Эндокринные клетки органов и тканей. Обзор литературы Период полужизни – время существования гормона в крови

Год выпуска: 2003

Жанр: Физиология

Формат: DjVu

Качество: Отсканированные страницы

Описание: При подготовке учебника «Физиология человека» авторы поставили перед собой задачи: дополнить учебник достижениями науки за последние годы; представить современные методы исследования функций у человека, заменив ими устаревшие; улучшить логику подачи материала в целях облегчения понимания студентами закономерностей протекания физиологических функций. В основу представлений о жизнедеятельности положена интеграция современных данных, полученных на молекулярном, органном, системном и организменном уровнях. Организм человека рассматривается в учебнике «Физиология человека» как целостная система, находящаяся в постоянном взаимодействии с многообразием влияний окружающей, в том числе социальной, среды.

Учебник «Физиология человека» предназначен для студентов медицинских вузов и факультетов.

Физиология: предмет, методы, значение для медицины. Краткая история. - В.М. Покровский, Г.Ф. Коротько
Физиология, ее предмет и роль в системе медицинского образования
Становление и развитие методов физиологических исследований
Принципы организации управления функциями - В.П. Дегтярев

Управление в живых организмах
Саморегуляция физиологических функций
Системная организация управления. Функциональные системы и их взаимодействие

Организм и окружающая среда. Адаптация
Краткая история физиологии

Возбудимые ткани
Физиология возбудимых тканей - В.И. Кобрин

Строение и основные функции клеточных мембран.
Основные свойства клеточных мембран и ионных каналов
Методы изучения возбудимых клеток
Потенциал покоя
Потенциал действия.
Действие электрического тока на возбудимые ткани

Физиология нервной ткани - Г.Л. Кураев

Строение и морфофункциональная классификация нейронов
Рецепторы. Рецепторный и генераторный потенциалы
Афферентные нейроны
Вставочные нейроны
Эфферентные нейроны
Нейроглия
Проведение возбуждения по нервам

Физиология синапсов - Г.Л. Кураев
Физиология мышечной ткани

Скелетные мышцы - В.И. Кобрин

Классификация скелетных мышечных волокон
Функции и свойства скелетных мышц
Механизм мышечного сокращения
Режимы мышечного сокращения
Работа и мощность мышцы
Энергетика мышечного сокращения
Теплообразование при мышечном сокращении
Скелетно-мышечное взаимодействие
Оценка функционального состояния мышечной системы у человека

Гладкие мышцы - Р.С. Орлов

Классификация гладких мышц
Строение гладких мышц
Иннервация гладких мышц
Функции и свойства гладких мышц

Физиология железистой ткани - Г.Ф. Коротько

Секреция
Многофункциональность секреции
Секреторный цикл
Биопотенциалы гландулоцитов
Регуляция секреции гландулоцитов

Нервная регуляция физиологических функций
Механизмы деятельности центральной нервной системы - O.Е. Чораян

Методы исследования функций центральной нервной системы
Рефлекторный принцип регуляции функций
Торможение в центральной нервной системе
Свойства нервных центров
Принципы интеграции и координации в деятельности центральной нервной системы
Нейронные комплексы
Гематоэнцефалический барьер
Цереброспинальная жидкость
Элементы кибернетики нервной системы

Физиология центральной нервной системы - Г. А. Кураев

Спинной мозг

Морфофункциональная организация спинного мозга
Особенности нейронной организации спинного мозга
Проводящие пути спинного мозга
Рефлекторные функции спинного мозга

Ствол мозга

Продолговатый мозг
Мост
Средний мозг
Ретикулярная формация ствола мозга
Промежуточный мозг

Таламус

Мозжечок

Лимбическая система

Гиппокамп
Миндалевидное тело
Гипоталамус

Базальные ядра

Хвостатое ядро. Скорлупа
Бледный шар
Ограда

Кора большого мозга

Морфофункциональная организация
Сенсорные области
Моторные области
Ассоциативные области
Электрические проявления активности коры большого мозга
Межполушарные взаимоотношения

Координация движений - B.C. Гурфинкель, Ю.С. Левик

Физиология автономной (вегетативной) нервной системы - А.Д. Ноздрачев

Функциональная структура автономной нервной системы

Симпатическая часть
Парасимпатическая часть
Метасимпатическая часть

Особенности конструкции автономной нервной системы
Автономный (вегетативный) тонус
Синаптическая передача возбуждения в автономной нервной системе
Влияние автономной нервной системы на функции тканей и органов

Гормональная регуляция физиологических функций - В.А. Ткачук, О.Е. Осадчий
Принципы гормональной регуляции

Методы исследования

Образование, выведение из эндокринных клеток, транспорт кровью и механизмы действия гормонов

Синтез гормонов
Выведение гормонов из клеток-продуцентов и транспорт гормонов кровью
Молекулярные механизмы действия гормонов

Эндокринные железы и физиологическая роль их гормонов

Гипофиз
Щитовидная железа
Околощитовидные железы
Надпочечники
Поджелудочная железа
Половые железы

Эндотелий как эндокринная ткань

Система крови - Б.И. Кузник
Понятие о системе крови

Основные функции крови
Количество крови в организме

Состав плазмы крови

Физико-химические свойства крови

Форменные элементы крови

Эритроциты

Гемоглобин и его соединения

Цветовой показатель
Гемолиз
Функции эритроцитов

Гемопоэз

Основные условия нормального гемопоэза
Физиология эритропоэза
Факторы, обеспечивающие эритропоэз

Лейкоциты

Физиологические лейкоцитозы Лейкопении
Лейкоцитарная формула
Характеристика отдельных видов лейкоцитов
Физиология лейкопоэза
Факторы, обеспечивающие леикопоэз
Неспецифическая резистентность
Иммунитет

Группы крови

Система АВО
Система резус (Rh-hr) и другие
Группы крови и заболеваемость

Тромбоциты
Система гемостаза

Сосудисто-тромбоцитарный гемостаз
Процесс свертывания крови

Плазменные и клеточные факторы свертывания крови
Механизм свертывания крови

Естественные антикоагулянты
Фибринотиз
Регуляция свертывания крови и фибринолиза

Инструментальные методы исследования системы крови
Крово- и лимфообращение - В.М. Покровский, Г. И. Косицкий
Деятельность сердца

Электрические явления в сердце, возникновение и проведение возбуждения

Электрическая активность клеток миокарда
Функции проводящей системы сердца
Динамика возбудимости миокарда и экстрасистола
Электрокардиограмма

Нагнетательная функция сердца

Сердечный цикл
Сердечный выброс
Механические и звуковые проявления сердечной деятельности
Методы исследования функций сердца

Регуляция деятельности сердца

Внутрисердечные регуляторные механизмы
Внесердечные регуляторные механизмы
Влияние центральной нервной системы на деятельность сердца
Рефлекторная регуляция деятельности сердца
Условнорефлекторная регуляция деятельности сердца
Гуморальная регуляция деятельности сердца

Интеграция механизмов регуляции деятельности сердца

Эндокринная функция сердца

Функции сосудистой системы

Основные принципы гемодинамики. Классификация сосудов
Движение крови по сосудам

Артериальное давление крови и периферическое сопротивление
Артериальный пульс
Объемная скорость кровотока
Движение крови в капиллярах. Микроциркуляция
Движение крови в венах
Время кругооборота крови

Регуляция движения крови по сосудам

Иннервация сосудов
Сосудодвигательный центр
Гуморальные влияния на сосуды
Физиологические системы регуляции артериального давления
Перераспределительные реакции в системе регуляции кровообращения
Регуляция объема циркулирующей крови. Кровяные депо
Изменения деятельности сердечно-сосудистой системы при работе

Регионарное кровообращение - Я.Л. Хаианашвили

Коронарное кровообращение
Кровоснабжение головного и спинного мозга

Легочное кровообращение

Лимфообращение - Р.С. Орлов

Строение лимфатической системы
Образование лимфы
Состав лимфы
Движение лимфы
Функции лимфатической системы

Дыхание - A.Б. Чучалин, В.М. Покровский
Сущность и стадии дыхания
Внешнее дыхание - А. В. Черняк

Биомеханика дыхательных движений
Дыхательные мышцы
Изменения давления в легких
Плевральное давление
Эластические свойства легких
Растяжимость легких
Эластические свойства грудной клетки
Сопротивление в дыхательной системе
Работа дыхания

Вентиляция легких - З.Р. Айсанов, Е.А. Малигонов

Легочные объемы и емкости
Количественная характеристика вентиляции легких
Альвеолярная вентиляция

Газообмен и транспорт газов - С.И. Авдеев, Е.А. Малигонов

Диффузия газов
Транспорт кислорода
Кривая диссоциации оксигсмоглобина
Доставка кислорода и потребление кислорода тканями
Транспорт углекислого газа

Регуляция внешнего дыхания - В.Ф. Пятин

Дыхательный центр
Рефлекторная регуляция дыхания
Координация дыхания с другими функциями организма

Особенности дыхания при физической нагрузке и при измененном парциальном давлении газов - З.Р. Айсанов

Дыхание при физической нагрузке
Дыхание при подъеме на высоту
Дыхание чистым кислородом
Дыхание при высоком давлении.

