Повышение уровня физической тренированности устойчивость к гипоксии. Принципы профилактики и повышения устойчивости к гипоксии

Содержание статьи:

Адаптация человеческого организма к гипоксии представляет собой сложный интегральный процесс, в котором задействуется большое количество систем. Наиболее значительные изменения происходят в сердечнососудистой, кроветворной и дыхательной системах. Также повышение устойчивости и адаптации к гипоксии в спорте предполагает перестройку и процессов газообмена.

Организм в этот момент перестраивает свою работу на всех уровнях, начиная с клеточного и заканчивая системным. Однако это возможно только в том случае, если системы получают целостные физиологические ответы. Из этого можно сделать вывод, что повышение устойчивости и адаптации к гипоксии в спорте не возможна без определенных изменений в работе гормональной и нервной систем. Именно они обеспечивают тонкую физиологическую регулировку всего организма.

Какие факторы влияют на адаптацию организма к гипоксии?

Факторов, оказывающих существенное влияние на повышение устойчивости и адаптации к гипоксии в спорте достаточно много, но мы отметим лишь самые важные:

  • Улучшение вентиляции лёгких.
  • Повышение выброса сердечного мускула.
  • Увеличение концентрации гемоглобина.
  • Увеличение количества красных телец.
  • Увеличение количества и размеров митохондрий.
  • Повышение уровня дифосфоглицерата в эритроцитах.
  • Повышение концентрации окислительных ферментов.
Если спортсмен тренируется в условиях высокогорья, то также большое значение имеет уменьшение атмосферного давления и плотности воздуха, а также падение парциального давления кислорода. Все прочие факторы то же имеют значение, но все же являются второстепенными.

Не стоит забывать, что с увеличением высоты на каждые триста метров, температура опускается на два градуса. При этом на высоте в тысячу метров, сила прямого ультрафиолетового излучения повышается в среднем на 35 процентов. Так как снижается парциальное давление кислорода, а гипоксические явления в свою очередь возрастают, то происходит уменьшение концентрации кислорода в альвеолярном воздухе. Это говорит о том, что ткани тела начинают испытывать дефицит кислорода.

В зависимости от степени гипоксии падает не только парциальное давление кислорода, но и его концентрация в гемоглобине. Вполне очевидно, что в такой ситуации снижается и градиент давления между кровью в капиллярах и тканях, замедляя тем самым процессы перехода кислорода в клеточные структуры тканей.

Одним из главных факторов развития гипоксии является падение парциального давления кислорода в крови, а показатель насыщения её крови уже не столь важен. На высоте от 2 до 2.5 тысяч метров над уровнем моря показатель максимального потребления кислорода падает в среднем на 15 процентов. Этот факт как раз и связан со снижением парциального давления кислорода в воздухе, которые вдыхает спортсмен.

Всё дело в том, что скорость доставки кислорода в ткани напрямую зависит от разницы давления кислорода непосредственно в крови и тканях. Например, на высоте в две тысячи метров над уровнем моря градиент давления кислорода падает практически в 2 раза. В условиях высокогорья и даже среднегорья, существенно снижаются показатели максимальной частоты сердечных сокращений, систолического объема крови, скорости доставки кислорода и выброса сердечного мускула.

Среди факторов, влияющих на все перечисленные выше показатели без учёта парциального давления кислорода, что приводит к снижению сократительных способностей миокарда, большое влияние оказывает изменение жидкостного баланса. Говоря проще, значительно увеличивается вязкость крови. Кроме этого необходимо помнить, что при попадании человека в условия высокогорья, организм сразу активирует адаптационные процессы для компенсации дефицита кислорода.

Уже на высоте в полторы тысячи метров над уровнем моря подъём на каждую 1000 метров приводит к снижению потребления кислорода на 9 процентов. У спортсменов, не имеющих адаптации к условиям высокогорья, частота сердечных сокращений в состоянии покоя может значительно увеличиться уже на высоте в 800 метров. Еще более ярко адаптационные реакции начинают проявляться под воздействием стандартных нагрузок.

Чтобы в этом убедиться, достаточно обратить внимание на динамику повышения уровня лактата в крови на различной высоте при выполнении физических упражнений. Например, на высоте в полторы тысячи метров уровень молочной кислоты повышается лишь на треть от нормального состояния. А вот на 3000 метров этот показатель составит уже минимум 170 процентов.

