значения, глаз устанавливается к самой близкой точке ясного видения.

Рефракцию глаз измеряют при помощи специального прибора – Этот прибор действует по принципу нахождения плоскости, которая соответствует глазной оптической установке, благодаря перемещению специального изображения до его совмещения с плоскостью.

Узнайте в мире высоких технологий и больших экранов, исчерпывающих наше зрение.

Для более полного ознакомления с болезнями глаз и их лечением – воспользуйтесь удобным поиском по сайту или задайте вопрос специалисту.

Изменение остроты зрения вблизи или вдаль.

Формы

  • Эмметропия – или нормальная рефракция глаза. При этом виде рефракции главный фокус глаза (точки пересечения лучей, проходящих через оптическую систему глаза) совпадает с сетчаткой (внутренней оболочкой глаза, клетки которой преобразуют лучи света в нервные импульсы). Человек, имеющий эмметропию, различает четко все предметы на расстоянии и вблизи. О таком человеке говорят, что имеет нормальное или 100%-ое зрение. В очковой коррекции такие люди не нуждаются.
  • Миопия (близорукость) – такой вид рефракции, при котором задний главный фокус глаза находится перед сетчаткой. Люди, имеющие миопию, четко видят предметы вблизи и мутно, расплывчато вдали. Миопия имеет три степени: слабую – до 3 диоптрий (единицы измерения преломляющей силы линзы), среднюю – от 3 до 6 диоптрий и высокую – свыше 6 диоптрий. Люди, имеющие слабую степень миопии, могут не нуждаться в коррекции или пользоваться очками только для дали – например, чтобы увидеть, что написано на доске или чтобы посмотреть телевизор.
  • Гиперметропия (дальнозоркость) – вид рефракции, при котором главный фокус глаза находится позади сетчатки. Люди, имеющие гиперметропию, плохо видят вблизи и вдаль. Им тяжело дается выполнение работы на близком расстоянии – чтение, вышивание и т.д. У гиперметропии также выделяют три степени: слабую, среднюю и высокую. При слабой степени гиперметропии, хрусталик может изменять свою кривизну, чтобы усилить преломляющую силу глаза – такие пациенты часто не нуждаются в очковой коррекции. Люди, со средней и высокой степенью, пользуются очками для близи, например, при чтении книг.
  • Анизометропия – это наличие разных видов рефракции у одного и того же человека. Например, один глаз может быть миопийным (близоруким), а другой гиперметропийным (дальнозорким) или вид рефракции будет одинаковым, но один глаз, например, будет иметь среднюю степень миопии, а другой – высокую.
  • Анизейкония - это нарушение рефракции, при котором один и тот же предмет на обеих сетчатках глаз выглядит разновеликим, т.е. имеет разный размер. Анизейкония обычно является следствием анизометрии.
  • Астигматизм – как правило, врожденное нарушение, которое заключается в сочетании в глазу различной степени одной и той же рефракции (миопической или гиперметропической) или различных видов ее (смешанный астигматизм). Без очковой коррекции зрительные функции при астигматизме значительно снижены.
  • Пресбиопия (греч. - « старческое зрение») - возникающее после 40-45 лет снижение остроты зрения вблизи. Человек не может как раньше работать с мелкими предметами или читать мелкий шрифт книги или газеты. Обычно причиной пресбиопии является уплотнение хрусталика, которое считается естественным признаком старения организма.
  • Амблиопия (« ленивый глаз»)- это снижение центрального зрения (это центральный участок видимого пространства, осуществляется центральной частью сетчатки глаза), чаще на одном глазу. Наиболее частой причиной амблиопии являются косоглазие, наличие анизометропии, помутнение хрусталика одного глаза, рубец на роговице (прозрачной оболочке глаза).

Причины

Причиной нарушения рефракции глаза могут быть следующие факторы:

  • наследственность – если один из родителей или оба имеют нарушения рефракции, то с вероятностью 50% и выше их дети тоже будут иметь подобные нарушения;
  • перенапряжение глаз – длительные и интенсивные нагрузки на орган зрения;
  • неправильная коррекция – отсутствие своевременной коррекции нарушения рефракции или неправильно подобранные очки или контактные линзы способствуют усугублению сложившейся ситуации;
  • нарушение анатомии глазного яблока – уменьшение или увеличение его размеров или нарушение преломляющей способности роговицы (прозрачной оболочки глаза) или хрусталика (биологической линзы) вследствие его помутнения;
  • дети, имеющие низкий вес при рождении или являющиеся недоношенными, чаще имеют нарушения рефракции;
  • травмы органа зрения;
  • перенесенные операции на глазах;
  • возраст - после 40-45 лет у большинства людей отмечается ухудшение зрения вблизи. Это связано с уплотнение уплотнением хрусталика, которое считается естественным признаком старения организма хрусталика, которое считается естественным признаком старения организма.

Диагностика

  • Анализ анамнеза заболевания и жалоб когда (как давно) у пациента появились жалобы на снижение зрение вдаль или нарушение зрения вблизи; при амблиопии, анизометропии жалобы могут отсутствовать.
  • Анализ анамнеза жизни - страдают ли родители пациента нарушением зрительных функций; были ли у пациента травмы или операции органа зрения.
  • Визометрия – это метод определения остроты зрения (способность глаза различать окружающие предметы раздельно и четко) с помощью специальных таблиц. В России чаще всего используют таблицы Сивцева-Головина, на которых написаны буквы разного размера - от крупных, расположенных вверху, до мелких, находящихся внизу. При 100%-ом зрении человек видит 10-ую строку с расстояния 5-ти метров. Есть аналогичные таблицы, где вместо букв нарисованы кольца, с разрывами определенной стороны. Человек должен сказать доктору, с какой стороны разрыв (сверху, снизу, справа, слева).
  • Автоматическая рефрактометрия – исследование рефракции глаза (процесса преломления световых лучей в оптической системе глаза) при помощи специального медицинского прибора (автоматического рефрактометра).
  • Циклоплегия – медикаментозное « отключение» аккомодационной (ресничной) мышцы (мышцы, которая помогает глазу одинаково хорошо видеть предметы, находящиеся на разном расстоянии) глаза с целью выявления ложной миопии или спазма аккомодации - нарушения свойства глаза одинаково хорошо видеть предметы на разном расстоянии. У человека с нормальным зрением выявится « физиологическая» близорукость, обусловленная спазмом ресничной мышцы. Если же миопия после циклоплегии уменьшается, но не исчезает, то эта остаточная миопия является постоянной и требует коррекции.
  • Офтальмометрия – измерение радиусов кривизны и преломляющей силы (силы, изменяющей направление световых лучей) роговицы (прозрачной оболочки глаза).
  • Ультразвуковая биометрия (УЗБ), или А-сканирование - ультразвуковое исследование структур глаза. Методика представляет полученные данные в виде одномерного изображения, позволяющего оценить расстояние до границы сред (структур организма) с разным акустическим (звуковым) сопротивлением. Позволяет оценить состояние передней камеры глаза, роговицы, хрусталика, определить длину передне-задней оси глазных яблок.
  • Пахиметрия – ультразвуковое исследование толщины роговицы глаза.
  • Биомикроскопия глаза – бесконтактный метод диагностики заболеваний глаз с помощью специального офтальмологического микроскопа, совмещенного с осветительным прибором. Комплекс « микроскоп-осветительный прибор» называется щелевой лампой.
  • Скиаскопия – метод определения рефракции глаза, основанный на наблюдении за движением теней в области зрачка при освещении глаза светом, отраженным от зеркала.
  • Проверка зрение на фороптере – во время этого исследования пациент смотрит на специальные таблицы через фороптер. Таблицы находятся на разном расстоянии. В зависимости от того, насколько пациент хорошо видит эти таблицы, делается заключение о виде имеющейся у него рефракции. Также этот прибор позволяет исключить ошибки при выписывании рецепта на очки. Также с помощью фороптера можно измерять фории (скрытое косоглазие), исследовать различные параметры аккомодации (свойства глаза одинаково четко видеть предметы, находящиеся на разном расстоянии от глаза), горизонтальные и вертикальные вергенции (движение одного глаза или обоих глаз, при котором зрительные оси дивергируются (расходятся) или конвергируются (сходятся).
  • Компьютерная кератотопография – метод исследования состояния роговицы с помощью лазерных лучей. Во время проведения этого исследования специальный медицинский прибор компьютерный кератотопограф сканирует роговицу с помощью лазера. Компьютер выстраивает цветное изображение роговицы, где разными цветами обозначает ее истончение или утолщение.
  • Офтальмоскопия – исследование глазного дна с помощью специального прибора офтальмоскопа. Этот метод позволяет оценить состояние сетчатки, диска зрительного нерва (место выхода зрительного нерва из черепа, зрительный нерв является проводником импульсов в головной мозг, благодаря которым в мозге возникает изображение окружающих предметов), сосудов глазного дна.
  • Подбор подходящих стекол (линз) - в кабинете врача-офтальмолога находится набор линз, имеющий разные степени рефракции, пациенту подбираются оптимально подходящие ему линзы с помощью проверки остроты зрения, используя таблицы Сивцева-Головина.