Недыхательные функции легких - Е.А. Малигонов, А.Г. Похотько

Защитные функции дыхательной системы

Механические факторы защиты
Клеточные факторы защиты
уморальные факторы защиты

Метаболизм биологически активных веществ в легких

Пищеварение - Г.Ф. Коротько
Голод и насыщение
Сущность пищеварения и его организация

Пищеварение и его значение
Типы пищеварения
Конвейерный принцип организации пищеварения

Пищеварительные функции

Секреция пищеварительных желез
Моторная функция пищеварительного тракта
Всасывание

Регуляция пищеварительных функций

Управление пищеварительной деятельностью
Роль регуляторных пептидов и аминов в деятельности пищеварительного тракта
Кровоснабжение пищеварительного тракта и его функциональная активность
Периодическая деятельность органов пищеварения

Методы изучения пищеварительных функций

Экспериментальные методы
Методы исследования пищеварительных функций у человека

Пищеварение в полости рта и глотание

Прием пищи
Жевание
Слюноотделение
Глотание

Пищеварение в желудке

Секреторная функция желудка
Моторная деятельность желудка
Эвакуация содержимого желудка в двенадцатиперстную кишку
Рвота

Пищеварение в тонкой кишке

Секреция поджелудочной железы

Образование, состав и свойства поджелудочного сока

Желчеобразование и желчевыделение
Кишечная секреция
Полостной и пристеночный гидролиз питательных веществ в тонкой кишке
Моторная деятельность тонкой кишки
Всасывание различных веществ в тонкой кишке

Функции толстой кишки

Поступление кишечного химуса в толстую кишку
Роль толстой кишки в пищеварении
Моторная деятельность толстой кишки
Газы толстой кишки
Дефекация
Микрофлора пищеварительного тракта

Функции печени
Пищеварительные функции и двигательная активность человека

Влияние гипокинезии
Влияние гиперкинезии

Непищеварительные функции пищеварительного тракта

Экскреторная деятельность пищеварительного тракта
Участие пищеварительного тракта в водно-солевом обмене
Эндокринная функция пищеварительного тракта и выделение в составе секретов физиологически активных веществ
Инкреция (эндосекреция) пищеварительными железами ферментов
Иммунная система пищеварительного тракта

Обмен веществ и энергии. Питание - В.М. Покровский
Обмен веществ

Обмен белков
Обмен липидов
Обмен углеводов
Обмен минеральных солеи и воды

Теплоотдача - физическая терморегуляция
Регуляция изотермии

Гипотермия
Гипертермия

Выделение. Физиология почки - Ю.В. Наточин
Общая характеристика
Почки и их функции

Методы изучения функций почек
Нефрон и его кровоснабжение
Процесс мочеобразования

Клубочковая фильтрация
Канальцевая реабсорбция
Канальцевая секреция

Определение величины почечного плазмо- и кровотока
Синтез веществ в почках
Осмотическое разведение и концентрирование мочи
омеостатическис функции почек
Экскреторная функция почек
Инкреторная функция почек
Метаболическая функция почек
Принципы регуляции реабсорбции и секреции веществ в клетках почечных канальцев
Регуляция деятельности почек
Количество, состав и свойства мочи
Мочеиспускание
Последствия удаления почки и искусственная почка
Возрастные особенности структуры и функции почек

Репродуктивная функция - И. И. Куценко
Половая дифференциация
Половое созревание
Половое поведение человека
Физиология женских половых органов
Физиология мужских половых органов
Физиология беременности
Физиология родов и послеродового периода
Адаптация организма новорожденного к условиям внеутробной жизни
Лактация

Сенсорные системы - М.А. Островский, И.А. Шевелев
Общая физиология сенсорных систем

Методы исследования сенсорных систем
Общие принципы строения сенсорных систем
Основные функции сенсорной системы
Механизмы переработки информации в сенсорной системе
Адаптация сенсорной системыВиды условных рефлексовРегуляция биологических часов млекопитающих

Литература

ется секреция соответствующего тройного гормона; при гиперфункции железы секреция соответствующего тропина подавляется. Обратные связи не только позволяют регулировать концентрацию гормонов в крови, но и участвуют в дифференцировке гипоталамуса в онтогенезе. Образование половых гормонов в женском организме происходит циклически, что объ¬ ясняется циклической секрецией гонадотропных гормонов. Синтез этих гормонов контролируется гипоталамусом, образующим рилизинг-фактор этих тропинов (гонадолиберин). Если самке пересадить гипофиз самца, то пересаженный гипофиз начинает функционировать циклично. Половая дифференцировка гипоталамуса происходит под действием андрогенов. Если самца лишить половых желез, продуцирующих андрогены, то гипо¬ таламус будет дифференцироваться по женскому типу.

В железах внутренней секреции иннервированы, как правило, только сосуды, а эндокринные клетки изменяют свою активность лишь под дей¬ ствием метаболитов, кофакторов и гормонов, причем не только гипофизарных. Так, ангиотензин II стимулирует синтез и секрецию альдостерона. Некоторые гормоны гипоталамуса и гипофиза могут образовываться не только в этих тканях. Например, соматостатин обнаружен также в подже¬ лудочной железе, где он подавляет секрецию инсулина и глюкагона.

Большинство нервных и гуморальных путей регуляции сходятся на уровне гипоталамуса, и благодаря этому в организме образуется единая нейроэндокринная регуляторная система. К клеткам гипоталамуса подхо¬ дят аксоны нейронов, расположенных в коре большого мозга и подкорко¬ вых образованиях. Эти аксоны секретируют различные нейромедиаторы, оказывающие на секреторную активность гипоталамуса как активирую¬ щее, так и тормозное влияние. Поступающие из мозга нервные импульсы гипоталамус превращает в эндокринные стимулы, которые могут быть усилены или ослаблены в зависимости от гуморальных сигналов, поступа¬ ющих в гипоталамус от желез и тканей, подчиненных ему.

Тропины, образующиеся в гипофизе, не только регулируют деятель¬ ность подчиненных желез, но и выполняют самостоятельные эндокрин¬ ные функции. Например, пролактин оказывает лактогенное действие, а также тормозит процессы дифференцировки клеток, повышает чувствите¬ льность половых желез к гонадотропинам, стимулирует родительский ин¬ стинкт. Кортикотропин является не только стимулятором стероидогенеза, но и активатором липолиза в жировой ткани, а также важнейшим участ¬ ником процесса превращения в мозге кратковременной памяти в долго¬ временную. Гормон роста может стимулировать активность иммунной си¬ стемы, обмен липидов, Сахаров и др.

В задней доле гипофиза (нейрогипофиз) депонируются антидиуретиче¬ ский гормон (вазопрессин) и окситоцин. Первый вызывает задержку воды в организме и повышает тонус сосудов, второй стимулирует сокращение матки при родах и секрецию молока. Оба гормона синтезируются в гипо¬ таламусе, затем транспортируются по аксонам в заднюю долю гипофиза, где депонируются и потом секретируются в кровь.

Характер процессов, протекающих в ЦНС, во многом определяется со¬ стоянием эндокринной регуляции. Так, андрогены и эстрогены формиру¬ ют половой инстинкт, многие поведенческие реакции. Очевидно, что ней¬ роны, точно так же как и другие клетки нашего организма, находятся под контролем гуморальной системы регуляции. Нервная система, эволюционно более поздняя, имеет как управляющие, так и подчиненные связи с эндокринной системой. Эти две регуляторные системы дополняют друг друга, образуют функционально единый механизм.

4.2. МЕТОДЫ ИССЛЕДОВАНИЯ

Для изучения функций желез внутренней секреции используются экс¬ периментальные и клинические методы исследования. К наиболее важ¬ ным из них следует отнести следующие.

Изучение последствий удаления (экстирпация) эндокринных желез. После удаления какой-либо эндокринной железы возникает комплекс рас¬ стройств, обусловленных выпадением регуляторных эффектов тех гор¬ монов, которые вырабатываются в этой железе. Например, предположе¬ ние о наличии эндокринных функций у поджелудочной железы нашло подтверждение в опытах И. Меринга и О. Минковского (1889), показав¬ ших, что ее удаление у собак приводит к выраженной гипергликемии

и глюкозурии; животные погибали в течение 2-3 нед после операции на фоне явлений тяжелого сахарного диабета. В последующем было установлено, что эти изменения возникают из-за недостатка инсули¬ на - гормона, образующегося в островковом аппарате поджелудочной железы.

Вследствие травматичности оперативного вмешательства вместо хирур¬ гического удаления эндокринной железы может быть использовано введе¬ ние химических веществ, нарушающих их гормональную функцию. На¬ пример, введение животным аллоксана нарушает функцию В-клеток под¬ желудочной железы, что приводит к развитию сахарного диабета, проявле¬ ния которого практически идентичны расстройствам, наблюдаемым после экстирпации поджелудочной железы.

* Наблюдение эффектов, возникших при имплантации желез. Животному с удаленной эндокринной железой можно ее имплантировать заново в хо¬ рошо васкуляризированную область тела, например под капсулу почки или в переднюю камеру глаза. Такая операция называется реимплантацией. Для ее проведения обычно используют эндокринную железу, полу¬ ченную от животного-донора. После реимплантации постепенно восста¬ навливается уровень гормонов в крови, что приводит к исчезновению нарушений, возникших ранее в результате дефицита этих гормонов в ор¬ ганизме. Например, Бертольдом (1849) было показано, что у петухов пе¬ ресадка половых желез в брюшную полость после кастрации предотвра¬ щает развитие посткастрационного синдрома. Возможна также пересад¬ ка эндокринной железы животному, у которого операция экстирпации ранее не производилась. Последнее может быть использовано для изуче¬ ния эффектов, возникающих при избытке гормона в крови, так как его секреция в данном случае осуществляется не только собственной эндок¬ ринной железой животного, но и имплантированной.

А Изучение эффектов, возникших при введении экстрактов эндокринных

желез. Нарушения, возникшие после хирургического удаления эндок¬ ринной железы, могут быть корректированы посредством введения в ор¬ ганизм достаточного количества экстракта данной железы или соответ¬ ствующего гормона.

А Использование радиоактивных изотопов. Иногда для исследования функ¬ циональной активности эндокринной железы может быть использована ее способность извлекать из крови и накапливать определенное соедине¬ ние. Например, щитовидная железа активно поглощает йод, который за¬ тем используется для синтеза тироксина и трийодтиронина. При гипер¬ функции щитовидной железы накопление йода усиливается, при гипо-

функции наблюдается обратное явление. Интенсивность накопления йода может быть определена путем введения в организм радиоактивного изотопа 1 3 1 1 с последующей оценкой радиоактивности щитовидной же¬ лезы. В качестве радиоактивной метки вводят также соединения, кото¬ рые используются для синтеза эндогенных гормонов и включаются в их структуру. В последующем можно определить радиоактивность различ¬ ных органов и тканей и оценить, таким образом, распределение гормона

в организме, а также найти его органы-мишени.

* Определение количественного содержания гормона. В ряде случаев для выяснения механизма какого-либо физиологического эффекта целесо¬ образно сопоставить его динамику с изменением количественного со¬ держания гормона в крови или в другом исследуемом материале.

К наиболее современным относятся методы радиоиммунологического определения концентрации гормонов в крови. Эти методы основаны на том, что меченный радиоактивной меткой гормон и гормон, содержащий¬ ся в исследуемом материале, конкурируют между собой за связывание со специфическими антителами: чем больше в биологическом материале со¬ держится данного гормона, тем меньше свяжется меченых молекул гормо¬ на, так как количество гормонсвязывающих участков в образце постоянно.

* Важное значение для понимания регуляторных функций желез внутрен¬ ней секреции и диагностики эндокринной патологии имеют клинические методы исследования. К ним относятся диагностика типичных симпто¬ мов избытка или недостатка того или иного гормона, использование раз¬ личных функциональных проб, рентгенологические, лабораторные и другие методы исследования.