Адаптация к гипоксии в спорте: способы повышения устойчивости


Давайте разберемся с характером реакций адаптации к гипоксии на различных стадиях данного процесса. Нас в первую очередь интересуют срочные и долговременные изменения в организме. На первом этапе, названном острой адаптацией, возникает гипоксемия, которая приводит к нарушению баланса в организме, который реагирует на это активацией нескольких взаимосвязанных реакций.

В первую очередь речь идет об ускорении работы систем, задачей которых является доставка кислорода в ткани, а также его распределения по всему организму. К ним следует причислить гипервентиляцию легких, повышение выброса сердечного мускула, расширение сосудов головного мозга и т. д. Одной из первых ответных реакций организма на гипоксию, является повышение частоты сердечных сокращений, увеличение артериального давления в легких, возникающего по причине спазма артериол. В результате происходит локальное перераспределение крови и уменьшается артериальная гипоксия.

Как мы уже говорили, в первые дни нахождения в горах увеличивается частота сердечных сокращений и выброса сердца. Через несколько дней благодаря повышению устойчивости и адаптации к гипоксии в спорте эти показатели возвращаются в норму. Это связано с тем, что повышается способность мускулов утилизировать кислород, содержащийся в крови. Одновременно с гемодинамическими реакциями при гипоксии значительно изменяется процесс газообмена и внешнего дыхания.

Уже на высоте в тысячу метров происходит увеличение показателя вентиляции легких из-за повышения частоты дыхания. Физические нагрузки могут значительно ускорить этот процесс. Максимальная аэробная мощность после тренинга в условиях высокогорья уменьшается и продолжает оставаться на низком уровне даже при условии увеличения концентрации гемоглобина. На отсутствие увеличения МПК влияет два фактора:

  1. Увеличение уровня гемоглобина происходит на фоне снижения объема крови, в результате снижается систолический объём.
  2. Уменьшается пик частоты сердечных сокращений, что не позволяет увеличить уровень МПК.
Ограничение показателя уровня МПК во многом связано с развитием гипоксии миокарда. Именно это является главным факторов снижения выброса сердечного мускула и увеличением нагрузок на респираторные мускулы. Все это приводит к росту потребности организма в кислороде.

Одной из наиболее ярко выраженных реакций, активирующихся в организме в первые пару часов пребывания в горой местности, является полицитемия. Интенсивность данного процесса зависит от высоты пребывания атлетов, скорости подъема в гуру, а также индивидуальными особенностями организма. Так как в гормонных районах воздух более сухой в сравнении с равнинным, то уже через пару часов пребывания на высоте уменьшается концентрация плазмы.

Вполне очевидно, что в данной ситуации увеличивается уровень эритроцитов, чтобы компенсировать дефицит кислорода. Уже на следующий день после подъема в горы развивается ретикулоцитоз, что связано с усиленной работой кроветворной системы. На второй день пребывания в условиях высокогорья эритроциты утилизируются, что приводит к ускорению синтеза гормона эритропоэтин и дальнейшему росту уровня красных телец и гемоглобина.

Следует заметить, что дефицит кислорода уже сам по себе является сильным стимулятором процесса производства эритропоэтина. Это проявляется уже после 60 минут пребывания в горных условиях. В свою очередь максимальная скорость производства этого гормона наблюдается через сутки или двое. По мере повышения устойчивости и адаптации к гипоксии в спорте число эритроцитов резко увеличивается и фиксируется на необходимом показателе. Это становится предвестником завершения развития состояния ретикулоцитоза.

Одновременно с описанными выше процессами активируются адренергетичская и гипофизарно-адреналовая системы. Это в свою очередь способствует мобилизации систем дыхания и кровоснабжения. Однако эти процессы сопровождаются сильными катаболическими реакциями. При острой гипоксии ограничивается процесс ресинтеза молекул АТФ в митохондриях, что приводит к развитию депрессии некоторых функций основных систем организма.