Лечение нарушении рефракции глаза

Для всех нарушений рефракции:

  • очковая коррекция - постоянное или периодическое ношение очков с линзами, подобранными для определенного вида и степени рефракции;
  • линзовая коррекция – ношение контактных линз, подобранных для определенного вида и степени рефракции.
При наличии миопии, гиперметропии, анизометропии или астигматизма:
  • лазерная коррекция зрения – изменение толщины роговицы с помощью лазерных лучей, как следствие, изменение ее преломляющей силы.
При наличии выраженной пресбиопии и уплотнении хрусталика:
  • замена уплотненного хрусталика искусственным с помощью хирургического вмешательства.
Коррекция амблиопии:
  • окклюзия здорового глаза - заклеивание или накладывание специальной окклюзии (заслонки) более здорового глаза на 2 - 6 часов в день с целью тренировки более слабого глаза.
Тренировка амблиопичного глаза:
  • ортоптическое лечение - восстановление с помощью специальных медицинских аппаратов и компьютерных программ бинокулярного зрения - способности человека одинаково четко видеть окружающие предметы обоими глазами;
  • плеоптическое лечение – усиление зрительной нагрузки на косящий глаз. Для проведения этого вида лечения используют различные раздражители - световые, хроматические (цветные), а также применяют электростимуляцию, электромагнитную стимуляцию, вибромассаж, рефлексотерапию);
  • правильная коррекция имеющейся аметропии - ношение правильно подобранных очков или контактных линз;
  • устранение косоглазия хирургическим методом.

Осложнения и последствия

  • Прогрессирование имеющегося нарушения рефракции.
  • Повышенная утомляемость глаз.
  • Сложности при работе вблизи (чтение, письмо, работа за компьютером) и вдаль (вождение автомобиля).
  • Потеря зрения.

Профилактика нарушении рефракции глаза

  • Посещение офтальмолога 1 раз в год, даже при нормальной рефракции глаза (процессе преломления световых лучей в оптической системе глаза).
  • Режим освещения – стараться давать зрительные нагрузки при хорошем освещении, не использовать лампы дневного света.
  • Режим зрительных и физических нагрузок – необходимо давать отдых глазам после полученной нагрузки.
  • Гимнастика для глаз – комплекс упражнений, направленный на расслабление и укрепление глазных мышц.
  • Адекватная коррекция зрения – ношение только соответствующих вашей рефракции очков и контактных линз.
  • Умеренные физические нагрузки – плавание, прогулки на свежем воздухе, массаж воротниковой зоны и т.д.
  • Полноценное сбалансированное разнообразное питание.

Дополнительно

Рефракция глаза – процесс преломления световых лучей в оптической системе глаза. Оптическая система глаза довольна сложна, она состоит из нескольких частей: роговицы (прозрачной оболочки глаза), влаги передней камеры (это пространство, заполненное жидкостью, находится между роговицей и радужкой глаза (радужка определяет цвет глаз)), хрусталика (биологическая прозрачная линза, находящаяся позади зрачка) и стекловидного тела (студнеобразное вещество, которое находится за хрусталиком). Свет, проходя через все компоненты оптической системы глаза, попадает на сетчатку – внутренняя оболочка глаза, клетки которой преобразуют частицы света в нервные импульсы, благодаря которым в головном мозге человека формируется изображение. Рефракцию глаза измеряют в диоптриях – это единицы измерения преломляющей силы линзы.
Рефракция зависит от многих характеристик: радиусов кривизны передней и задней поверхности роговицы (прозрачной оболочки глаза) и хрусталика (биологической линзы), расстояния между ними, а также от расстояния между задней поверхностью хрусталика и сетчаткой (внутренней оболочкой глаза).
Для человека важна так называемая клиническая рефракция глаза – т.е. положение заднего главного фокуса (точки пересечения лучей, проходящих через оптическую систему глаза) по отношению к сетчатке. Если задний главный фокус лежит на сетчатке, то человек имеет нормальное зрение.
Аметропия - это любое нарушение рефракции глаза. При возникновении аметропии снижается острота зрения вблизи или вдаль, в зависимости от вида нарушения рефракции. Нарушение зрение значительно влияет на качество жизни пациента, ведь 90% информации об окружающем мире мы получаем с помощью органа зрения. Человек, имеющий аметропию, нуждается в консультации врача-офтальмолога и проведении коррекции имеющегося нарушения рефракции.

РЕФРАКЦИЯ ГЛАЗА (позднелат. refractio преломление) - преломля-ющая сила оптической системы глаза, выраженная в диоптриях.

Р. г. как физическое явление («физическая рефракция») определяется радиусом кривизны каждой преломляющей среды глаза, показателями преломления сред и расстоянием между их поверхностями. Следовательно, физическая характеристика Р. г. обусловлена его анатомическим строением (см. Глаз, диоптрика).

В клинике, однако, имеет значение не абсолютная сила оптического (светопреломляющего) аппарата глаза, а ее соотношение с длиной глаза (переднезадней осью), т. е. положение заднего главного фокуса по отношению к сетчатке, что и составляет понятие клинической Р. г.

В зависимости от положения заднего главного фокуса (точки преломления лучей, проходящих через оптическую систему глаза параллельно его оптической оси) по отношению к сетчатке различают три вида клинической Р. г. (рис. 1). 1. Задний главный фокус совпадает с сетчаткой; такая рефракция называется соразмерной и обозначается как эмметропия (см.). 2. При расположении заднего главного фокуса впереди сетчатки говорят о миопии или близорукости (см.). 3. При расположении заднего главного фокуса позади сетчатки Р. г. называют гиперметропией или дальнозоркостью (см.). Последние два вида Р. г. являются несоразмерными и в отличие от эмметропии их называют аметропиями (см.). Т. о., эмметропический глаз установлен к параллельным лучам, идущим из бесконечности, т. е. преломляющая сила его оптической системы соответствует длине его оси, фокус параллельных лучей совпадает точно с сетчаткой, и такой глаз хорошо видит вдаль. Для зрения вблизи такому глазу необходимо усиливать свою рефракцию, что и может быть достигнуто с помощью аккомодации (см. Аккомодация глаза). Близорукий глаз, обладающий как бы избыточной преломляющей силой, может хорошо видеть вблизи на том или ином конечном расстоянии в зависимости от степени миопии, но для хорошего зрения вдаль нуждается в пользовании рассеивающей линзой, превращающей расходящиеся лучи, идущие с близкого расстояния, в параллельные. Глаз с гиперметропической рефракцией к параллельным лучам не установлен но, при условии включения своей аккомодации способен хорошо видеть вдаль. Для рассматривания близко расположенных предметов он вынужден в еще большей степени использовать свою аккомодацию, а в случае ее недостаточности необходимо прибегать к пользованию собирательной линзой соответствующей силы. При любом виде клинической рефракции глаз имеет всегда только одну наиболее отдаленную точку в пространстве, к к-рой он установлен (лучи, исходящие из этой точки, фокусируются на сетчатке). Эту точку называют дальнейшей точкой ясного зрения (см.). Для эмметрического глаза она лежит в бесконечности, при миопии - на каком-то конечном расстоянии впереди глаза (тем ближе, чем выше степень миопии); для гиперметропического глаза дальнейшая точка ясного зрения является мнимой, т. к. в этом случае на сетчатке могут фокусироваться только лучи, уже имеющие нек-рую степень схождения, а таких лучей в естественных условиях нет. Т. о., положение дальнейшей точки ясного зрения определяет вид клин, рефракции и степень аметропии.