4.3. ОБРАЗОВАНИЕ, ВЫВЕДЕНИЕ ИЗ ЭНДОКРИННЫХ КЛЕТОК, ТРАНСПОРТ КРОВЬЮ И МЕХАНИЗМЫ ДЕЙСТВИЯ ГОРМОНОВ

4.3.1. Синтез гормонов

В поддержании упорядоченности, согласованности всех физиологиче¬ ских и метаболических процессов в организме участвует более 100 гормо¬ нов и нейромедиаторов. Их химическая природа различна (белки, поли¬ пептиды, пептиды, аминокислоты и их производные, стероиды, производ¬ ные жирных кислот, некоторые нуклеотиды, эфиры и др.). У каждого класса этих веществ пути образования и распада разные.

Белково-пептидные гормоны включают все тропные гормоны, либерины и статины, инсулин, глюкагон, кальцитонин, гастрин, секретин, холецистокинин, ангиотензин II, антидиуретический гормон (вазопрессин), паратгормон и др.

Эти гормоны образуются из белковых предшественников, называемых прогормонами. Как правило, сначала синтезируется препрогормон, из ко¬ торого образуется прогормон, а затем гормон.

Синтез прогормонов осуществляется на мембранах гранулярной эндоплазматической сети (шероховатый ретикулум) эндокринной клетки.

Везикулы с образующимся прогормоном переносятся затем в пластин¬ чатый комплекс Гольджи, где под действием мембранной протеиназы от молекулы прогормона отщепляется определенная часть аминокислотной цепи. В результате образуется гормон, который поступает в везикулы, со-

держащиеся в комплексе Гольджи. В дальнейшем эти везикулы сливаются с плазматической мембраной и высвобождаются во внеклеточное про¬ странство.

Поскольку многие полипептидные гормоны образуются из общего бел¬ кового предшественника, изменение синтеза одного из этих гормонов мо¬ жет приводить к параллельному изменению (ускорение или замедление) синтеза ряда других гормонов. Так, из белка проопиокортина образуются кортикотропин и р-липотропин (схема 4.1), из р-липотропина может обра¬ зоваться еще несколько гормонов: у-липотропин, р-меланоцитостимулиру- ющий гормон, р-эндорфин, у-эндорфин, а-эндорфин, метионин-энкефа- лин.

При действии специфических протеиназ из кортикотропина могут об¬ разовываться а-меланоцитостимулирующий гормон и АКТГ-подобный пептид аденогипофиза. Благодаря сходству структур кортикотропина и а-меланоцитостимулирующего гормона, последний имеет слабую кортикотропную активность. Кортикотропин обладает незначительной способ¬ ностью усиливать пигментацию кожи.

Концентрация белково-пептидных гормонов в крови варьирует в преде¬ лах от 10- 6 до 10- 1 2 М. При стимуляции эндокринной железы концентра¬ ция соответствующего гормона возрастает в 2-5 раз. Так, например, в со¬ стоянии покоя в крови человека содержится около 0,2 мкг АКТГ (в расче¬ те на 5 л крови), а при стрессе это количество возрастает до 0,8-1,0 мкг. В нормальных условиях в крови содержится 0,15 мкг глюкагона и 5 мкг ин¬ сулина. Когда человек голоден, содержание глюкагона может повышаться до 1 мкг, а содержание инсулина снижаться на 40-60 %. После сытного обеда концентрация глюкагона в крови в 1,5-2,8 раза снижается, а содер¬ жание инсулина повышается до 10-25 мкг.

С х е м а 4.1. Образование нескольких белково-пептидных гормонов из одного белкового предшественника под действием стресса

Гипоталамус

Кортиколиберин

Проопиокортин (м.м. 30 000)

бета -ЛТ(42-134)

гама -ЛТ (42-101)

бета-Эндорфин (104-134)

бета -МСГ(84-101)

мет-Энкефалин (104-108)

Полупериод жизни белково-пептидных гормонов в крови составляет 10-20 мин. Они разрушаются протеиназами клеток-мишеней крови, пече¬ ни, почек.

Стероидные гормоны включают тестостерон, эстрадиол, эстрон, прогес¬ терон, кортизол, альдостерон и др. Эти гормоны образуются из холесте¬ рина в корковом веществе надпочечников (кортикостероиды), а также в семенниках и яичниках (половые стероиды).

В малом количестве половые стероиды могут образовываться в корко¬ вом веществе надпочечников, а кортикостероиды - в половых железах. Свободный холестерин поступает в митохондрии, где превращается в прегненолон, который затем попадает в эндоплазматическую сеть и после этого - в цитоплазму.

В корковом веществе надпочечников синтез стероидных гормонов сти¬ мулируется кортикотропином, а в половых железах - лютеинизирующим гормоном (ЛГ). Эти гормоны ускоряют транспорт эфиров холестерина в эндокринные клетки и активируют митохондриальные ферменты, участву¬ ющие в образовании прегненолона. Кроме того, тропные гормоны активи¬ руют процессы окисления Сахаров и жирных кислот в эндокринных клет¬ ках, что обеспечивает стероидогенез энергией и пластическим материа¬ лом.

Кортикостероиды подразделяют на две группы.Глюкокортикоиды (ти¬ пичный представитель - кортизол) индуцируют синтез ферментов глюконеогенеза в печени, препятствуют поглощению глюкозы мышцами и жировыми клетками, а также способствуют высвобождению из мышц мо¬ лочной кислоты и аминокислот, тем самым ускоряя глюконеогенез в пе¬ чени.

Стимуляция синтеза глюкокортикоидов осуществляется через систему гипоталамус-гипофиз-надпочечники. Стресс (эмоциональное возбужде¬ ние, боль, холод и др.), тироксин, адреналин и инсулин стимулируют вы¬ свобождение кортиколиберина из аксонов гипоталамуса. Этот гормон свя¬ зывается с мембранными рецепторами аденогипофиза и вызывает высво¬ бождение кортикотропина, который с током крови попадает в надпочеч¬ ники и стимулирует там образование глюкокортикоидов - гормонов, по¬ вышающих устойчивость организма к неблагоприятным воздействиям.

Минералокортикоиды (типичный представитель - альдостерон) задер¬ живают натрий в крови. Снижение концентрации натрия в выделяемой моче, а также в секретах слюнных и потовых желез приводит к меньшим потерям воды, так как вода движется через биологические мембраны в на¬ правлении высокой концентрации солей.

Кортикотропин влияет слабо на синтез минералокортикоидов. Имеется дополнительный механизм регуляции синтеза минералокортикоидов, осу¬ ществляющийся через так называемую ренин-ангиотензиновую систему. Рецепторы, реагирующие на давление крови, локализованы в артериолах почек. При снижении давления крови эти рецепторы стимулируют секре¬ цию ренина почками. Ренин является специфической эндопептидазой, от¬ щепляющей от альфа2 -глобулина крови С-концевой декапептид, который на¬ зывают«ангиотензин /». От ангиотензина I карбоксипептидаза (ангиотензинпревращающий фермент, АПФ, расположенный на наружной поверх¬ ности эндотелия кровеносных сосудов) отщепляет два аминокислотных остатка и образует октапептидангиотензин II - гормон, к которому на мембране клеток коркового вещества надпочечников имеются специаль-

ные рецепторы. Связываясь с этими рецепторами, ангиотензин II стиму¬ лирует образование альдостерона, который действует на дистальные кана¬ льцы почек, потовые железы, слизистую оболочку кишечника и увеличи¬ вает в них реабсорбцию ионов Na+ , Cl- и НСО3 - . В результате в крови по¬ вышается концентрация ионов Na+ и снижается концентрация ионов К+ . Эти эффекты альдостерона полностью блокируются ингибиторами синтеза белка.

В крови человека около 500 мкг кортизола. При стрессе его содержание повышается до 2000 мкг. Альдостерона в 1000 раз меньше - около 0,5 мкг. Если человек находится на бессолевой диете, содержание альдостерона повышается до 2 мкг.

Половые стероиды. Андрогены (мужские половые гормоны) продуциру¬ ются интерстициальными клетками яичек и в меньшем количестве яични¬ ками и корковым веществом надпочечников. Основным андрогеном явля¬ ется тестостерон. Этот гормон может претерпевать изменения в клет¬ ке-мишени - превращаться в дигидротестостерон, который обладает бо¬ льшей активностью, чем тестостерон. ЛГ, который стимулирует начальные этапы биосинтеза стероидов в эндокринной железе, активирует также пре¬ вращение тестостерона в дигидротестостерон в клетке-мишени, тем самым усиливая андрогенные эффекты.

Яичники секретируют эстрадиол, андростендион и прогестерон. Фол¬ ликул яичника представляет собой яйцеклетку, окруженную плоскими эпителиальными клетками и соединительнотканной оболочкой. Изнутри эта капсула заполнена фолликулярной жидкостью и зернистыми клетка¬ ми.

При половом созревании синтез этих гормонов начинает контролиро¬ ваться гонадотропинами. При этом фолликулостимулирующий гормон (ФСГ) стимулирует стероидогенез в зернистых клетках, погруженных во внутреннее пространство фолликула, а лютеинизирующий гормон (ЛГ) действует на клетки, формирующие оболочку капсулы. Так как в оболочке образуются мужские половые гормоны (андростерон и тестостерон), а в зернистых клетках они превращаются в женские половые гормоны (эстрон и эстрадиол), очевидно, что для продукции женских половых стероидов должна осуществляться строгая согласованность синтеза и секреции гонадотропинов в гипофизе.

Образование в гипоталамусе гонадолиберина и стимуляция им секре¬ ции ФСГ и ЛГ инициирует механизмы полового созревания. Время начала секреции и количество секретируемого гонадолиберина детерминировано генетически, однако на его секрецию влияют также нейромедиаторы ЦНС: норадреналин, дофамин, серотонин и эндорфины.

Высвобождение гонадолиберина из гипоталамуса обычно происходит во время коротких по своей продолжительности периодов секреции, между которыми наблюдается 2-3-часовая «пауза». Спустя несколько минут после выведения гонадолиберина в крови появляются гонадотропины. Секреция гонадотропинов зависит также от уровня половых стеро¬ идов в крови: эстрогены подавляют выведение ФСГ и стимулируют сек¬ рецию ЛГ гипофизом, а прогестерон тормозит секрецию гонадолиберина в гипоталамусе. Таким образом замыкаются регуляторные связи между сигналами из ЦНС и активностью яичников, осуществляющих стероидо¬ генез.

Ключевую роль в циклическом функционировании женских половых желез играет ФСГ, секреция которого стимулируется гонадолиберином и низким уровнем эстрогенов. ФСГ проводит селекцию только одной из

фолликул (доминантная), которая вступает в менструальный цикл. После этого резко усиливается синтез эстрогенов, что вызывает (по механизму отрицательной обратной связи) снижение уровня ФСГ. Почти одновре¬ менно с этим наблюдается резкий подъем уровня ЛГ, который стимулиру¬ ет созревание доминантной фолликулы, ее разрыв и выход яйцеклетки. Сразу же после этого снижается продукция эстрогенов, что приводит (по механизму отрицательной обратной связи) к подавлению секреции Л Г. Наступает фаза созревания желтого тела, которая сопровождается переме¬ щением яйцеклетки в матку. Это «путешествие» длится 8-9 дней, и, если не происходит оплодотворения яйцеклетки, желтое тело постепенно сни¬ жает продукцию эстрогенов и прогестерона, в результате чего наступает менструация.