Следующей стадией повышения устойчивости и адаптации к гипоксии в спорте является устойчивая адаптация. Ее главным проявлением следует считать повышение мощности более экономного функционирования дыхательной системы. Кроме этого увеличивается показатель утилизации кислорода, концентрации гемоглобина, емкости коронарного русла и т. д. В ходе биопсических исследований было установлено наличие основных реакций, характерных для устойчивой адаптации мускульных тканей. Примерно через месяц нахождения в гормонных условиях в мышцах происходят значительные изменения. Представителям скоростно-силовых спортивных дисциплин следует помнить, что тренинг в условиях высокогорья предполагает наличие определенных рисков разрушения мускульных тканей.

Однако при грамотно спланированных силовых тренировках этого явления вполне можно избежать. Важным фактором для адаптации организма к гипоксии является значительная экономизация работы всех систем. Ученые отмечают два отдельных направления, в которых происходят изменения.

В ходе исследований ученые доказали, что атлеты, сумевшие хорошо адаптироваться к тренировкам в условиях высокогорья могут сохранять этот уровень адаптации на протяжении месяца или чуть больше. Аналогичные результаты могут быть получены и при использовании методики искусственной адаптации к гипоксии. А вот одноразовая подготовка в горных условиях оказывается не столь эффективной, и, скажем, концентрация эритроцитов возвращается к нормальному состоянию уже в течение 9–11 дней. Только длительная подготовка в горных условиях (на протяжении нескольких месяцев) способна дать хорошие результаты в долгосрочной перспективе.

Ещё один способ адаптации к гипоксии показан в следующем ролике:

Устойчивость организма к недостатку кислорода - одному из факторов адаптации - определяется генетическими и фенотипическими свойствами (наследственными и приобретенными в процессе жизни).

Ученые установили, что кратковременное гипоксическое воздействие в определенных пределах может повышать устойчивость организма к влиянию стресса, активизировать деятельность жизненно важных функций организма.

Известно, что горные жители относятся к группам долгожителей, а среднегорье и высокогорье отличается сниженным содержанием кислорода в воздухе. Поэтому периодические выезды людей, живущих в условиях равнины, в горы способствуют повышению работоспособности, увеличению продолжительности жизни, сохранению активной деятельности до старости.

В условиях умеренной гипоксии улучшается сопротивляемость организма к разнообразным патогенным факторам, повышается стрессоустойчивость.

При гипоксии возбуждаются клетки головного мозга, активизируется дыхание, увеличивается количество эритроцитов и кислорода в крови, улучшается минутный объем кровообращения.

Однако выезды в горы требуют значительных материальных затрат, и ученые стали проводить эксперименты в барокамере.

Исследованиями было определено, что наибольший эффект дают кратковременные гипоксические нагрузки. Так были разработаны программы «ступенчатого» и «интервального» подъема в барокамере.

При «ступенчатом» подъеме после достижения определенной высоты делается отдых, т. е. пребывание на этой высоте в течение 5-15 минут, а затем снова подъем на очередную высоту.

При «интервальном» происходит чередование подъема на определенную высоту и спуска на более низкую, затем снова подъем. Регулируется и время пребывания на каждой высоте.

Подъемы и спуски в течение одного сеанса производят хороший тренировочный эффект и существенно влияют на повышение гипоксической устойчивости.

При стрессе адреналин выбрасывается в кровь, отчего расширяются сосуды сердца, мозга и легких, но происходит сужение сосудов кожи (человек бледнеет), возрастает частота сердечных сокращений и повышается АД.

Артериальное давление увеличивает способность сердца усваивать кислород. Однако у людей недостаточно тренированных, склонных к чрезмерной реактивности при отрицательных эмоциях, такая защитная мера может стать опасной и даже вызвать сердечную недостаточность вплоть до инфаркта миокарда.

При чрезмерной реакции на стресс выделяется большое количество гормона кортизола, снижается способность быстро усваивать вновь образуемый сахар, и даже возможно возникновение временного сахарного диабета. Известно, например, что на бирже при падении курса акций у некоторых людей иногда возникает «диабет биржевиков».

Следовательно, чрезмерно высокая реактивность организма и низкая гипоксическая устойчивость при стрессе являются причинами возникновения серьезных сдвигов в организме.