Р. г. изучалась многими исследователями - Г. Гельмгольцем, Чернингом (М. H. E. Tscherning), А. Гулльстрандом, Листингом (.). В. Listing), В. К. Вербицким, Е. Ж. Троном и др., но причины развития различных видов ее остаются не вполне выясненными. Во второй половине 19 в. основоположник учения о рефракции и аккомодации голландский ученый Ф. Дондерс считал эмметропическую рефракцию нормой, а аметропию патологией. При этом основным фактором развития аметропий считалось изменение переднезадней оси глаза (удлинение ее при близорукости и укорочение при гиперметропии). Изменениям в преломляющей силе глаза придавали второстепенное значение. Выделение этих факторов как причины развития того или иногда вида Р. г. положило начало учению о существовании двух типов аметропий: осевой и рефракционной.

Исследования Штейгера (A. Steiger, 1913) позволили установить значительную изменчивость оптического аппарата глаза и объяснить возникновение различных видов рефракции случайным сочетанием варьирующих элементов оптического аппарата, т. е. преломляющей силы и длины оси глаза. В дальнейшем исследования Е. Ж. Трона, А. И. Да-шевского и др. подтвердили эти данные. Напр., при эмметропии, по данным Е. Ж. Трона, длина глаза варьировала в пределах от 20,54 мм до 38,18 мм, а преломляющая сила в пределах от 52,59 до 71,3 дптр, по данным А. И. Дашевского, преломляющая сила глаз при эмметропии менялась в пределах от 52,0 до 67,0 дптр. Наряду с этим была установлена определенная закономерность в сочетании основных элементов, определяющих клиническую рефракцию глаза, а именно, отрицательная корреляция между ними, т. е. выраженная тенденция к сочетанию более длинной оси глаза с более слабой преломляющей силой, и, наоборот, более короткой оси с более высокой преломляющей силой.

Было установлено, что эмметропия определяется оптимальным сочетанием анатомо-оптических элементов глаза. Что касается аметропий, то Е. Ж. Трон предложил разделить их на четыре группы: 1. Осевая аметропия - преломляющая сила в пределах величин, наблюдаемых при эмметропии, но длина оси глаза больше, или меньше величин, наблюдаемых при эмметропии (на долю этой группы аметропий пришлось 30,2% обследованных); 2. Рефракционная аметропия - длина оси глаза в пределах величин, наблюдаемых при эмметропии, но преломляющая сила больше, чем при эмметропии (3,7% обследованных); 3. Аметропия смешанного типа - длина оси глаза и преломляющая сила находятся вне пределов, наблюдаемых при эмметропии (3,4%); 4. Комбинационная аметропия - длина оси глаза и преломляющая сила не выходят за пределы величин, наблюдаемых при эмметропии (62,7%). Т. о. , последний тип аметропии оказался самым частым. Это дает основание рассматривать эмметропию и небольшие степени гиперметропии и миопии в качестве биологических вариантов в ходе формирования клинической рефракции глаза. Только крайние степени аметропий (свыше 6,0 дптр) могут рассматриваться как значительные отклонения от биологических вариантов, причем, как правило, в этих случаях превалирует осевой фактор. Случаи с высокой прогрессирующей близорукостью и тяжелыми изменениями в оболочках глаза (склере, сосудистой оболочке и сетчатке) необходимо расценивать уже как патологию и осуществлять не только оптическую коррекцию, но и проводить соответствующее лечение.

По мнению А. И. Дашевского, следует различать три группы клинической Р. г.: эмметропию, соразмерные и несоразмерные (осевые) аметропии. К соразмерным аметропиям относят случаи, где преломляющая сила и длина оси глаза таковы, какие могут наблюдаться и при эмметропии, несоразмерные - те, при к-рых эмметропия невозможна. На основании изучения оптической системы глаз фотоофтальмометрическим и фо-тоанатомическим методами А. И. Да-шевский придерживается теории так наз. первичной рефракции глаза ii вторичной, по к-рой первичная форма глаза является шаровидной и только в дальнейшем происходит изменение этой формы во вторичную за счет изменения параметров глаза (одного, двух или всех трех его диаметров), в результате чего развиваются как эмметропия, так и другие виды клинической Р. г. По данным В. П. Одинцова, почти у всех новорожденных имеется гиперметропия; среди лиц, достигших 25-летнего возраста, гиперметропия наблюдается в 50-55%, эмметропия - в 30-35% и миопия в 15-20% случаев.

В настоящее время установлено, что в развитых странах наблюдается определенная тенденция к росту числа близоруких, что связывают гл. обр. с привычной работой на близком расстоянии, напр, чтение, письмо.

Японский исследователь Сато (I. Sato, 1957) среди учащихся высших учебных заведений установил до 70% случаев близорукости. Следует, однако, подчеркнуть, что близорукость в школьном возрасте (так наз. школьная миопия), как правило, остается в пределах невысоких степеней при сохранении высокой остроты зрения (с коррекцией). Самый механизм развития близорукости (см.) трактуется по-разному. Напр., по мнению А. И. Дашевского, привычное напряжение аккомодации при занятиях на близком расстоянии (первоначальный «спазм» аккомодации) в дальнейшем фиксируется, создавая клинически миопию. По мнению Э. С. Аветисова, основное значение в развитии близорукости принадлежит слабости аккомодации (врожденной и приобретенной вследствие различных заболеваний), в результате чего рождается импульс к увеличению длины глаза по законам отрицательной корреляции.

Если признавать, что выражением рефракционной нормы является не только эмметропия, а и небольшие степени аметропии, то большой интерес представляет сопоставление двух кривых: рефракционной кривой Беча (A. Betsch), характеризующей оптическую систему и полученной на основе многочисленных данных (исследование 12 тыс. глаз), и нормальной вариационной кривой, к-рая служит выражением нормальной биологической изменчивости параметров глаза. Более или менее полное совпадение этих кривых отмечают лишь в детском возрасте. У взрослых же рефракционная кривая несколько отличается от нормальной вариационной, во-первых, своей островершинностью, а во-вторых, нек-рым сдвигом в сторону миопии (рис. 2). Крайние степени аметропий выходят за пределы биологической вариабельности.

Анализируя различные теории возникновения Р. г., можно считать,что в формировании клинической Р. г. необходимо признавать участие и роль как наследственных факторов, так и факторов окружающей среды.

Библиография: Авербах М. И. Офтальмологические очерки, с. 220, М., 1949; Аветисов Э. С. Охрана зрения детей, с. 39, М., 1975; Волков В. В. и Ш и л я е в В. Г. Общая и военная офтальмология, Л., 1980; Д а ш е в- с к и й А. И. Новые методы изучения оптической системы глаза и развития его рефракции, Киев, 1956; Одинцов В. П. Курс глазных болезней, с. 59 и др., М., 1946; Трон Е. Ж. Оптические основы аметропии, Сб. в ознаменование сорокалетия науч. деятельн. засл. деятеля науки М. И. Авербаха, с. 489, М.- Л., 1935; он же, Изменчивость элементов оптического аппарата глаза и ее значение для клиники, Л., 1947; Betsch А. tJber die menschliche Refraktionskurve, Klin. Mbl. Augenheilk., Bd 82, S. 365, 1929; Steiger A. Die Entstehung der spharischen Refraktionen des menschlichen Auges, B., 1913.

М. Л. Краснов.