Эстрогены (женские половые гормоны) в организме человека в основ¬ ном представлены эстрадиолом. В клетках-мишенях они не метаболизируются.

Действие андрогенов и эстрогенов направлено в основном на органы воспроизведения, проявление вторичных половых признаков, поведенче¬ ские реакции. Андрогенам свойственны также анаболические эффекты - усиление синтеза белка в мышцах, печени, почках. Эстрогены оказывают катаболическое влияние на скелетные мышцы, но стимулируют синтез белка в сердце и печени. Таким образом, основные эффекты половых гор¬ монов опосредуются процессами индукции и репрессии синтеза белка.

Стероидные гормоны легко проникают через клеточную мембрану, по¬ этому их выведение из клетки происходит параллельно с синтезом гормо¬ нов. Содержание стероидов в крови определяется соотношением скоро¬ стей их синтеза и распада. Регуляция этого содержания осуществляется главным образом путем изменения скорости синтеза. Тропные гормоны (кортикотропин, ЛГ и ангиотензин) стимулируют этот синтез. Устранение тропного влияния приводит к торможению синтеза стероидных гормонов.

Действующие концентрации стероидных гормонов составляют 10- 1 1 -10- 9 М. Период их полураспада равен 1/2-1 1/2 ч.

Тиреоидные гормоны включают тироксин и трийодтиронин. Синтез этих гормонов осуществляется в щитовидной железе, в которой ионы йода окисляются при участии пероксидазы до йодиниум-иона, способно¬ го йодировать тиреоглобулин - тетрамерный белок, содержащий около 120 тирозинов. Йодирование тирозиновых остатков происходит при учас¬ тии пероксида водорода и завершается образованием монойодтирозинов и дийодтирозинов. После этого происходит «сшивка» двух йодированных тирозинов. Эта окислительная реакция протекает с участием пероксида¬ зы и завершается образованием в составе тиреоглобулина трийодтиронина и тироксина. Для того чтобы эти гормоны освободились из связи с белком, должен произойти протеолиз тиреоглобулина. При расщеплении одной молекулы этого белка образуется 2-5 молекул тироксина (Т4 ) и трийодтиронина (Т3 ), которые секретируются в молярных соотношениях, равных 4:1.

Синтез и выведение тиреоидных гормонов из продуцирующих их кле¬ ток находятся под контролем гипоталамо-гипофизарной системы. Тиреотропин активирует аденилатциклазу щитовидной железы, ускоряет актив-

ный транспорт йода, а также стимулирует рост эпителиальных клеток щи¬ товидной железы. Эти клетки формируют фолликул, в полости которого происходит йодирование тирозина. Адреналин и простагландин Е2 также могут повышать концентрацию цАМФ в щитовидной железе, при этом они вызывают такое же стимулирующее влияние на синтез тироксина, как и тиреотропин.

Активный транспорт ионов йода в железу при действии тиреотропина происходит против 500-кратного градиента. Тиреотропин стимулирует также синтез рибосомальной РНК и мРНК тиреоглобулина, т.е. происхо¬ дит усиление как транскрипции, так и трансляции белка, служащего ис¬ точником тирозинов для синтеза Т3 и Т4 . Выведение Т3 и Т4 из клеток - их продуцентов - осуществляется посредством пиноцитоза. Частички коллоида окружаются мембраной эпителиальной клетки и поступают в цитоплазму в виде пиноцитозных пузырьков. При слиянии этих пузырь¬ ков с лизосомами эпителиальной клетки происходит расщепление тиреог¬ лобулина, который составляет основную массу коллоида, что приводит к выделению Т3 и Т4 . Тиреотропин и другие факторы, повышающие концен¬ трацию цАМФ в щитовидной железе, стимулируют пиноцитоз коллоида, процесс образования и движения секреторных пузырьков. Таким образом, тиреотропин ускоряет не только синтез, но и выведение Т3 и Т4 из клетокпродуцентов. При повышении уровня Т3 и Т4 в крови подавляется секре¬ ция тиреолиберина и тиреотропина.

Тиреоидные гормоны могут циркулировать в крови в неизменном виде в течение нескольких дней. Такая устойчивость гормонов объясняется, по-видимому, образованием прочной связи с Т4 -связывающими глобули¬ нами и преальбуминами в плазме крови. Эти белки имеют в 10-100 раз большее сродство к Т4 , чем к Т3 , поэтому в крови человека содержится 300-500 мкг Т4 и лишь 6-12 мкг Т3 .

Катехоламины включают адреналин, норадреналин и дофамин. Источ¬ ником катехоламинов, как и тиреоидных гормонов, служит тирозин. Кате¬ холамины, образующиеся в мозговом веществе надпочечников, выделяют¬ ся в кровь, а не в синаптическую щель, т.е. являются типичными гормона¬ ми.

В некоторых клетках синтез катехоламинов заканчивается образовани¬ ем дофамина, а адреналин и норадреналин образуются в меньшем количе¬ стве. Такие клетки есть в составе гипоталамуса.

Синтез катехоламинов в мозговом веществе надпочечников стимулиру¬ ется нервными импульсами, поступающими по чревному симпатическому нерву. Выделяющийся в синапсах ацетилхолин взаимодействует с холинергическими рецепторами никотинового типа и возбуждает нейросекреторную клетку надпочечника. Благодаря существованию нервно-рефлек¬ торных связей надпочечники отвечают усилением синтеза и выделения ка¬ техоламинов в ответ на болевые и эмоциональные раздражители, гипок¬ сию, мышечную нагрузку, охлаждение и др. Подобный тип регуляции эн¬ докринной железы, являющийся исключением из обычного правила, мож¬ но объяснить тем, что мозговой слой надпочечника в эмбриогенезе обра¬ зуется из нервной ткани, поэтому у него сохраняется типичный нейрональный тип регуляции. Существуют и гуморальные пути регуляции актив¬ ности клеток мозгового вещества надпочечников: синтез и выделение ка¬ техоламинов могут возрастать под действием инсулина, глюкокортикоидов при гипогликемии.

Катехоламины подавляют как собственный синтез, так и выделение. В адренергических синапсах на пресинаптической мембране есть адьфа-адре-

нергические рецепторы. При выбросе катехоламинов в синапс эти рецеп¬ торы активируются и оказывают ингибирующее влияние на секрецию ка¬ техоламинов.

Гематоэнцефалический барьер не пропускает катехоламины из крови в мозг. В то же время диоксифенилаланин, их предшественник, легко про¬ никает через этот барьер и может усилить образование катехоламинов в мозге.

Катехоламины инактивируются в тканях-мишенях, печени и почках. Решающее значение в этом процессе играют два фермента - моноаминоксидаза, расположенная на внутренней мембране митохондрий, и кате- хол-О-метилтрансфераза, цитозольный фермент.

Эйкозаноиды включают простагландины, тромбоксаны и лейкотриены. Эйкозаноиды называют гормоноподобными веществами, так как они мо¬ гут оказывать только местное действие, сохраняясь в крови в течение не¬ скольких секунд. Образуются во всех органах и тканях практически всеми типами клеток.

Биосинтез большинства эйкозаноидов начинается с отщепления арахидоновой кислоты от мембранного фосфолипида или диацилглицерина в плазматической мембране. Синтетазный комплекс представляет собой полиферментную систему, функционирующую преимущественно на мем¬ бранах эндоплазматической сети. Образующиеся эйкозаноиды легко про¬ никают через плазматическую мембрану клетки, а затем через межкле¬ точное пространство переносятся на соседние клетки и выходят в кровь и лимфу. Наиболее интенсивно простагландины образуются в яичках и яичниках.

Простагландины могут активировать аденилатциклазу, тромбоксаны увеличивают активность фосфоинозитидного обмена, а лейкотриены по¬ вышают проницаемость мембран для Са2 + . Поскольку цАМФ и Са2 + сти¬ мулируют синтез эйкозаноидов, замыкается положительная обратная связь в синтезе этих специфических регуляторов.

Период полураспада эйкозаноидов составляет 1-20 с. Ферменты, инактивирующие их, имеются практически во всех тканях, но наибольшее их количество содержится в легких.

4.3.2. Выведение гормонов из клеток-продуцентов и транспорт гормонов кровью

Стероидные гормоны благодаря своей липофильности не накапливаются в эндокринных клетках, а легко проходят через мембрану и поступают в кровь и лимфу. В связи с этим регуляция содержания этих гормонов в крови осуществляется путем изменения скорости их синтеза.

Тиреоидные гормоны также липофильны и также легко проходят через мембрану, однако они ковалентно связаны в эндокринной железе с тиреоглобулином, поэтому могут выводиться из клетки только после наруше¬ ния этой связи. Чем больше йодированных тирозилов в составе тиреоглобулина и чем выше скорость протеолиза йодированного белка, тем больше тиреоидных гормонов в крови. Регуляция содержания тиреоидных гормо¬ нов осуществляется двумя путями - ускорением как процессов йодирова¬ ния, так и разрушения тиреоглобулина.

Гормоны, имеющие белковую и пептидную природу, а также катехолами¬ ны, гистамин, серотонини др. - это гидрофильные вещества, которые не могут диффундировать через клеточную мембрану. Для выведения этих

молекул созданы специальные механизмы, чаще всего пространственно и функционально разобщенные с процессами биосинтеза.

Многие белково-пептидные гормоны образуются из предшественников большой молекулярной массы, и выведение этих гормонов становится возможным только после того, как произойдет отщепление «лишнего» фрагмента. Так, выведению инсулина из клетки предшествует превраще¬ ние в В-клетках поджелудочной железы препроинсулина в проинсулин, а затем в инсулин. Биосинтез инсулина и других белково-пептидных гормо¬ нов, а также их транспорт к периферии секреторной клетки занимает обычно 1-3 ч. Очевидно, что воздействие на биосинтез приведет к изме¬ нению уровня белкового гормона в крови лишь через несколько часов. Влияние же на выведение этих гормонов, синтезированных «впрок» и за¬ пасенных в специальных везикулах, позволяет повышать их концентрацию в несколько раз за секунды или минуты.

Для секреции белково-пептидных гормонов и катехоламинов необходи¬ мы ионы Са2 + . Принято считать, что для выведения гормонов важна не собственно деполяризация мембраны, а происходящий при ней вход Са2 + в цитоплазму клетки.