Все это стало основанием для глубокого изучения реакций человека на гипоксию и гиперкапнию (повышение содержания двуокиси углерода - С0 2 -в артериальной крови).

Известные физиологи В. А. Илюхина и И. Б. Заболоцких обнаружили, что различные физиологические системы организма по-разному проявляют гипоксическую устойчивость, которая является характеристикой адаптационных возможностей.

Различие адаптационных возможностей наблюдается у лиц с различными способностями быстро мобилизовать свою нервно-мышечную систему к расслаблению. Это установил в своих исследованиях, проводимых в течение многих лет, Ю. В. Высочин.

Был установлен и другой интересный факт: люди с низкой скоростью произвольного расслабления мышц наименее устойчивы к гипоксии.

Ученый выявил 3 типа людей:

релаксанты - способные к быстрому произвольному расслабления мышц, быстрому включению своего «тормоза», снижающего чрезмерное возбуждение (при гипоксическом, тепловом, эмоциональном, экстремальном воздействиях среды и физических нагрузках);

гипертрафики - имеющие мощную мышечную систему, но неспособные к ее быстрому расслаблению;

смешанный (переходный) тип - имеющий средние показатели.

Следовательно, гипоксическая устойчивость и способность к быстрому расслаблению взаимосвязаны.

В исследованиях Ю. В. Высочина показано, что гипоксическая устойчивость требует особого внимания и тренеров, и врачей, и людей, страдающих рядом заболеваний. Повышение гипоксической устойчивости и скорости произвольного расслабления мышц способствуют увеличению адаптационных возможностей организма.

Мышцы человека называют «вторым сердцем», и это действительно так, ибо, как показал в своих исследованиях известный ученый Р. П. Нарциссов, произвольная мускулатура и миокард при многих заболеваниях выступают в качестве системы защиты.

Первой выступает на защиту нервно-мышечная система, при заболевании обменные процессы в мышцах активизируются как в начале заболевания (повышается температура), так и в конце (температура понижается).

Ю. В. Высочин доказал, что существует тормозная релаксационная функциональная система защиты (ТРФСЗ), которая играет существенную роль в обеспечении адаптационных процессов, нормализации баланса нервных процессов организма.

Иначе говоря, при включении ТРФСЗ защитная функция осуществляется за счет нормализации баланса нервных процессов и повышения скорости произвольного расслабления мышц.

Повышение гипоксической устойчивости взаимосвязано с этими процессами и более выражено у релаксантов.

У людей гипертрофического типа низкая активность ТРФСЗ, увеличен объем мышечной массы, повышена возбудимость, низкая экономичность деятельности сердца. Кроме того, установлено, что у таких людей низкая стрессо- и гипоксическая устойчивость, большая возможность получения травм и заболеваний.

Ученый считает, что повышенная резистентность может быть обеспечена при целенаправленном воздействии на формирование рационального типа - релаксанта.

Повышение гипоксической устойчивости и скорости произвольного расслабления мышц позволяет человеку увеличивать возможности своей системы защиты.

Вероятность возникновения перенапряжений опорно-двигательного аппарата у релаксантов значительно меньше по сравнению с гипертрофиками.

Релаксационные возможности повышаются при:

Гипоксической тренировке с использованием серий кратковременной задержки дыхания (1/2 от возможной максимальной задержки);

Использования выездов в среднегорье (высота 1500-2500 м над уровнем моря);

Использование барокамерной подготовки (с перепадом высот от 1500 до 4000 м);

Использование термовоздействий (сауна, баня: кратковременное пребывание по 8-10 мин и перерывами в прохладной температуре бассейна);

Использование медитативной или аутогенной тренировки;

Специальные упражнения на расслабление.

Люди с низкой гипоксической устойчивостью требуют особого внимания при родах и операциях.

Исследования показали, что люди с низкой устойчивостью к гипоксии характеризуются и низкой устойчивостью к физиологическому стрессу.

Известно, что неблагоприятное влияние на здоровье человека присуще и физическим, и эмоциональным стрессам. Например, шум, сам по себе не связанный с какой-либо опасностью для человека, может вызывать не только состояние тревоги, но и нарушение пищеварения, тормозя деятельность желудка и вызывая неврозы.

Стрессы при длительном воздействии могут переходить в хронические.