Функции человеческого глаза уникальны. Этот орган обрабатывает световые лучи, отражающиеся от объектов окружающего мира. Именно таким образом в сетчатке формируются простейшие детали изображения, позже поступающие в головной мозг.

Для обеспечения правильного улавливания света глазу необходимы преломляющие структуры, к которым относятся , и . Необходимо понимать, что такое рефракция зрения, и как она работает.

Рефракция зрения — сложный процесс

Свет, отраженный от предметов окружающего мира, попадает в зрительный аппарат под разными углами, что препятствует зрительному восприятию. Световые лучи должны попадать точно на сетчатку для формирования первичного изображения.

У зрительного аппарата человека есть система специальных линз, направляющая отраженный свет точно в область сетчатки. К таким линзам относят роговицу, хрусталик и стекловидное тело.

Каждая линза человеческого глаза обладает собственной преломляющей силой, но самую главную роль играет хрусталик. Эта структура способна изменять свою форму под действием прикрепленных к ней мышечных волокон. Именно за счет таких изменений и формируется аккомодация – способность различать детали ближних и дальних объектов.

Суть рефракции (преломления) заключается в изменении направления света при попадании в среду с другими физическими свойствами. Луч света проходит через несколько оптических сред, изменяющих его направление.

Нарушения зрительной рефракции побуждают людей обратиться к окулисту. Это может быть близорукость, дальнозоркость или астигматизм. Обычно ошибка преломления заключается в том, что луч света падает перед сетчаткой или за ее пределами, что препятствует работе зрительного аппарата.

Очки или контактные линзы исправляют проблему, выполняя функцию дополнительной оптической среды. Также распространена лазерная коррекция роговицы, исправляющая рефракционные свойства .

Как зрительный аппарат человека формирует изображение?

Рефрактометрию можно проводить и детям

Итак, зрительная функция начинается с восприятия и преломления световых лучей, отражающихся от объектов. Свет достигает глазного дна, где находится .

Сетчатка – это специальный аппарат, расположенный в задней части глаза. Аппарат содержит рецепторные клетки, отвечающие за цветное и черно-белое зрение. Свет, достигший сетчатки, возбуждает рецепторы зрения, что приводит к формированию нервного импульса.

Нервный импульс содержит первичную зрительную информацию и транспортируется в головной мозг через , анатомически связанный с сетчаткой. В затылочной части головного мозга происходит формирование целостной картины окружающего мира, которую человек и анализирует.

Сетчатка содержит центральный и периферический участки. Центральный участок структуры отвечает за четкое цветное восприятие, а периферический – за черно-белое восприятие. Периферический участок позволяет человеку мгновенно замечать движения окружающих объектов, а центральный участок дает возможность лучше рассмотреть детали.

Для коррекции поступающего в глаз света нужен не только хрусталик, но и . Зрачок – это своеобразная диафрагма глаза, регулирующая интенсивность поступающих световых лучей. Присматриваясь к дальним или близким объектам, человек сужает или расширяет диафрагму глаза.

Причины возникновения рефракционных ошибок

Коррекцию зрения можно провести с помощью очков

Способность глаза фокусировать свет на сетчатке зависит от трех параметров: общей длины внутренней структуры глаза, кривизны роговицы и кривизны внутренних линз глаза.

  • Длина внутренней структуры глаза. Если глаз слишком длинный, то свет фокусируется перед сетчаткой, что вызывает близорукость. Если же глаз слишком короткий, то свет фокусируется за сетчаткой, формируя дальнозоркость.
  • Кривизна роговицы. Если роговица не имеет идеальную сферическую форму, то изображение преломляется или фокусируется неправильно. Такое состояние называют астигматизмом – оно может возникать самостоятельно или вместе с близорукостью/дальнозоркостью.
  • Кривизна внутренних линз глаза. Если другие линзы глаза слишком круто изогнуты относительно общей длины глаза и кривизны роговицы, то формируется близорукость. Если линзы слишком плоские, то формируется дальнозоркость.

Более сложные патологии рефракции зрения, называемые аберрациями высокого порядка, также связаны с неправильным преломлением поступающего в глаз света.

Как диагностируют и лечат патологии рефракции?

Ошибки рефракции диагностируются офтальмологом или оптометристом с помощью специального аппарата, называемого рефрактометром. Для оценки функции преломления прибор помещают перед глазами пациента и проводят рефрактометрию.

Некоторым пациентам назначают ретиноскопию для уточнения диагноза. Такой метод также поможет составить рецепт для очков или контактных линз.

Патологии рефракции обычно корректируются очками или контактными линзами, помогающими глазу фокусировать изображение на сетчатке. Существуют также различные хирургические операции. Большинство таких операций исправляет форму роговицы, благодаря чему изменяется кривизна и сила преломления линзы.

Типы операций:

  • Фоторефрактивная кератэктомия.
  • Лазерный кератомилез (LASIK).
  • Лазерный эпителиальный кератомилез (LASEK).
  • epiLASIK.

Современная лазерная хирургия позволяет с высокой точностью изменять форму роговицы, исправляя близорукость, дальнозоркость и астигматизм.

Что такое рефрактометрия и зачем она используется?

Рефрактометрия — проведение диагностики

Диагностика рефракции обычно включена в процедуру обычного осмотра глаз у офтальмолога. Этот тест также можно назвать диагностикой . Результаты рефрактометрии помогают глазному врачу выписать правильный рецепт на очки или контактные линзы.

Обычно результаты рефрактометрии оцениваются по шкале от 1 до 20. Значение 20/20 считается показателем оптимального зрения. Такой результат рефрактометрии примерно соответствует остроте зрения, равной единице. Человек с таким зрением различает 10 из 12 строчек офтальмологической таблицы.

Если результат рефрактометрии меньше 20/20, то врачом предполагается наличие рефракционной патологии. Это означает, что свет, попадающий в глаз такого пациента, неправильным образом изменяет свое направление и не попадает на сетчатку. В этом случае офтальмолог выпишет пациенту рецепт на очки или линзы.

Результаты теста также могут использоваться для диагностики следующих состояний:

  1. Астигматизм. Это аномалия кривизны роговицы, при которой возникает размытое зрение.
  2. Гиперметропия, при которой человек нечетко видит ближние объекты.
  3. Миопия, при которой человек плохо видит дальние объекты.
  4. Пресбиопия – нарушение структуры линз глаза, при котором человек не способен различать мелкие детали. Частая проблема у пожилых людей.
  5. Язва или инфекция роговицы.
  6. Дегенерация желтого пятна – состояние, при котором возникает поражение сетчатки на фоне нарушения проходимости мелких сосудов.
  7. Окклюзия сосудов сетчатки – патология, связанная с закупоркой сосудов сетчатки.
  8. Пигментный ретинит – редкое генетическое заболевание, приводящее к повреждению сетчатки.
  9. Отслойка сетчатки – крайне опасное состояние, при котором сетчатка отделяется от структур глазного дна. Может привести к слепоте.

Рефрактометрия позволяет выявить заболевания зрения, протекающие бессимптомно.

Кому необходима рефрактометрия?

Рефрактометрию следует проводить в целях профилактики

Здоровые взрослые люди, не испытывающие проблем со зрением, должны проходить рефракционный тест каждые 3-5 лет. Детям необходимо проходить процедуру каждые два года начиная с трехлетнего возраста.

Если человек уже использует очки или контактные линзы, ему необходимо каждый год проверять состояние рефракционной функции глаз. Это необходимо для назначения нового рецепта в случае снижения остроты зрения.

Пациентам, страдающим от диабета, требуется ежегодная рефрактометрия. Дело в том, что при сахарном диабете могут повреждаться сосуды, питающие глаз. Это может привести к таким заболеваниям, как диабетическая ретинопатия или глаукома. В целом, пациенты с диабетом подвержены большему риску слепоты, чем другие люди.

Ежегодная рефрактометрия особенно необходима людям, у которых члены семьи страдали от глаукомы. Глаукома – это заболевание, связанное с . Высокое давление повреждает сетчатку и зрительный нерв, что может привести к слепоте.