Поступив в кровь, гормоны связываются с транспортными белками, что защищает их от разрушения и экскреции. В связанной форме гормон с током крови переносится от места секреции к клеткам-мишеням. В этих клетках есть рецепторы, которые имеют большее сродство к гормону, чем белки крови.

Обычно лишь 5-10 % молекул гормона находится в крови в свободном состоянии, и только свободные молекулы могут взаимодействовать с ре¬ цептором. Однако, как только они свяжутся с рецептором, равновесие в реакции взаимодействия гормона с транспортными белками сдвигается в сторону распада комплекса и концентрация свободных молекул гормона останется практически неизменной. При избытке гормонсвязывающих белков в крови концентрация свободных молекул гормона может снизить¬ ся до критической величины.

Связывание гормонов в крови зависит от их сродства к связывающим белкам и концентрации этих белков. К их числу относятся транскортин, связывающий кортикостероиды, тестостерон-эстрогенсвязывающий гло¬ булин, тироксинсвязывающий глобулин, тироксинсвязывающий преальбумин и др. Едва ли не все гормоны могут связываться с альбумином, кон¬ центрация которого в крови в 1000 раз больше, чем концентрация других гормонсвязывающих белков. Однако сродство к альбумину у гормонов в десятки тысяч раз меньше, поэтому с альбуминами обычно связано 5- 10% гормонов, а со специфическими белками 85-90 %. Альдостерон, по-видимому, не имеет специфических «транспортных» белков, поэтому находится преимущественно в связи с альбумином.

4.3.3. Молекулярные механизмы действия гормонов

Гормоны, действующие через мембранные рецепторы и системы вто¬ ричных посредников, стимулируют химическую модификацию белков. Наиболее хорошо изучено фосфорилирование. Регуляция, происходящая за счет химических процессов (синтез и расщепление вторичного посред¬ ника, фосфорилирование и дефосфорилирование белка), развивается и га¬ сится за минуты или десятки минут.

Стероидные гормоны благодаря своей липофильности не накапливаются

в эндокринных клетках, а легко проходят через мембрану и поступают в

кровь и лимфу. В связи с этим регуляция содержания этих гормонов в

крови осуществляется путем изменения скорости их синтеза.

Тиреоидные гормоны также липофильны и также легко проходят через

мембрану, однако они ковалентно связаны в эндокринной железе с тире-

оглобулином, поэтому могут выводиться из клетки только после наруше

ния этой связи. Чем больше йодированных тирозилов в составе тиреогло-

булина и чем выше скорость протеолиза йодированного белка, тем больше

тиреоидных гормонов в крови. Регуляция содержания тиреоидных гормо

нов осуществляется двумя путями - ускорением как процессов йодирова

ния, так и разрушения тиреоглобулина.

Гормоны, имеющие белковую и пептидную природу, а также катехолами

ны, гистамин, серотонин и др. - это гидрофильные вещества, которые не

могут диффундировать через клеточную мембрану. Для выведения этих

молекул созданы специальные механизмы, чаще всего пространственно и

функционально разобщенные с процессами биосинтеза.

Многие белково-пептидные гормоны образуются из предшественников

большой молекулярной массы, и выведение этих гормонов становится

возможным только после того, как произойдет отщепление «лишнего»

фрагмента. Так, выведению инсулина из клетки предшествует превраще

ние в В-клетках поджелудочной железы препроинсулина в проинсулин, а

затем в инсулин. Биосинтез инсулина и других белково-пептидных гормо

нов, а также их транспорт к периферии секреторной клетки занимает

обычно 1-3 ч. Очевидно, что воздействие на биосинтез приведет к изме

нению уровня белкового гормона в крови лишь через несколько часов.

Влияние же на выведение этих гормонов, синтезированных «впрок» и за

пасенных в специальных везикулах, позволяет повышать их концентрацию

в несколько раз за секунды или минуты.

Для секреции белково-пептидных гормонов и катехоламинов необходи

собственно деполяризация мембраны, а происходящий при ней вход Са2+

в цитоплазму клетки.

Поступив в кровь, гормоны связываются с транспортными белками,

что защищает их от разрушения и экскреции. В связанной форме гормон с

током крови переносится от места секреции к клеткам-мишеням. В этих

клетках есть рецепторы, которые имеют большее сродство к гормону, чем

белки крови.

Обычно лишь 5-10 % молекул гормона находится в крови в свободном

состоянии, и только свободные молекулы могут взаимодействовать с ре

цептором. Однако, как только они свяжутся с рецептором, равновесие в

реакции взаимодействия гормона с транспортными белками сдвигается в

сторону распада комплекса и концентрация свободных молекул гормона

останется практически неизменной. При избытке гормонсвязывающих

белков в крови концентрация свободных молекул гормона может снизить

ся до критической величины.

Связывание гормонов в крови зависит от их сродства к связывающим

белкам и концентрации этих белков. К их числу относятся транскортин,

связывающий кортикостероиды, тестостерон-эстрогенсвязывающий гло

булин, тироксинсвязывающий глобулин, тироксинсвязывающий преальбу-

мин и др. Едва ли не все гормоны могут связываться с альбумином, кон

центрация которого в крови в 1000 раз больше, чем концентрация других

гормонсвязывающих белков. Однако сродство к альбумину у гормонов в

десятки тысяч раз меньше, поэтому с альбуминами обычно связано 5-

10 % гормонов, а со специфическими белками 85-90 %. Альдостерон,

по-видимому, не имеет специфических «транспортных» белков, поэтому

находится преимущественно в связи с альбумином.

4.3.3. Молекулярные механизмы действия

гормонов

Гормоны, действующие через мембранные рецепторы и системы вто

ричных посредников, стимулируют химическую модификацию белков.

Наиболее хорошо изучено фосфорилирование. Регуляция, происходящая

за счет химических процессов (синтез и расщепление вторичного посред

ника, фосфорилирование и дефосфорилирование белка), развивается и га

сится за минуты или десятки минут.

цАМФ-зависимая

протеинкиназа

Са2*-кальмодулин-

зависимая

протеинкинаэа

Рис. 4.3. Механизм мембранной рецепции проведения гормонального сигнала в

клетке при участии вторичных посредников.

Стероидные и тиреоидные гормоны имеют цитозольные или ядерные

рецепторы, что позволяет им взаимодействовать с хроматином и влиять на

экспрессию генов. Эта регуляция, развивающаяся путем индукции или ре

прессии синтеза мРНК и белков, реализуется спустя 3-6 ч после появле

ния гормона в крови, а гасится спустя 6-12 ч.

Промежуточное положение в этой иерархии занимают факторы роста.

Их взаимодействие с рецептором приводит сначала к фосфорилированию

определенных белков, а затем к делению клеток.

Адренергические рецепторы вне зависимости от локализации (в си

напсе или вне его) относятся к семейству рецепторов, 7 раз пронизываю

щих плазматическую мембрану и сопряженных с G-белками. Известны

алфа-1А-, альфа-1В- и адьфа-1С-адренорецепторы, а-2А-, а-2В- и а-2С-адренорецеп-

торы, а также бета-1-, бета-2- и бета-3-адренорецепторы. Все а-1-рецепторы сти

мулируют фосфолипазу С, гидролизующую фосфоинозитиды. Все а-2-ре-

цепторы ингибируют аденилатциклазу, а все бета-рецепторы ее активируют.

Кроме того, а-2А-рецепторы могут активировать К+-каналы, а-2А- и

а-2В-рецепторы ингибируют Са2+-каналы, а (бета-1 -рецепторы активируют

Са2+-каналы (рис. 4.3).

В каждой клетке функционирует обычно несколько типов рецепторов к

одному и тому же гормону (например, как а-, так и р-адренорецепторы).

Кроме того, клетка чувствительна обычно к нескольким эндокринным

регуляторам - нейромедиаторам, гормонам, простагландинам, факторам

роста и др. Каждый из этих регуляторов имеет характерную только для

Аденилатциклаза

Эндоплазматическая

Физиологический

Физиологический

Рис. 4.4. Механизм

цитоплазматического

(ядерного) действия

стероидных гормонов.

Ra и Rb - две субъеди

ницы рецепторов; Н -

него продолжительность и амплитуду регуляторного сигнала, для каждого

характерно определенное соотношение активностей систем генерации вто

ричных посредников в клетке или изменения мембранного потенциала.

На уровне исполнительных систем клетки может происходить как усиле

ние, так и взаимное гашение разных регуляторных сигналов.

На определенных стадиях онтогенеза или при достижении критическо

го для организма отклонения от нормы того или иного фактора гомеостаза

(гипотермия, гипогликемия, гипоксемия, потеря крови и др.) включается

медленная, но наиболее мощная система эндокринной регуляции, дейст

вующая через стероидные (андрогены, эстрогены, прогестины, глюкокор-

тикоиды и минералокортикоиды) и тиреоидные (тироксин и трийодтиро-

нин) гормоны. Молекулы этих регуляторов, имея липофильную природу,

легко проникают через липидный бислой и связываются со своими рецеп

торами в цитоплазме или ядре (рис. 4.4.). Затем гормонрецепторный ком

плекс связывается с ДНК и белками хроматина, что стимулирует синтез

матричной РНК на определенных генах. Трансляция мРНК приводит к

появлению в клетке новых белков, которые вызывают физиологический

эффект этих гормонов.

Стероидные и тиреоидные гормоны могут также репрессировать неко

торые гены, что реализуется в биологический эффект путем уменьшения

количества определенных белков в клетке. Обычно эти гормоны изменяют

крипции функционирующих генов, а за счет включения-выключения но

вых генов. Так, например, стимулирование глюкокортикоидами амино-

трансферазной активности печени происходит благодаря появлению в

клетках новых изоформ аминотрансфераз.

К числу белков, экспрессия которых в клетке контролируется гормона

ми, относятся не только ферменты, участвующие в метаболизме, но и

многие рецепторы, а также регуляторные белки и ферменты, участвующие

в обмене вторичных посредников. Благодаря этому стероидные и тиреоид

ные гормоны могут участвовать в формировании не только возрастных и

половых признаков, но и определять психоэмоциональный статус орга

низма, а также баланс катаболических и анаболических реакций в органах

и тканях, их чувствительность к нейромедиаторам и гормонам.


Похожая информация.


ЖЕЛЕЗЫ ВНУТРЕННЕЙ СЕКРЕЦИИ (ОБЩАЯ)

ü Понятие о железах внутренней секреции (ЖВС) сформулировано И. Мюллером (1830).

ü Немецкий физиолог Адольф Бертольд (1849) установил, что пересадка кастрированному петуху в брюшную полость семенников другого петуха приводит к восстановлению исходных свойств у кастрата.