К признакам эмоционального хронического стресса относятся:

Смена настроения;

Повышенная тревожность;

Раздражительность;

Усталость и рассеянность.

Поведенческие проявления хронического стресса выражаются:

В нарушениях сна;

Потере аппетита, а иногда и переедании;

Снижении работоспособности и других негативных моментах.

От уровня гипоксической устойчивости зависит и устойчивость к тем или иным стрессам. Следовательно, зная свою гипоксическую устойчивость можно своевременно принять меры к ее повышению. Существуют пробы, по которым можно самому это определить.

Твое желание достичь лучших показателей в спорте - естественная потребность. Но как далеко ты готов зайти при этом, не нарушая закон, целиком и полностью зависит от тебя. Назначая одному из своих атлетов гипоксическую тренировку, я уже начинаю прощупывать границы; я должен чувствовать, что он готов к нетрадиционным тренировкам. Гипоксическая тренировка может стать положительным стимулом и облегчить переход к высотной тренировке. Кроме того, она укрепляет дыхательную мускулатуру. В этой главе я представляю метод, разработанный мной лично, в котором применяется стандартная дыхательная маска. Научные данные в отношении данного метода отсутствуют. Метод основан исключительно на моем собственном опыте и моей субъективной оценке. Идея возникла у меня случайно. Во время творческих периодов своей жизни я многие часы работаю как каменотес в своем ателье. Я работаю с мрамором и, чтобы защитить себя от мраморной пыли, ношу маску. Во время дыхания через маску мне приходится на вдохе прилагать больше силы, несмотря на то, что объем кислорода, попадающий в мои легкие, остается неизменным. Однажды я заметил, что во время тех периодов, когда я много работаю в своем ателье в маске, я чувствую себя очень хорошо и бодро.

Прежде всего, когда я на несколько дней отправился в горы, в Давос, на высоту 1600 метров над уровнем моря. Когда я поднялся в горы, то «небольшое» ощущение гипоксии, которое я всегда чувствовал в горах, как будто улетучилось. Я не чувствовал никакой разницы в сравнении с обычной высотой той местности, в которой я живу. Мои легкие, дыхание и организм реагировали на физическую активность так, как будто я тренировался на высоте 400 метров над уровнем моря. Так возникла идея сделать тренировочные занятия с маской гипоксической тренировкой. Этот метод сложен на ментальном уровне. В отличие от гипоксического плавания, в котором во время нагрузки дыхательная деятельность сокращается, гипоксическая тренировка ориентирована на паузы. Мы привыкли к тому, что во время пауз в ходе интервальной тренировки, когда возникает повышенная потребность в воздухе, кислорода достаточно. Ведь никто не сокращает количество воздуха вокруг себя? Но я делал именно это, притом с помощью обычной маски. Гипоксическая тренировка - это новый стимул, вносящий разнообразие в тренировки! Это само по себе уже может быть достаточной мотивацией и побуждением для последовательной реализации плана тренировок. Как работает гипоксическая тренировка? Ты пробегаешь по дорожке 12 - 20 раз по 400 метров в темпе, примерно на восемь процентов быстрее своего лучшего времени на десятикилометровой дистанции. Если лучшее время на десятикилометровой дистанции составляет 40 минут, это соответствует 1:28 минут на 400-метровый интервал. Во время паузы ты 60 секунд идешь с дыхательной маской. Однако перед этим закрываешь 90 процентов поверхности пылевого фильтра клейкой лентой.

Первые шесть вдохов после нагрузки ты вдыхаешь нормальное количество воздуха. Затем прижимаешь маску к лицу и проверяешь с помощью пульсоксиметра, который ты держишь в другой руке, насыщение твоей крови кислородом. Цель - во время паузы поддерживать насыщение на уровне около 90 процентов (нормальный показатель насыщения во время паузы составляет 96-99 процентов), даже если дыхательный рефлекс говорит: «Сними, пожалуйста, эту маску. Немедленно!». Ты должен выдержать и противостоять этому рефлексу. Ощущение очень неприятное, возникает что-то вроде «жажды воздуха». Как только ты продолжишь дышать, это ощущение исчезнет. Кроме того, в легких возникнет определенное мышечное напряжение. Несмотря на это, возникает чувство угрозы. У меня был опыт работы с атлетами, у которых при начале заплыва возникали настоящие панические атаки и чувство, что они могут утонуть. Боязливым пловцам такие тренировки очень помогают, если у них хватает мужества, чтобы начать. Затем я начинаю с четырех повторов при насыщении 94 процента и постепенно перехожу к более низким значениям.