Регулярное обследование у офтальмолога позволят выявить ранние признаки глаукомы и других патологий зрения. Это особенно важно для пациентов старше 40 лет.

Как проводится рефрактометрия?

Диагностика проводится офтальмологом. Перед процедурой может потребоваться закапывание глаз для улучшения диагностической точности метода.

Пациента просят сесть на стул перед рефрактометром. Лоб и подбородок необходимо прислонить к прибору так, чтобы врач мог видеть глаза. Во время диагностики пациенту нужно фокусировать взгляд на различных изображениях.

Рефрактометр содержит линзы различной силы, которые врач переключает во время исследования. Оценивается преломляющая сила обоих глаз.

Таким образом, рефракция зрения является важнейшим параметром работы зрительного аппарата, обеспечивающим фокусировку света на сетчатке.

Подробнее о рефракции объяснит видео:

Глаз человека – это в конечном счете прибор для приема и переработки световой информации. Его ближайшим техническим аналогом является телевизионная видеокамера.


Ю. З. Розенблюм, доктор медицинских наук, профессор,
руководитель лаборатории офтальмоэргономики и оптометрии
Московского НИИ глазных болезней имени Гельмгольца.

"Основная цель данной книги - помочь читателю понять, как работают его глаза и как можно эту работу улучшить. Ибо дело врача - показать пациенту все пути, ведущие к его выздоровлению (точнее, реабилитации), а уж окончательный выбор этого пути - дело пациента."

Что такое рефракция?

Глаз человека - это в конечном счете прибор для приема и переработки световой информации. Его ближайшим техническим аналогом является телевизионная видеокамера. Как глаз, так и камера состоят из двух частей: оптической системы, формирующей изображение на какой-то поверхности, и растра - мозаики из светочувствительных элементов, которые превращают световой сигнал в какой-то другой (чаще всего электрический), который можно передать в накопитель информации. В случае глаза таким накопителем является человеческий мозг, в случае видеокамеры - магнитофонная лента. На рисунке 1 схематически показано устройство глаза в сравнении с устройством видеокамеры.

Как и у видеокамеры, у глаза есть объектив. Он состоит из двух линз: первая представлена роговой оболочкой, или роговицей, - прозрачной выпуклой пластинкой, вставленной спереди в плотную оболочку глаза (склеру) наподобие часового стекла. Вторая представлена хрусталиком - чечевицеобразной двояковыпуклой линзой, сильно преломляющей свет. В отличие от видеокамеры и других технических камер, эта линза сделана из эластичного материала, и ее поверхности (особенно передняя) могут менять свою кривизну.

Достигается это следующим образом. Хрусталик в глазу «подвешен» на тонких радиальных нитях, которые охватывают его круговым поясом. Наружные концы этих нитей прикрепляются к специальной круговой мышце, которая называется ресничной. Когда эта мышца расслаблена, то кольцо, образуемое ее телом, имеет большой диаметр, нити, держащие хрусталик, натянуты, и его кривизна, а следовательно и преломляющая сила, минимальна. Когда же ресничная мышца напрягается, ее кольцо сужается, нити расслабляются, и хрусталик становится более выпуклым и, следовательно, более сильно преломляющим. Это свойство хрусталика менять свою преломляющую силу, а вместе с этим и фокусную точку всего глаза, называется аккомодацией. Заметим, что и технические системы обладают этим свойством: это наводка на резкость при изменении расстояния до предмета, только она осуществляется не изменением кривизны линз, а их перемещением вперед или назад по оптической оси.

В отличие от видеокамеры, глаз заполнен не воздухом, а жидкостью: пространство между роговицей и хрусталиком заполнено так называемой камерной влагой, а пространство позади хрусталика - студнеобразной массой (стекловидным телом). Еще один общий элемент у глаза и видеокамеры - диафрагма. В глазу это зрачок - круглое отверстие в радужной оболочке, диск, который находится за роговицей и определяет цвет глаза. Функция этой оболочки - ограничивать поступление света в глаз при очень яркой освещенности. Это достигается сужением зрачка при высокой освещенности и расширением - при низкой. Радужная оболочка переходит в ресничное тело, содержащее уже упомянутую нами ресничную мышцу, а затем в сосудистую оболочку, которая представляет собой густую сеть кровеносных сосудов, выстилающую изнутри склеру и питающую все ткани глаза.

Наконец, важнейшим элементом обеих систем является светочувствительный растр. В камере это сеть крошечных фотоэлементов, перерабатывающих световой сигнал в электрический. В глазу это специальная оболочка - сетчатка. Сетчатка - достаточно сложное устройство, главным в котором является тонкий слой светочувствительных клеток - фоторецепторов. Они бывают двух видов: отвечающие на слабый засвет (так называемые палочки) и отвечающие на сильный засвет (колбочки). Палочек насчитывается около 130 миллионов, и они расположены по всей сетчатке кроме самого центра. Благодаря им, обнаруживаются предметы на периферии поля зрения, в том числе при низкой освещенности. Колбочек насчитывается около 7 миллионов. Они расположены главным образом в центральной зоне сетчатки, в так называемом «желтом пятне». Фоторецепторы при изменении количества падающего на них света генерируют электрический потенциал, который передается на клетки-биполяры, а затем на ганглиозные клетки. При этом, благодаря сложным соединениям этих клеток, происходит удаление случайных «помех» в изображении, усиливаются слабые контрасты, острее воспринимаются движущиеся предметы. В конечном счете вся эта информация в кодированном виде передается в виде импульсов по волокнам зрительного нерва, которые начинаются от ганглиозных клеток и идут в мозг. Зрительный нерв - аналог кабеля, который передает сигнал от фотоэлементов на регистрирующее устройство в видеокамере. Разница только в том, что в сетчатке существует не просто передатчик изображения, но и «компьютер», занимающийся обработкой изображения.

Существует поверье, что новорожденный младенец видит мир перевернутым и только постепенно, сопоставляя видимое с осязаемым, учится видеть все правильно. Это весьма наивное представление. Хотя на сетчатке глаза действительно возникает перевернутое изображение видимой картины, это вовсе не означает, что такое же изображение отпечатывается в мозгу. Надо сказать, что «изображение» (если под ним понимать распределение в пространстве возбужденных и невозбужденных нервных клеток - нейронов) в зрительном центре - а он находится на берегах шпорной борозды затылочной коры мозга - весьма сильно отличается от картинки на сетчатке. В нем гораздо крупнее и детальнее изображен центр картинки, чем ее периферия, выделяются резкие перепады освещенности - контуры предметов, каким-то образом отделяются движущиеся детали от неподвижных. Словом, в зрительной системе происходит не просто передача изображения, как в телефаксе, а одновременно его расшифровка и отбрасывание ненужных или менее нужных деталей. Впрочем, сейчас уже изобрели технические системы по сжатию информации для ее экономной передачи и хранения. Нечто подобное происходит и в человеческом мозге. Но наша тема - не обработка изображения, а его получение. Для того, чтобы оно было резким, сетчатка, очевидно, должна находиться в заднем фокусе оптической системы глаза. Возможны три случая, схематически изображенные на рисунке 2: либо сетчатка находится впереди фокуса, либо в фокусе, либо позади него. Во втором случае изображение предметов, находящихся вдали («в бесконечности»), будет резким, четким, в остальных двух оно будет размытым, нечетким. Но есть разница: в первом случае никакие внешние предметы не видны четко, причем близкие видны еще хуже, чем удаленные, тогда как в третьем случае есть какое-то конечное расстояние от глаза, на котором предметы видны четко.

Относительное положение фокусной точки глаза и сетчатки называется клинической рефракцией, или просто рефракцией, глаза. Случай, когда фокус лежит за сетчаткой, называется дальнозоркостью (гиперметропией), когда на сетчатке - соразмерной рефракцией (эмметропией), когда перед сетчаткой - близорукостью (миопией). Из сказанного должно быть ясно, что близорукость - удачный термин, поскольку такой глаз хорошо видит вблизи, а дальнозоркость - неудачный термин, поскольку такой глаз плохо видит и вдаль, и вблизи.
В случае дальнозоркости или близорукости зрение может быть исправлено с помощью очков. Действие очков основано на свойстве сферических линз собирать или рассеивать лучи. При дальнозоркости в очки должна быть вставлена выпуклая (собирательная) очковая линза (рис. 3), при близорукости - вогнутая (рассеивающая) очковая линза (рис. 4). Выпуклые очковые линзы обозначаются знаком «+», а вогнутые знаком «-».