ü В 1889 Броун –Секар сообщил об опытах, проведенных на самом себе –вытяжки из семенников животных оказали на старческий организм (ученому 72 года) «омолаживающее действие», но эффект омоложения длился недолго -через 2-3 месяца он пропадал.

ü В 1901 году Соболев Л.В., доказал секрецию панкреатической железой инсулина (1921 г. Бантинг и Ч. Бест).

Эндокринология –наука, изучающая развитие, строение, функции ЖВС и клеток –продуцентов гормонов, биосинтез, механизм действия и особенности гормонов, их секрецию в норме и при патологии, а так же болезни, возникшие в результате нарушения продукции гормонов.

ЖВС - это специализированные в процессе фило- и онтогенеза органы или группы клеток, синтезирующие и выделяющие во внутреннюю среду организма биологически активные вещества (БАВ) – гормоны. ЖВС не имеют выводных протоков. Их клетки оплетены обильной сетью кровеносных и лимфатических капилляров, и их БАВ выделяются непосредственно в кровь и лимфу.

ГОРМОНЫ

Гормоны - это группа высокоспециализированных БАВ, обеспечивающих регуляцию и интеграцию функций органов и всего организма в целом.

ФИЗИОЛОГИЧЕСКАЯ РОЛЬ ГОРМОНОВ В ОРГАНИЗМЕ:

1. Гомеостатическая функция.

2. Влияют на процессы роста , дифференцировки тканей(т. е. на физическое, умственное и половое созревание)

3. Обеспечивают адаптацию организма.

4. Регулируют репродуктивную функцию организма (оплодотворение, беременность, лактация).

5. Регулируют и интегрируют функции организма совместно с ЦНС.

Высшей формой гуморальной регуляции является гормональная . Термин "гормон " был впервые применен в 1902 г. Старлингом и Бейлиссом в отношении открытого ими вещества, продуцирующегося в двенадцатиперстной кишке, -секретина . Термин"гормон " в переводе с греческого означает "побуждающий к действию ", хотя не все гормоны обладают стимулирующим эффектом.

Классификация вариантов действия гормонов (Балаболкин М.М., 1989):

1. Гормональное (или собственно эндокринное) - гормон выделяется из клетки –продуцента, попадает в кровь и с током крови подходит к органу –мишени, действуя на расстоянии от места продукции гормона.

2. Паракринное - из места синтеза гормон попадает во внеклеточное пространство, из него –воздействует на клетки –мишени, расположенные в округе(простагландины).

3. Аутокринное - клетки продуцируют гормон, который сам и воздействует на эту же клетку –продуцент, то есть клетка –мишень = клетка –продуцент.

ОТЛИЧИТЕЛЬНЫЕ ОСОБЕННОСТИ ГОРМОНОВ:

1.Имеют высокую биологическую активность (мг, нг).

2.Секреция гормона - путем экзоцитоза.

3.Гормоны поступают непосредственно в кровь, лимфу или окружающую секреторную клетку интерстициальную жидкость.

4.Гормон обладает дистантностью действия.

5.Гормон обладает высокой специфичностью действия, то есть вызывает строго специфичные ответы определенных органов или тканей-мишеней. В то же время клетки других тканей не реагируют на наличие гормона.

6.Гормон не служит источником энергии для клетки.

Гормоны синтезируются и выделяются тканями, не относящимся к железам внутренней секреции:

- жировой тканью , которая выделяет женские половые гормоны;

- миокардом , выделяющим натрийуретический гормон;

- слюнными железами - эпидермальный фактор роста;

- печенью, мышцами - инсулиноподобные соматомедины.

ВИДЫ ВОЗДЕЙСТВИЙ ГОРМОНОВ НА КЛЕТКИ-МИШЕНИ:

1. Прямое воздействие: гормон непосредственно сам вызывает изменения в клетках или тканях, органах.

2. Пермиссивное воздействие: через облегчения воздействия другого гормона на данную ткань. Например, глюкокортикоиды, сами не влияя на тонус мускулатуры сосудов, создают условия, для адреналина, который увеличивает АД.

3. Сенсибилизирующее воздействие: повышение чувствительности ткани к действию гормонов.

4. Синергическое воздействие: один гормон усиливает эффект другого гормона. Например, однонаправленное действие адреналина и глюкагона. Оба гормона активируют распад гликогена в печени до глюкозы и вызывают увеличение сахара в крови.

5. Антогонистическое воздействие. Так, инсулин и адреналин оказывают на уровень глюкозы крови противоположенное влияние: инсулин вызывает гипогликемию, а глюкагон - гипергликемию.

КЛАССИФИКАЦИЯ ГОРМОНОВ

1.По месту действия:

эффекторные гормоны: действуют непосредственно на органы-мишени;

тропные гормоны: действуют на другие эндокринные железы;

гипоталамические факторы (рилизинг-факторы) : действуют на гипофиз

Ø высвобождающие (либерины)

Ø ингибирующие (статины).

2. По биологическим функциям:

Гомеостаз жидкости и электролитов: АДГ, альдостерон, ангиотензин, натрийуретический гормон;

Регуляция Са: паратиреоидный гормон, кальцитонин, витамин Д.

115. Основные системы межклеточной коммуникации: эндокринная, паракринная, аутокринная регуляция.

По расстоянию от клетки-продуцента гормона до клетки-мишени различают эндокринный, паракринный и аутокринный варианты регуляции.
Эндокринная , или дистантная, регуляция. Секреция гормона происходит в жидкие среды организма. Клетки-мишени могут отстоять от эндокринной клетки сколь угодно далеко. Пример: секреторные клетки эндокринных желёз, гормоны из которых поступают в систему общего кровотока.
Паракринная регуляция . Продуцент биологически активного вещества и клетка-мишень расположены рядом. Молекулы гормона достигают мишени путём диффузии в межклеточном веществе. Например, в париетальных клетках желёз желудка секрецию Н + стимулируют гастрин и гистамин, а подавляют соматостатин и Пг, секретируемые рядом расположенными клетками.
Аутокринная регуляция . При аутокринной регуляции клетка-продуцент гормона имеет рецепторы к этому же гормону (другими словами, клетка-продуцент гормона в то же время является его мишенью). Примеры: эндотелины, вырабатываемые клетками эндотелия и воздействующие на эти же эндотелиальные клетки; Т-лимфоциты, секретирующие интерлейкины, имеющие мишенями разные клетки, в том числе и Т-лимфоциты.

116. Роль гормонов в системе регуляции метаболизма. Клетки-мишени и клеточные рецепторы гормонов

Роль гормонов в регуляции обмена веществ и функций . Интегрирующими регуляторами, связывающими различные регуляторные механизмы и метаболизм в разных органах, являются гормоны. Они функционируют как химические посредники, переносящие сигналы, возникающие в различных органах и ЦНС. Ответная реакция клетки на действие гормона очень разнообразна и определяется как химическим строением гормона, так и типом клетки, на которую направлено действие гормона. В крови гормоны присутствуют в очень низкой концентрации. Для того чтобы передавать сигналы в клетки, гормоны должны распознаваться и связываться особыми белками клетки - рецепторами, обладающими высокой специфичностью. Физиологический эффект гормона определяется разными факторами, например концентрацией гормона (которая определяется скоростью инактивации в результате распада гормонов, протекающего в основном в печени, и скоростью выведения гормонов и его метаболитов из организма), его сродством к белкам-переносчикам (стероидные и тиреоидные гормоны транспортируются по кровеносному руслу В комплексе с белками), количеством и типом рецепторов на поверхности клеток-мишеней. Синтез и секреция гормонов стимулируются внешними и внутренними сигналами, поступающими в ЦНС.Эти сигналы по нейронам поступают в гипоталамус, где стимулируют синтез пептидных рилизинг-гормонов (от англ,release - освобождать) - либеринов и статинов, которые, соответственно, стимулируют или ингибируют синтез и секрецию гормонов передней доли гипофиза. Гормоны передней доли гипофиза, называемые тройными гормонами, стимулируют образование и секрецию гормонов периферических эндокринных желёз, которые поступают в общий кровоток и взаимодействуют с клетками-мишенями. Поддержание уровня гормонов в организме обеспечивает механизм отрицательной обратной связи. Изменение концентрации метаболитов в клетках-мишенях по механизму отрицательной обратной связи подавляет синтез гормонов, действуя либо на эндокринные железы, либо на гипоталамус. Синтез и секреция тропных гормонов подавляется гормонами эндокринных периферических желёз. Такие петли обратной связи действуют в системах регуляции гормонов надпочечников, щитовидной железы, половых желёз. Не все эндокринные железы регулируются подобным образом. Гормоны задней доли гипофиза (вазопрессин и окситоцин) синтезируются в гипоталамусе в виде предшественников и хранятся в гранулах терминальных аксонов нейрогипофиза. Секреция гормонов поджелудочной железы (инсулина и глюкагона) напрямую зависит от концентрации глюкозы в крови. В регуляции межклеточных взаимодействий участвуют также низкомолекулярные белковые соединения - цитокины. Влияние цитокинов на различные функции клеток обусловлено их взаимодействием с мембранными рецепторами. Через образование внутриклеточных посредников сигналы передаются в ядро, где происходят активация определённых генов и индукция синтеза белков. Все цитокины объединяются следующими общими свойствами:

  • синтезируются в процессе иммунного ответа организма, служат медиаторами иммунной и воспалительной реакций и обладают в основном аутокринной, в некоторых случаях паракринной и эндокринной активностью;
  • действуют как факторы роста и факторы дифференцировки клеток (при этом вызывают преимущественно медленные клеточные реакции, требующие синтеза новых белков);
  • обладают плейотропной (полифункциональной) активностью.

Биологическое действие гормонов проявляется через их взаимодействие с рецепторами клеток-мишеней. Для проявления биологической активности связывание гормона с рецептором должно приводить к образованию химического сигнала внутри клетки, который вызывает специфический биологический ответ, например изменение скорости синтеза ферментов и других белков или изменение их активности. Мишенью для гормона могут служить клетки одной или нескольких тканей. Воздействуя на клетку-мишень, гормон вызывает специфическую ответную реакцию. Например, щитовидная железа - специфическая мишень для тиреотропина, под действием которого увеличивается количество ацинарных клеток щитовидной железы, повышается скорость биосинтеза тиреоидных гормонов. Глюкагон, воздействуя на адипоциты, активирует липолиз, в печени стимулирует мобилизацию гликогена и глюконеогенез. Характерный признак клетки-мишени - способность воспринимать информацию, закодированную в химической структуре гормона.

Рецепторы гормонов . Начальный этап в действии гормона на клетку-мишень - взаимодействие гормона с рецептором клетки. Концентрация гормонов во внеклеточной жидкости очень низка и обычно колеблется в пределах 10 -6 -10 -11 ммоль/л. Клетки-мишени отличают соответствующий гормон от множества других молекул и гормонов благодаря наличию на клетке-мишени соответствующего рецептора со специфическим центром связывания с гормоном.