Здесь ты найдешь наглядное представление гипоксической тренировки. Гипоксическую тренировку, или тренировку дыхательной мускулатуры, нельзя сравнивать с высотной тренировкой. Так как содержание кислорода в окружающем воздухе остается неизменным, однако его становится сложнее получить по причине препятствия в виде маски, особенно тренируется при этом дыхательная мускулатура. Правда, из-за затрудненного дыхания насыщение кислородом в крови снижается, вследствие чего одновременно возникает нехватка воздуха и гипоксический раздражитель. Какова цель этой тренировки? Целью тренировки является, во-первых, укрепление дыхательной мускулатуры и повышение ментальной переносимости нагрузки при нехватке воздуха. Чем меньше сама дыхательная мускулатура требует обеспечения кислородом вследствие более сильной и экономичной работы и, таким образом, позже утомляется, тем выше процент кислорода, доступный для мышц рук и ног. Как действует гипоксическая тренировка? Тебе известна такая ситуация в ходе плавательной тренировки: Ты намеренно вводишь себя в физиологический стресс посредством высокой интенсивности и коротких пауз, вследствие чего желание дышать становится все больше. Этот дыхательный рефлекс возникает вследствие повышенного содержания углекислого газа в крови и, в конце концов, является разумной защитой с целью выживания. Догадываешься, на какую сферу, главным образом, нацелена эта тренировка? Кто не может все держать под контролем, у того руки свободны С одной стороны, на контроль дыхательного рефлекса, а с другой - на реакцию в чрезвычайной ситуации. Иначе говоря: Научись обращаться с этой нехваткой и намеренно контролировать ощущение до определенной степени. Потому что именно эта способность является решающим фактором, позволяющим встречать кризисные ситуации в профессиональном спорте во всеоружии. Во время гипоксической тренировки маска создает не что иное как «искусственную» кризисную ситуацию. Гипоксическая тренировка очень эффективно сочетает в себе преимущества тренировки с прибором SpiroTiger и тренировки с прибором для тренировки легких. С прибором SpiroTiger ты, прежде всего, учишься продолжать дышать чисто и глубоко при нагрузке. С прибором для тренировки легких ты, напротив, тренируешь мускулатуру легких и туловища. Когда включать гипоксическую тренировку в свой план тренировок? Лучше всего повторять гипоксическую тренировку на этапе подготовки к соревнованиям в течение двенадцати недель раз в семь дней. Затем ее следует повторять во время сезона по одной тренировке за семь дней до каждого соревнования. Высотная тренировка и гипоксическая тренировка Гипоксическая тренировка также представляет собой очень эффективный способ подготовки к высотной тренировке. Для этого достаточно провести шесть - восемь тренировочных занятий за шесть - восемь недель, прежде чем приступить к высотной тренировке. При этом для меня по-прежнему восхитительно ощущать, как тело уже практически адаптировалось, когда я приступаю к высотной тренировке. Во время пассивной фазы, когда находишься в горах, но не тренируешься, чувствуешь себя так, как будто провел уже три недели в горах. Конечно, для того чтобы тело полностью адаптировалось, необходимо провести в горах 20-25 дней. Однако гипоксическая тренировка позволяет, по крайней мере, хорошо подготовиться к высотной тренировке. Кому подходит гипоксическая тренировка? Эта тренировка подходит в качестве дополнения к тренировкам для атлетов любой категории, при условии, что атлет здоров, при составлении и выполнении графика тренировок все идет по плану, и все другие тренировочные занятия могут быть выполнены без труда. На какое улучшение показателей можно рассчитывать? Исходя из ответов моих атлетов, я оцениваю эффект тренировки как 0,5 процента улучшения показателей - это 18 секунд на час соревнования. Этот показатель базируется на фазе применения восемь недель до соревнования, во время которой развивалась выносливость дыхательной мускулатуры и оптимизировалось обеспечение кислородом мышц скелета. Атлеты, которые сильно мерзнут и которым тяжело выполнять во время плавания гипоксические комплексы, получают от гипоксической тренировки больше пользы, чем другие. Временами улучшение показателей у атлетов с более низкими значениями VO2max даже больше. Это что касается цифр. Однако пользу для ментальной стороны сложно оценить в цифрах. Наибольшую пользу получили атлеты, которые попробовали такие тренировки впервые. Они чувствуют себя ментально сильнее и, как правило, открыты для более интенсивных тренировок, будь то интервальная тренировка или гипоксическая плавательная тренировка. Гипоксическая тренировка и связанное с ней чередование может также усилить мотивацию в ходе повседневных тренировок. Боязливым пловцам, участвующим в соревнованиях, гипоксическая тренировка также приносит пользу, так как она приводит к нехватке воздуха и учит, таким образом, справляться с кризисными ситуациями. Спортсмен, регулярно впадающий в панику и переживающий гипервентиляцию в начала заплыва, может заранее симулировать эту ситуацию, что позволит ему лучше справиться с ней во время соревнования. Что необходимо учесть Тренировочный сет пробегается на 400-метровой дорожке, при этом необходимо выбирать более медленный темп тренировки, чем обычно. В результате чувствуешь недостаточную нагрузку во время тренировки и думаешь, что тренировка ничего не дает. Но если бежать быстрее, пульс будет слишком высоким и невозможно будет выдержать маску. Проверь, действительно ли твой пульс при темпе, на восемь процентов быстрее, чем твой темп преодоления десятикилометровой дистанции, не выходит за рамки «зоны комфорта» (соответствующую таблицу значений пульса ты найдешь в главе «Подготовка к соревнованию и соревнование»). Примерно через два часа после тренировки ты будешь слегка утомлен, возникнет потребность в коротком сне. Самые быстрые из моих атлетов в дни гипоксических тренировок проводят три забега следующим образом: · утром легкое тренировочное занятие со спринтами, · затем примерно в 11 часов гипоксическая тренировка с послеобеденным сном, · вечером интенсивные быстрые забеги на короткие дистанции. Важно: Гипоксическая тренировка не заменяет интервальный тренировочный сет на дорожке, потому что она не дает телу настоящего стимула в части темпа.
Заключение Гипоксическая тренировка представляет собой очень специфический вид тренировки. Чтобы надеть на себя маску, пробежав 400 метров спуртом, необходимо преодолеть себя. Чтобы не сорвать с себя маску, несмотря на нехватку воздуха и недостаточное насыщение кислородом, необходимы мужество и сила воли.