Степень близорукости и дальнозоркости измеряется преломляющей силой той линзы, которая их исправляет.
Напомним, что преломляющая сила (рефракция) линзы - это величина, обратная ее фокусному расстоянию, выраженному в метрах. Измеряется она в диоптриях. Очковая линза силой в одну диоптрию (обозначается латинской буквой 1 D, по-русски 1 дптр) имеет фокусное расстояние в 1 метр, две диоптрии - в 1/2 метра, десять диоптрий - в 1/10 метра и так далее.

Итак, когда говорят, что у человека близорукость 2 диоптрии, это означает, что фокус его глаза находится перед сетчаткой и что человек четко видит предметы, находящиеся на расстоянии 1/2 метра от глаз, и для того чтобы резко увидеть далекие предметы, ему необходимо поместить перед глазами вогнутые очковые линзы силой -2 D. А дальнозоркость в 5 диоптрий означает, что нужна выпуклая линза +5 D. В реальном пространстве нет такого расстояния, на котором бы дальнозоркий глаз, в отличие от близорукого, хорошо видел.

Впрочем, так ли это на самом деле? Ведь мы до сих пор не принимали в расчет аккомодацию, то есть считали, что рефракция глаза постоянна. Однако это не так. Благодаря ресничной мышце выпуклость поверхностей хрусталика, а следовательно и вся рефракция глаза, может меняться. Схематически процесс аккомодации показан на рисунке 5. Сверху изображен соразмерный глаз при расслабленной ресничной мышце, то есть при покое аккомодации, снизу - при сокращенной ресничной мышце, то есть при напряжении аккомодации. В первом случае глаз сфокусирован на предмет, находящийся в бесконечности, во втором - на предмет, находящийся на конечном расстоянии. Значит, аккомодация может изменять рефракцию глаза - превращать соразмерный глаз в близорукий, а дальнозоркий - в соразмерный.

Может быть, тогда очки вообще не нужны? Нет, аккомодация не всегда может заменить очки. Как мы уже говорили, в спокойном состоянии ресничная мышца расслаблена, значит, рефракция глаза в этом состоянии слабейшая. Здесь нужно сделать одну оговорку: слабая рефракция - это дальнозоркость, хотя она обозначается знаком «+», а сильная - близорукость, хотя она обозначается знаком «-». Итак, глаз в спокойном состоянии аккомодации «максимально дальнозоркий», а в напряженном - «максимально близорукий». Отсюда следует, что напряжение аккомодации может исправлять дальнозоркость и не может исправлять близорукость.

Правда, периодически появляются сообщения об обнаружении отрицательной аккомодации, но никому пока не удалось показать, что она может быть больше 1 диоптрии. Аккомодация, как и рефракция, измеряется в диоптриях. Для соразмерного глаза степень ее напряжения означает расстояние ясного видения: так, при аккомодации в 2 диоптрии глаз видит четко на 1/2 метра, в 3 диоптрии - на 1/3 метра, в 10 диоптрий - на 1/10 метра и так далее.
Для дальнозоркого глаза аккомодация выполняет еще и задачу исправления дальнозоркости при зрении вдаль. Значит, дальнозоркость требует постоянного напряжения аккомодации. При дальнозоркости большой степени такая задача становится для ресничной мышцы непосильной. Но и при умеренной дальнозоркости (и даже при соразмерной рефракции) рано или поздно возникает необходимость в очках. Дело в том, что с 18-20 лет ресничная мышца начинает ослабевать. Точнее, ослабевает способность к аккомодации, хотя до сих пор не ясно, связано это с ослаблением ресничной мышцы или с отвердением хрусталика.

В возрасте старше 35-40 лет даже человеку с соразмерной (эмметропической) рефракцией бывают необходимы очки для работы на близком расстоянии. Если считать рабочим расстоянием 33 сантиметра (нормальное расстояние от глаз до книги), то человеку после 30 лет для замены слабеющей аккомодации бывают необходимы «плюсовые» очки, в среднем, по одной диоптрии на каждые 10 лет, то есть: 40-летнему - 1 диоптрия, 50-летнему - 2 диоптрии, 60-летнему - 3 диоптрии. При дальнозоркости к этим цифрам еще нужно прибавлять ее степень. Людям старше 60 лет силу очковых линз обычно уже не увеличивают, так как «плюсовые» очковые линзы в 3 диоптрии полностью заменяют аккомодацию на 33-сантиметровое расстояние. Только тогда, когда острота зрения слабеет и человеку приходится придвигать книгу еще ближе к глазам, оптическую силу очковых линз увеличивают, однако это уже другое использование очковые линз - не для исправления нарушений рефракции и аккомодации, а для увеличения изображения. Возрастное ослабление аккомодации получило название «пресбиопия».
Итак, каждый глаз обладает рефракцией и определенным объемом аккомодации. Последняя обеспечивает четкое видение на разных расстояниях и до известной степени может компенсировать дальнозоркость. Две крайние точки объема аккомодации называются ближайшей и дальнейшей точками ясного видения. Схематически положение этих точек для дальнозоркого, близорукого и соразмерного глаза показано на рисунке 6. На этом рисунке даны две шкалы расстояний: в диоптриях и в сантиметрах. Понятно, что вторая шкала распространяется только на рефракцию отрицательных значений. Для рефракции положительных значений дальнейшая точка ясного видения лежит не в реальном, а в «отрицательном» пространстве, то есть лежит как бы «за глазом».

Органом, непосредственно реализующим аккомодацию, является хрусталик. Без него аккомодация невозможна. А зрение, оказывается, возможно. И это впервые показал французский хирург Жак Давиэль более двухсот лет тому назад. Он первым провел операцию удаления катаракты. Катаракта - это помутнение хрусталика, одна из самых частых причин слепоты в пожилом возрасте. Глаз без хрусталика видит, но очень нечетко, потому что у человека появляется дальнозоркость приблизительно 10-12 D. Для восстановления зрения такому человеку необходимы очки с сильными «плюсовыми» очковыми линзами.
Сейчас после удаления катаракты внутрь глаза в большинстве случаев вставляют маленькую очковую линзу - искусственный хрусталик из органического стекла. Первым эту операцию стал проводить английский хирург Ридли. Во время Второй мировой войны ему приходилось оперировать раненных в глаза летчиков. Он обратил внимание на то, что глаз почти не реагирует на попавшие внутрь него осколки от лобового стекла, сделанного из плексигласа, в то время как на металлические осколки отвечает бурным воспалением. И тогда Ридли попробовал вставлять вместо хрусталика линзы из плексигласа. За прошедшие десятилетия сами линзы, да и способ имплантации сильно изменились. Теперь такие линзы делают из различных материалов, в том числе силикона, коллагена и даже искусственного алмаза лейкосапфира. Но принцип замены мутного хрусталика внутриглазной линзой остался прежним. Линза избавляет человека от тяжелых и неудобных очков и не имеет их недостатков - сильного увеличения, ограничения поля зрения и призматического действия на периферии.

Остается добавить, что состояние глаза без хрусталика называется афакией (а - отрицание, факос - линза), а с искусственным хрусталиком - артифакией (или псевдофакией). Два вида коррекции афакии (очками и внутриглазной линзой) изображены на рисунке 7.

Рефракция в жизни

До сих пор мы рассматривали теоретический «средний» глаз. Обратимся теперь к реальному человеческому глазу. От чего зависит его рефракция? Очевидно, с одной стороны, от взаимоотношения преломляющей силы «объектива», то есть роговицы и хрусталика, и с другой, от расстояния от вершины роговицы до сетчатки, то есть длины оси самого глаза. Чем больше преломляющая сила и чем длиннее глаз, тем сильнее его рефракция, то есть тем меньше дальнозоркость и больше близорукость.