Общая характеристика рецепторов

Рецепторы пептидных гормонов и адреналина располагаются на поверхности клеточной мембраны. Рецепторы стероидных и тиреоидных гормонов находятся внутри клетки. Причём внутриклеточные рецепторы для одних гормонов, например глюкокортикоидов, локализованы в цитозоле, для других, таких как андрогены, эстрогены, тиреоидные гормоны, расположены в ядре клетки. Рецепторы по своей химической природе являются белками и, как правило, состоят из нескольких доменов. В структуре мембранных рецепторов можно выделить 3 функционально разных участка. Первый домен (домен узнавания) расположен в N-концевой части полипептидной цепи на внешней стороне клеточной мембраны; он содержит гликозилированные участки и обеспечивает узнавание и связывание гормона. Второй домен - трансмембранный. У рецепторов одного типа, сопряжённых с G-белками, он состоит из 7 плотно упакованных α-спиральных полипептидных последовательностей. У рецепторов другого типа трансмембранный домен включает только одну α-спирадизованную полипептидную цепь (например, обе β-субъединицы гетеротетрамерного рецептора инсулина α 2 β 2). Третий (цитоплазматический) домен создаёт химический сигнал в клетке, который сопрягает узнавание и связывание гормона с определённым внутриклеточным ответом. Цитоплазматический участок рецептора таких гормонов, как инсулин, фактор роста эпидермиса и инсулиноподобный фактор роста-1 на внутренней стороне мембраны обладает тирозинки-назной активностью, а цитоплазматические участки рецепторов гормона роста, пролактина и цитокинов сами не проявляют тирозинкиназ-ную активность, а ассоциируются с другими цитоплазматическими протеинкиназами, которые их фосфорилируют и активируют.

Рецепторы стероидных и тиреоидных гормонов содержат 3 функциональные области. На С-концевом участке полипептидной цепи рецептора находится домен узнавания и связывания гормона. Центральная часть рецептора включает домен связывания ДНК. На N-концевом участке полипептидной цепи располагается домен, называемый вариабельной областью рецептора, отвечающий за связывание с другими белками, вместе с которыми участвует в регуляции транскрипции.

117. Механизмы передачи гормональных сигналов в клетки.

По механизму действия гормоны можно разделить на 2 группы. К первой группе относят гормоны, взаимодействующие с мембранными рецепторами (пептидные гормоны, адреналин, а также гормоны местного действия - цитокины, эйкозаноиды). Вторая группа включает гормоны, взаимодействующие с внутриклеточными рецепторами.Связывание гормона (первичного посредника) с рецептором приводит к изменению кон-формации рецептора. Это изменение улавливается другими макромолекулами, т.е. связывание гормона с рецептором приводит к сопряжению одних молекул с другими (трансдукция сигнала). Таким образом, генерируется сигнал, который регулирует клеточный ответ путём изменения активности или количества ферментов и других белков. В зависимости от способа передачи гормонального сигнала в клетках меняется скорость реакций метаболизма:

  • в результате изменения активности ферментов;
  • в результате изменения количества ферментов

118. Классификация гормонов по химическому строению и биологическим функциям

Классификация гормонов по химическому строению

Пептидные гормоны Стероиды Производные аминокислот
Адренокортикотропный гормон (кортикотропин, АКТГ) Альдостерон Адреналин
Гормон роста (соматотропин, ГР, СТГ) Кортизол Норадреналин
Тиреотропный гормон (тиреотропин, ТТГ) Кальцитриол Трийодтиронин (Т 3)
Лактогенный гормон (пролактин, ЛТГ) Тестостерон Тироксин (Т 4)
Лютеинизирующий гормон (лютропин, ЛГ) Эстрадиол
Фолликулостимулирующий гормон (ФСГ) Прогестерон
Меланоцитстимулирующий гормон (МСГ)
Хорионический гонадотропин (ХГ)
Антидиуретический гормон (вазопрессин, АДГ)
Окситоцин
Паратиреоидный гормон (паратгормон, ПТГ)
Кальцитонин
Инсулин
Глюкагон

Классификация гормонов по биологическим функциям*

Регулируемые процессы Гормоны
Обмен углеводов, липйдов, аминокислот Инсулин, глюкагон, адреналин, кортизол, тироксин, соматотропин
Водно-солевой обмен Альдостерон, антидиуретический гормон
Обмен кальция и фосфатов Паратгормон, кальцитонин, кальцитриол
Репродуктивная функция Эстрадиол, тестостерон, прогестерон, гонадотропные гормоны
Синтез и секреция гормонов эндокринных желёз Тропные гормоны гипофиза, либерины и статины гипоталамуса
Изменение метаболизма в клетках, синтезирующих гормон Эйкозаноиды, гистамин, секретин, гастрин, соматостатин, вазоактивный интестинальный пептид (ВИП), цитокины

(*) Эта классификация условна, поскольку одни и те же гормоны могут выполнять разные функции

119. Строение, синтез и метаболизм иодтиронинов. Влияние на обмен ве­ществ. Изменение метаболизма при гипо- и гипертиреозе. Причины и проявление эндемического зоба.

Биосинтез йодтиронинов . Йодтиронины синтезируются в составе белка тиреоглобулина (Тг) в фолликулах, которые представляют собой морфологическую и функциональную единицу щитовидной железы.

Тиреоглобулин - гликопротеин с молекулярной массой 660 кД, содержащий 115 остатков тирозина. 8-10% массы тиреоглобулина представлено углеводами. Содержание йодида в организме составляет 0,2-1%

.

Тиреоглобулин синтезируется на рибосомах шероховатого ЭР в виде претиреоглобулина, затем переносится в цистерны ЭР, где происходит формирование вторичной и третичной структуры, включая процессы гликозилирования. Из цистерн ЭР Тиреоглобулин поступает в аппарат Гольджи, включается в состав секреторных гранул и секретируется во внеклеточный коллоид, где происходит йодирование остатков тирозина и образование йодтиронинов. Йодирование тиреоглобулина и образование йодтиронинов осуществляется в несколько этапов

Транспорт йода в клетки щитовидной железы . Йод в виде органических и неорганических соединений поступает в ЖКТ с пищей и питьевой водой. Суточная потребность в йоде составляет 150-200 мкг. 25-30% этого количества йодидов захватывается щитовидной железой. Транспорт йодида в клетки щитовидной железы - энергозависимый процесс и происходит при участии специального транспортного белка против электрохимического градиента (соотношение концентраций I - в железе к концентрации I - в сыворотке крови в норме составляет 25:1). Работа этого йодид-переносящего белка сопряжена с Nа + ,К + -АТФ-азой.

Окисление йода. Окисление I - в I + происходит при участии гемсодержащей тиреоперокси-дазы и Н 2 О 2 в качестве окислителя. Йодирование тирозина . Окисленный йод взаимодействует с остатками тирозина в молекуле тиреоглобулина. Эта реакция также катализируется тиреопероксидазой.

Образование йодтиронинов. Под действием тиреопероксидазы окисленный йод реагирует с остатками тирозина с образованием монойод-тирозинов (МИТ) и дийодтирозинов (ДИТ). Две молекулы ДИТ конденсируются с образованием йодтиронина Т 4 , а МИТ и ДИТ - с образованием йодтиронина Т 3 . Йодтиреоглобулин транспортируется из коллоида в фолликулярную клетку путём эндоцитоза и гидролизуется ферментами лизосом с освобождением Т 3 и Т 4 . В нормальных условиях щитовидная железа сек-ретирует 80-100 мкг Т 4 и 5 мкг Т 3 в сутки. Ещё 22-25 мкг Т 3 образуется в результате дейодирования Т 4 в периферических тканях по 5"-углеродному атому.

Транспорт и метаболизм йодтиронинов . От половины до двух третей Т 3 и Т 4 находятся в организме вне щитовидной железы. Большая часть их циркулирует в крови в связанной форме в комплексе с белками: тироксинсвязывающим глобулином (ТСГ) и тироксинсвязывающим преальбумином (ТСПА). ТСГ служит основным транспортным белком йодтиронинов, а также формой их депонирования. Он обладает более высоким сродством к Т 3 и Т 4 и в нормальных условиях связывает почти всё количество этих гормонов. Только 0,03% Т 4 и 0,3% Т 3 находятся в крови в свободной форме. Т 1/2 Т 4 в плазме в 4-5 раз больше, чем Т 3 . Для Т 4 этот период составляет около 7 дней, а для Т 3 - 1-1,5 дня. Биологическая активность йодтиронинов обусловлена несвязанной фракцией. Т 3 - основная биологически активная форма йодтиронинов; его сродство к рецептору клеток-мишеней в 10 раз выше, чем у Т 4 . В периферических тканях в результате дейодирования части Т 4 по пятому углеродному атому образуется так называемая "реверсивная" форма Т 3 , которая почти полностью лишена биологической активности. Другие пути метаболизма йодтиронинов включают полное дейодирование, дезаминирование или декарбоксилирование. Йодированные продукты катаболизма йодтиронинов конъюгируют-ся в печени с глюкуроновой или серной кислотами, секретируются с жёлчью, в кишечнике вновь всасываются, дейодируются в почках и выделяются с мочой.

Механизм действия и биологические функции йодтиронинов. Клетки-мишени йодтиронинов имеют 2 типа рецепторов к этим гормонам. Основные эффекты йодтиронинов - результат их взаимодействия с высокоспецифичными рецепторами, которые в комплексе с гормонами постоянно находятся в ядре и взаимодействуют с определёнными последовательностями ДНК, участвуя в регуляции экспрессии генов. Другие рецепторы расположены в плазматической мембране клеток, но это не те же самые белки, что в ядре. Они обладают более низким сродством к йодтиронинам и, вероятно, обеспечивают связывание гормонов для удержания их в непосредственной близости к клетке. При физиологической концентрации йодтиронинов их действие проявляется в ускорении белкового синтеза, стимуляции процессов роста и клеточной дифференцировки. В этом отношении йодтиронины - синергисты гормона роста. Кроме того, Т 3 ускоряет транскрипцию гена гормона роста. У животных при дефиците Т 3 клетки гипофиза теряют способность к синтезу гормона роста. Очень высокие концентрации Т 3 тормозят синтез белков и стимулируют катаболические процессы, показателем чего служит отрицательный азотистый баланс. Метаболические эффекты йодтиронинов относят в основном к энергетическому метаболизму, что проявляется в повышении поглощения клетками кислорода. Этот эффект проявляется во всех органах, кроме мозга, РЭС и гонад. В разных клетках Т 3 стимулирует работу Nа + ,К + -АТФ-азы, на что затрачивается значительная часть энергии, утилизируемой клеткой. В печени йодтиронины ускоряют гликолиз, синтез холестерола и синтез жёлчных кислот. В печени и жировой ткани Т 3 повышает чувствительность клеток к действию адреналина и косвенно стимулирует липолиз в жировой ткани и мобилизацию гликогена в печени. В физиологических концентрациях Т 3 увеличивает в мышцах потребление глюкозы, стимулирует синтез белков и увеличение мышечной массы, повышает чувствительность мышечных клеток к действию адреналина. Йодтиронины также участвуют в формировании ответной реакции на охлаждение увеличением теплопродукции, повышая чувствительность симпатической нервной системы к норадреналину и стимулируя секрецию норадреналина.