После шести тренировочных единиц на протяжении шести недель чувствуешь себя «насытившимся», то есть, замечаешь, что выдерживать 90-процентное насыщение кислородом стало относительно легче. Это говорит о том, что гипоксическую тренировку следует прекратить и вернуться к обычным тренировочным единицам на беговой дорожке без маски. При этом ты заметишь, что во время пауз получаешь «действительно много» воздуха. Теперь ты в большей степени готов дойти до своего предела. Итак, в ментальном плане такой вид тренировок явно приносит пользу. Я люблю пределы. Узнавание пределов делает жизнь стоящей того, чтобы жить. Маска и пульсоксиметр вместе стоят не более 150 евро. Улучшение показателей на 0,5 процента за 150 евро плюс определенная «доза страха» - хороший итог.

Какую главу из этой книги вы бы хотели прочесть следующей? Приборели бы вы эту книгу, если бы она была издана на русском? Формула эффективного плавания Формула эффективной езды на велосипеде Форума бега Семь основных ошибок триатлета в плавании Семь основных ошибок триатлета в велоспорте Семь основных ошибок триатлета в беге Тренировочная программа Микроциклы и макроциклы Тренировка транзитных зон "велосипед-бег" Тренировки на высоте с маской Тренировки с задержкой дыхания Силовые тренировки Аэродинамика Тренировочный лагерь Подводка к старту Подготовка к соревнованиям и сам старт Питание на соревнованиях Анализы: язык крови Судороги Тренер и спортсменПеретренированность Тренировка в стиле дзен БЫСТРАЯ тренировка Самодисциплина и ответственность перед собойКомпенсирующие тренировки Медитация Разминка Спортивные травмы