Если все эти величины - роговица, хрусталик и ось - распределяются более или менее случайно вокруг какого-то среднего для каждой из них значения, то и рефракция должна распределяться так же. Встречаемость разных видов рефракции должна подчинятся так называемой гауссовой кривой с тупой вершиной и симметричными пологими плечами. При этом соразмерная рефракция (эмметропия) должна быть достаточно редким явлением.

Первым, кто изучил статистику кривизны роговицы, был немецкий ученый Штейгер. Он получил действительно равномерное распределение кривизны (и, следовательно, преломляющей силы) роговой оболочки среди взрослого населения (рис. 8).

Позднее, когда с помощью оптических приборов научились измерять преломляющую силу хрусталика, а с помощью ультразвука - длину оси глаза, оказалось, что эти параметры подчиняются гауссовскому распределению. Казалось бы, и распределение глаз по рефракции должно подчиняться этому же закону. Но первые же статистические исследования рефракции в разных популяциях взрослых людей выявили совсем иную картину. Кривая распределения рефракции («рефракционная кривая») имеет очень острую вершину в области слабой (около 1 D) дальнозоркости и несимметричные скаты - более крутой в сторону значений положительных значений (дальнозоркость) и более пологий в сторону отрицательных значений (близорукость). Эта кривая, заимствованная из работы Бетша, показана жирной линией на рисунке 9. Но на этом рисунке есть и вторая, пунктирная, линия, показывающая гауссовское распределение с максимумом в области около +3 D.

Что это за кривая? Это распределение рефракции у новорожденных детей, которое получили французский офтальмолог Вибо и российский офтальмолог И.Г. Титов.

Значит, когда человек рождается, его рефракция определяется случайным сочетанием преломляющей силы хрусталика и роговицы и длины оси глаза, а за время жизни происходит какой-то процесс, заставляющий сформировать в большинстве глаз слабую дальнозоркость, близкую к эмметропии. Немецкий врач Штрауб в 1909 году назвал этот процесс «эмметропизацией», а четверть века спустя ленинградский профессор Е.Ж. Трон нашел его материальный субстрат - отрицательную корреляцию длины оси глаза с его преломляющей силой. При этом оказалось, что рефракцию определяет почти исключительно длина оси глаз, тогда как распределение преломляющей силы роговицы и хрусталика остается таким же случайным, как и при рождении. Большие глаза близорукие, маленькие - дальнозоркие. С возникновением ультразвуковой техники появилась возможность легко измерять длину оси глаза. Было подтверждено, что все отклонения (или, как их называют, аномалии) рефракции обусловлены или недостаточным (дальнозоркость) или избыточным (близорукость) ростом глазного яблока, причем каждый миллиметр длины оси означает примерно 3 диоптрии рефракции.
Когда и как осуществляется процесс эмметропизации? Ответ на первый вопрос дали статистические исследования рефракции у детей разных возрастов. Такие исследования проводились как в больших группах детей разных возрастов («поперечный срез»), так и в небольших группах одних и тех же детей, прослеженных на протяжении нескольких лет («продольный срез»). В Англии эту работу провел А. Сорсби, в России Э.С. Аветисов и Л.П. Козорез. Результаты этих работ были сходными: широкое распределение значения рефракции с максимумом в области дальнозоркости (2-3 D) сменялось узким распределением с максимумом в области дальнозоркости (0,5-1,0 D) в основном в течение первого года жизни ребенка. Схематически это показано на рисунке 10, где жирной чертой обозначено среднее значение рефракции, а заштрихованная зона показывает дисперсию рефракции по среднему квадратичному отклонению.

Процесс эмметропизации продолжается до 6-7 лет, но значительно менее интенсивно. В основном, при этом происходит согласованный рост всех частей глаза, который поддерживает состояние, близкое к эмметропии. Но как тогда у людей возникает дальнозоркость и близорукость?

Происхождение этих двух видов аномалий рефракции различно. Дальнозоркость остается у тех детей, у которых при рождении глаза были слишком маленькими, а также у тех, у кого механизм эмметропизации по какой-то причине нарушился и глаза перестали расти. Отсюда следует, что дальнозоркость - врожденное состояние. Она не может возникать в течение жизни и практически не может расти. Если взрослый человек обнаруживает, что у него вдруг появилась дальнозоркость, это значит, что она у него была всегда, но до поры до времени он ее компенсировал постоянным напряжением аккомодации.

Иначе обстоит дело с близорукостью. Она тоже может быть врожденной, но это бывает редко. Врожденная близорукость обычно сочетается с другими аномалиями развития глаза или организма. Чаще, чем при других условиях, встречается врожденная близорукость у недоношенных детей. Но и она составляет ничтожный процент от всей близорукости, имеющейся среди населения, от той массы «очкастых», которых я подсчитывал в метро (поскольку их абсолютное большинство составляют именно близорукие).

Когда же возникает эта приобретенная близорукость? Раньше мы говорили, что в основном на втором десятке лет жизни, сейчас, увы, близорукость начала появляться у детей примерно 7-15-летнего возраста. Мы уже говорили, что близорукость всегда связана с избыточным ростом глаз. В основе лежит растяжение плотной оболочки глазного яблока (склеры) в переднезаднем направлении. Глаз вместо шаровидной приобретает форму эллипсоида. Отсюда следует важный вывод: возникнув, близорукость не может уменьшаться, и тем более, исчезать. Она может только увеличиваться, или, как говорят офтальмологи, прогрессировать. Каковы причины избыточного роста глаза? Прежде всего, наследственное предрасположение. Давно замечено, что у близоруких родителей значительно чаще, чем среди всего населения в среднем, рождаются близорукие дети. Попытки выделить «ген близорукости» ни к чему не привели. На формирование рефракции оказывают влияние множество генов. И не только гены, но и внешние условия развития человека.

Среди этих условий особое место занимает зрительная работа на близком расстоянии. Чем раньше она начинается, чем ближе предмет работы (чаще всего книга) к глазам, чем больше часов в день она занимает, тем больше вероятность, что человек приобретет близорукость, и тем больше она будет прогрессировать. Американский исследователь Янг сажал обезьян-макак под непрозрачный колпак с расстоянием от глаз до стенки в 35 сантиметров. Через 6-8 недель у всех обезьян развивалась близорукость около 0,75 D. Может быть, в таких условиях у всех подопытных людей тоже появилась бы близорукость? Однако в реальной жизни она все-таки развивается даже не у всех прилежных школьников.
Профессор Э.С. Аветисов из Московского института глазных болезней имени Гельмгольца в 1965 году предположил, что все дело в аккомодации. И действительно, когда у большинства случайно отобранных групп школьников стали замерять способность к аккомодации, а затем проверяли их рефракцию на протяжении 2-3 лет, оказалось, что у детей с ослабленной аккомодацией близорукость развивается в 5 раз чаще, чем у детей с нормальной аккомодацией. Значит, в этих случаях вступает в силу какой-то таинственный «регулятор», который приспосабливает глаз к работе на близком расстоянии, но не путем усиления преломления хрусталика (на которое глазу не хватает силы), а путем удлинения оси глаза. А это, увы, необратимо, и такой глаз уже не может видеть четко вдаль. Сам «регулятор» пока не найден, но поиски в этом направлении ведутся. Правда, речь идет о том, что на процесс формирования рефракции влияет не аккомодация, а само зрение.