Заболевания щитовидной железы Гормоны щитовидной железы необходимы для нормального развития человека.

Гипотиреоз у новорождённых приводит к развитию кретинизма, который проявляется множественными врождёнными нарушениями и тяжёлой необратимой задержкой умственного развития. Гипотиреоз развивается вследствие недостаточности йодтиронинов. Обычно гипотиреоз связан с недостаточностью функции щитовидной железы, но может возникать и при заболеваниях гипофиза и гипоталамуса.

Наиболее тяжёлые формы гипотиреоза, сопровождающиеся слизистым отёком кожи и подкожной клетчатки, обозначают термином "микседема " (от греч. туха - слизь, oedema - отёк). Отёчность обусловлена избыточным накоплением гликозаминогликанов и воды. В подкожной клетчатке накапливается глюкуроновая и в меньшей степени хондроитинсерная кислоты. Избыток гликозаминогликанов вызывает изменения коллоидной структуры межклеточного матрикса, усиливает его гидрофильность и связывает ионы натрия, что приводит к задержке воды. Характерные проявления заболевания: снижение частоты сердечных сокращений, вялость, сонливость, непереносимость холода, сухость кожи. Эти симптомы развиваются вследствие снижения основного обмена, скорости гликолиза, мобилизации гликогена и жиров, потребления глюкозы мышцами, уменьшения мышечной массы и снижения теплопродукции. При возникновении гипотиреоза у детей старшего возраста наблюдают отставание в росте без задержки умственного развития. В настоящее время у взрослых людей частой причиной гипотиреоза является хронический аутоиммунный тиреоидит, приводящий к нарушению синтеза йодтиронинов (зоб Хашимото ).

Гипотиреоз может быть также результатом недостаточного поступления йода в организм -эндемический зоб . Эндемический зоб (нетоксический зоб) часто встречается у людей, живущих в районах, где содержание йода в воде и почве недостаточно. Если поступление йода в организм снижается (ниже 100 мкг/сут), то уменьшается продукция йодтиронинов, что приводит к усилению секреции ТТГ (из-за ослабления действия йодтиронинов на гипофиз по механизму отрицательной обратной связи), под влиянием которого происходит компенсаторное увеличение размеров щитовидной железы (гиперплазия), но продукция йодтиронинов при этом не увеличивается.

Гипертиреоз возникает вследствие повышенной продукции йодтиронинов. Диффузный токсический зоб (базедова болезнь, болезнь Грейвса) - наиболее распространённое заболевание щитовидной железы. При этом заболевании отмечают увеличение размеров щитовидной железы (зоб), повышение концентрации йодтиронинов в 2-5 раз и развитие тиреотоксикоза. Характерные признаки тиреотоксикоза: увеличение основного обмена, учащение сердцебиений, мышечная слабость, снижение массы тела (несмотря на повышенный аппетит) , потливость, повышение температуры тела, тремор и экзофтальм (пучеглазие). Эти симптомы отражают одновременную стимуляцию йодтиронинами как анаболических (рост и дифференцировка тканей), так и катаболических (катаболизм углеводов, ли-пидов и белков) процессов. В большей мере усиливаются процессы катаболизма, о чём свидетельствует отрицательный азотистый баланс. Гипертиреоз может возникать в результате различных причин: развитие опухоли, тиреоидит, избыточное поступление йода и йодсодер-жащих препаратов, аутоиммунные реакции. Болезнь Грейвса возникает в результате образования антител к тиреоидным антигенам. Один из них, иммуноглобулин (IgG), имитирует действие тиреотропина, взаимодействуя с рецепторами тиреотропина на мембране клеток щитовидной железы. Это приводит к диффузному разрастанию щитовидной железы и избыточной неконтролируемой продукции Т 3 и Т 4 , поскольку образование IgG не регулируется по механизму обратной связи. Уровень ТТГ при этом заболевании снижен вследствие подавления функции гипофиза высокими концентрациями йодтиронинов.

120. Регуляция энергетического метаболизма, роль инсулина и контринсулярных гормонов в обеспечении гомеостаза .

Основные пищевые вещества (углеводы, жиры, белки) окисляются в организме с освобождением свободной энергии, которая используется в анаболических процессах и при осуществлении физиологических функций. Энергетическая ценность основных пищевых веществ выражается в килокалориях и составляет: для углеводов - 4 ккал/г, для жиров - 9 ккал/г, для белков - 4 ккал/г. Взрослому здоровому человеку в сутки требуется 2000-3000 ккал (8000-12 000 кДж) энергии. При обычном ритме питания промежутки между приёмами пищи составляют 4-5 ч с 8-12-часовым ночным перерывом. Во время пищеварения и абсорбтивного периода (2-4 ч) основные энергоносители, используемые тканями (глюкоза, жирные кислоты, аминокислоты), могут поступать непосредственно из пищеварительного тракта. В постабсорбтивном периоде и при голодании энергетические субстраты образуются в процессе катаболизма депонированных энергоносителей. Изменения в потреблении энергоносителей и энергетических затратах координируются путём чёткой регуляции метаболических процессов в разных органах и системах организма, обеспечивающей энергетический гомеостаз. Основную роль в поддержании энергетического гомеостаза играют гормоны инсулин и глюкагон , а также другие контринсулярные гормоны - адреналин, кортизол, йодтиронины и соматотропин. Инсулин и глюкагон играют главную роль в регуляции метаболизма при смене абсорбтивного и постабсорбтивного периодов и при голодании. Абсорбтивный период характеризуется временным повышением концентрации глюкозы, аминокислот и жиров в плазме крови. Клетки поджелудочной железы отвечают на это повышение усилением секреции инсулина и снижением секреции глюкагона. Увеличение отношения инсулин/глюкагон вызывает ускорение использования метаболитов для запасания энергоносителей: происходит синтез гликогена, жиров и белков. Режим запасания включается после приёма пищи и сменяется режимом мобилизации запасов после завершения пищеварения. Тип метаболитов, которые потребляются, депонируются и экспортируются, зависит от типа ткани. Главные органы, связанные с изменениями потока метаболитов при смене режимов мобилизации и запасания энергоносителей, - печень, жировая ткань и мышцы.

Изменения метаболизма в печени в абсорбтивном периоде

После приёма пищи печень становится главным потребителем глюкозы, поступающей из пищеварительного тракта. Почти 60 из каждых 100 г глюкозы, транспортируемой портальной системой, задерживается в печени. Увеличение потребления печенью глюкозы - не результат ускорения её транспорта в клетки (транспорт глюкозы в клетки печени не стимулируется инсулином), а следствие ускорения метаболических путей, в которых глюкоза превращается в депонируемые формы энергоносителей: гликоген и жиры. При повышении концентрации глюкозы в гепатоцитах происходит активация глюкокиназы, превращающей глюкозу в глюкозо-6-фосфат. Глюкокиназа имеет высокое значение К m для глюкозы, что обеспечивает высокую скорость фосфорилирования при высоких концентрациях глюкозы. Кроме того, глюкокиназа не ингибируется глюкозо-6-фосфатом (см. раздел 7). Инсулин индуцирует синтез мРНК глюкокиназы. Повышение концентрации глюкозо-6-фосфата в гепатоцитах обусловливает ускорение синтеза гликогена. Этому способствуют одновременная инактивация гликогенфосфорилазы и активация гликогенсинтазы. Под влиянием инсулина в гепатоцитах ускоряется гликолиз в результате повышения активности и количества ключевых ферментов: глюкокиназы, фосфофруктокиназы и пируваткиназы. В то же время происходит торможение глюконеогенеза в результате инактивации фруктозо-1,6-бисфосфатазы и снижения количества фосфоенолпируваткарбоксикиназы - ключевых ферментов глюконеогенеза. Повышение концентрации глюкозо-6-фосфата в гепатоцитах в абсорбтивном периоде, сочетается с активным использованием NADPH для синтеза жирных кислот, что способствует стимуляции пентозофосфатного пути. Ускорение синтеза жирных кислот обеспечивается доступностью субстратов (ацетил-КоА и NADPH), образующихся при метаболизме глюкозы, а также активацией и индукцией ключевых ферментов синтеза жирных кислот. В абсорбтивном периоде в печени ускоряется синтез белков. Однако количество аминокислот, поступающих в печень из пищеварительного тракта, превышает возможности их использования для синтеза белков и других азотсодержащих соединений. Излишек аминокислот либо поступает в кровь и транспортируется в другие ткани, либо дезаминируется с последующим включением безазотистых остатков в общий путь катаболизма.

Изменения метаболизма в адипоцитах . Основная функция жировой ткани - запасание энергоносителей в форме триацилгли-церолов. Под влиянием инсулина ускоряется транспорт глюкозы в адипоциты. Повышение внутриклеточной концентрации глюкозы и активация ключевых ферментов гликолиза обеспечивают образование ацетил-КоА и глицерол-3-фосфата, необходимых для синтеза ТАГ. Стимуляция пентозофосфатного пути обеспечивает образование NADPH, необходимого для синтеза жирных кислот. Однако биосинтез жирных кислот de novo в жировой ткани человека протекает с высокой скоростью только после предшествующего голодания. При нормальном ритме питания для синтеза ТАГ используются в основном жирные кислоты, поступающие из ХМ и ЛПОНП под действием ЛП-липазы. Вместе с тем при увеличении отношения инсулин/глюкагон гормончувствительная ТАГ-липаза находится в дефосфорилированной неактивной форме, и процесс липолиза тормозится.

Изменение метаболизма в мышцах в абсорбтивном периоде . В абсорбтивном периоде под влиянием инсулина ускоряется транспорт глюкозы в клетки мышечной ткани. Глюкоза фосфорилируется и окисляется для обеспечения клетки энергией, а также используется для синтеза гликогена. Жирные кислоты, поступающие из ХМ и ЛПОНП, в этот период играют незначительную роль в энергетическом обмене мышц. Поток аминокислот в мышцы и биосинтез белков также увеличиваются под влиянием инсулина, особенно после приёма белковой пищи.