Знаменитый нейрофизиолог Торстен Визел, получивший Нобелевскую премию за исследования механизмов переработки зрительной информации в мозге, разработал методику депривации: животному сразу после рождения закрывали один или оба глаза (например сшивали веки), а затем исследовали, какие структуры в мозге подверглись атрофии, усыханию. В 1972 году Равиола, ученик Визела, обнаружил у обезьян при таком сшивании одного из век, что, помимо снижения зрения, на «депривированном» глазу у них развивается близорукость. Настоящая «осевая» близорукость за счет удлинения глаза! Опыт был многократно повторен, правда, результаты при этом не у всех животных получились одинаковыми. У кроликов, например, наблюдалась иная закономерность: рефракция на депривированном глазу существенно отличалась от рефракции парного глаза, но с равной частотой возникала либо дальнозоркость, либо близорукость. Как ни странно, животными, наиболее постоянно отвечавшими на депривацию развитием близорукости, оказались обыкновенные домашние куры. Энтузиаст-биолог Уоллмен организовал в Нью-Йорке целую лабораторию по изучению депривационной близорукости у цыплят. Оказалось, что она развивается не только при закрытии доступа света в глаз, но и при уничтожении четкости изображения, например при установке перед глазом матового стекла (у человека известен аналог такого опыта: развитие односторонней близорукости на глазу с врожденным помутнением роговицы). Кроме того, выяснилось, что депривационная близорукость развивается, даже если предварительно был перерезан зрительный нерв и, соответственно, зрительный сигнал в мозг не поступал. Отсюда Уоллмен с сотрудниками сделали вывод, что механизм управления ростом глаза находится в сетчатке. Остается только найти этот механизм, то есть химические вещества, которые стимулируют либо тормозят рост оболочек глаза.
Трудно пока сказать, насколько результаты этих исследований применимы к человеку. Во всяком случае, вряд ли их можно перенести на типичную приобретенную детскую близорукость, которую часто называют «школьной».

Но вернемся к нашей возрастной динамике рефракции и продолжим ее дальше (рис. 11). Благодаря развитию школьной близорукости среднее значение рефракции продолжает увеличиваться и у детей старше 6 лет. Эта близорукость, как уже говорилось, появляется в основном в возрасте 7-15 лет и первые четыре года, как правило, прогрессирует. Такие данные были получены профессором О.Г. Левченко из Ташкента. В большинстве случаев (85-90 процентов) степень близорукости не достигает 6 D. Однако в оставшихся 10-15 процентах случаев прогрессирование продолжается. Глаз продолжает расти и сильнее вытягиваться в переднезаднем направлении. Это может привести к тяжелым осложнениям - кровоизлияниям, дегенерации сетчатки или ее отслойке и полной потере зрения. Недаром высокая осложненная близорукость занимает одно из ведущих мест среди причин инвалидности по зрению.

В этой стадии прогрессирования близорукости ведущим механизмом является уже не слабая аккомодация (поскольку при близорукости выше 3 D аккомодация вообще практически не используется). Главную роль в прогрессировании близорукости, как показали исследования Э.С. Аветисова с сотрудниками (Н.Ф. Савицкая, Е.П. Тарутта, Е.Н. Иомдина, М.И. Винецкая), играет ослабление склеры и ее растяжение под влиянием внутриглазного давления. Основу склеры, ее остов, составляет специальный белок - коллаген, образующий плотные и длинные волокна. В близоруком глазу сеть этих волокон разрежена, сами волокна истончены и гораздо легче растягиваются и разрываются, чем волокна в нормально видящем глазу. Постоянное давление жидкости внутри глаза (равное примерно 20 миллиметрам ртутного столба) растягивает волокна коллагена и вместе с ними склеру, причем волокна устроены так, что они легче растягиваются в переднезаднем направлении. Происходит то, о чем мы писали выше: глаз вместо шаровидной формы приобретает форму эллипсоида, его переднезадняя ось растет, соответственно сетчатка отодвигается от фокусной точки, и близорукость прогрессирует. До какого-то момента внутренние оболочки глаза - сосудистая и сетчатка - растягиваются вместе со склерой. Однако они менее устойчивы к растяжению. Кровеносные сосуды, составляющие основную массу сосудистой оболочки, могут разрываться, приводя к внутриглазным кровоизлияниям. Еще хуже обстоит дело с сетчаткой. При растяжении в ней образуются разрывы - дырки. Через них под сетчатку может подтечь внутриглазная жидкость, ведя к одному из самых грозных осложнений близорукости - отслойке сетчатке. Если не сделать операцию, то отслойка сетчатки, как правило, приводит к слепоте. Но и без отслойки растяжение сетчатки может привести к ее перерождению - дистрофии. Особенно уязвима центральная часть сетчатки - желтое пятно (макула), гибель которого вызывает потерю центрального зрения.

К счастью, эти осложнения встречаются достаточно редко и, как правило, только при близорукости высокой степени. Но помнить о них и врач, и пациент должны всегда.

Именно из-за опасности осложнений людям с высокой близорукостью (выше 8 D) не рекомендуются занятия, связанные с подъемом тяжестей и резким сотрясением тела. Им противопоказаны силовые и бойцовские виды спорта, не рекомендуется тяжелый физический труд.
Высокая осложненная близорукость - достаточно специфическое состояние. Некоторые офтальмологи предлагают считать ее самостоятельным заболеванием («миопическая болезнь», «патологическая миопия»). Однако начинается она обычно так же, как и обычная «школьная» близорукость, и очень непросто уловить момент, когда она переходит в болезнь.

Ну, а что происходит в течение жизни с остальными, «нормальными», видами рефракции? На графике рисунка 12 мы видим, что с 18 до 30-40 лет рефракция меняется незначительно. Остается довольно узкая полоса распределения, то есть сохраняется тенденция к эмметропизации. Начиная примерно с четвертого десятилетия жизни разброс рефракций увеличивается, а «средняя» рефракция начинает уходить в сторону дальнозоркости. За счет чего происходит эта «антиэмметропизация». За счет продолжения умеренного прогрессирования близорукости и ее позднего начала у лиц, занимающихся зрительно-напряженным трудом, а также за счет дальнозоркости у тех людей, которые раньше компенсировали ее напряжением аккомодации и относили себя к эмметропам, то есть к лицам с соразмерной рефракцией. Зрение таких людей раньше было нормальным, а теперь становится пониженным.

Особенно большой разброс рефракций наступает у людей старше 60 лет, когда может вновь появляться или снова расти как близорукость, так и дальнозоркость. Это связано главным образом с изменением преломления в хрусталике, объясняющимся старением белка, из которого он образован.

С возрастом, как мы видели, связано и изменение аккомодации. Удобнее всего это можно проследить на аналогичном графике (рис. 13). Но здесь мы уже не станем отображать разброс, а только укажем среднее значение всех характерных точек.

При рождении аккомодация почти не развита, то есть ближайшая точка ясного видения совпадает с дальнейшей. Казалось бы, ресничная мышца должна находиться в состоянии покоя, и при исследовании рефракции в обычном состоянии у большинства младенцев должна быть обнаружена умеренная дальнозоркость. Оказалось, это не так. В 1969 году Л.П. Хухрина в Институте имени Гельмгольца и Е.М. Ковалевский с М.Р. Гусевой во Втором Московском мединституте почти в одно и то же время обнаружили, что у новорожденных детей ресничная мышца находится в состоянии спазма. При обычном исследовании рефракции с помощью глазного зеркала у подавляющего большинства детей была обнаружена близорукость. И только когда им закапывали в глаза атропин (вещество, парализующее ресничную мышцу), выявлялась истинная рефракция - в большинстве случаев, как уже говорилось, дальнозоркость. Довольно быстро, в течение первого года жизни, этот спазм проходит. Однако не всегда и не у всех. Склонность к постоянному напряжению ресничной мышцы остается у многих детей дошкольного и школьного возраста. Вот почему при исследовании рефракции и подборе очков детям приходится закапывать в глаза атропин или подобные ему вещества. Атропин парализует аккомодацию на одну-две недели. Для школьников это слишком долгий срок, поскольку они не могут в это время читать и писать. Поэтому сейчас стараются использовать более мягкие лекарства - гоматропин, скополамин, или зарубежного производства - цикложил, мидриажил, тропикамид, которые парализуют ресничную мышцу на 1-2 дня.

Итак, аккомодация у детей еще не развита, часто подвергается перенапряжению, спазму. Ее объем невелик, именно поэтому так опасна в этом возрасте чрезмерная зрительн