Одним из наиболее эффективных эргогенических средств, широко применяемых в практике спорта с целью потенцирования тренировочного эффекта упражнений и повышения уровня работоспособности спортсменов, является метод интервальной гипоксической тренировки (ИГТ). Тканевая гипоксия и вызываемые ею биохимические и структурные изменения могут ограничивать работоспособность, приводить к развитию утомления и резкому ухудшению состояния организма. Но если действие гипоксии кратковременно и повторно и гипоксическое воздействие чередуется с нормоксическими условиями, то обратимые последствия тканевой гипоксии могут обладать конструктивным, созидательным эффектом. Преимуществом ИГТ перед другими гипоксическими воздействиями является то, что она не нарушает планового тренировочного процесса спортсменов и может применяться в сочетании с основными средствами подготовки или отдельно от них, как дополнительное средство в период отдыха для стимуляции и завершения восстановительных процессов в организме. Установлено, что применение искусственно вызванной гипоксии в сочетании с различными видами повторных нагрузок существенно модифицирует тренировочный эффект и ускоряет темпы развития адаптации к используемым физическим нагрузкам. Регулярное применение гипоксических процедур в процессе тренировки спортсменов высокой квалификации способствует повышению и сохранению высокого уровня их специальной физической подготовленности.

В современном спорте все шире используются новые методы тренировки и стимуляции организма, основанные на глубоких физиологических исследованиях. Одним из таких методов является гипоксическая тренировка - метод, основанный на стимулирующем и адаптирующем действии дыхания воздухом с уменьшенным содержанием кислорода.

Проблема адаптации к гипоксии в горных условиях привлекла особое внимание специалистов в области спорта, когда столицей XIX Олимпийских иг­р был определен г. Мехико, расположенный на высоте 2240 м над уровнем моря. На заседании Комитета по адаптации, соз­данного Госкомспортом СССР, было принято решение о проведении обязательных тренировочных сборов в горных условиях для спортсменов сборных команд страны. С того вре­мени гипоксическая тренировка стала обязатель­ным компонентом подготовки спортсменов самой высокой квалификации.

К числу положительных сторон тре­нировки в горных условиях относятся: повышение аэроб­ной производительности и выносливости спорт­сменов после переезда с гор на равнину, повышение общей работоспособности. К числу недостатков, помимо организационных и материаль­ных затруднений следует отнести необходимость более длительного пребывания в горах для полной адаптации, чем сроки обычных тренировочных сборов, и существенное снижение работоспособности в первую неделю пребывания в горах, а для многих видов спорта и отсутствие условий для специальной подготовки.

Эти недостатки побудили специалистов в области спортивной медицины к поиску новых методов гипоксической тренировки. Одним из таких методов оказалась прерывистая тренировка в барокамере, в которой спортсмены ежедневно или через день проводили от 30 мин до нескольких часов на «высоте» 3000 – 5000 м. Для гипоксической тренировки использовали также метод возвратного дыхания, во время которого на организм спортсмена оказывала действие не толь­ко гипоксия, но и гиперкапния. Однако большинство этих методов не позволяет точно дозировать силу гипоксического воздействия и применять режимы тренировки, связанные с быстрым изменением степени создаваемой гипоксии, а также отнимает ценное время от планового тренировоч­ного процесса спортсменов. Кроме того, барокамерная тренировка требовала дополнительного времени для компрессии и декомпрессии, что сопро­вождалась неприятными ощущениями и негатив­ным эффектом мелких баротравм.

В начале 90-х гг. в Киевском институте физической культуры (А.3. Колчинская) и в Центральном институте физической культуры, (Н.И. Волков) был внедрен метод комбинированной интервальной гипоксической трени­ровки (ИГТ). Этот метод предполагал воздействие на ор­ганизм гипоксии двух типов: гипоксической гипок­сии, которую организм испытывает во время вды­хания воздуха со сниженным (до 14-9%) содержанием кислорода при нормальном давлении, и гипоксии нагрузки, прояв­ляющей в различных условиях спортивной дея­тельности. Существенным в комбинирован­ном методе было то, что тренировка с применени­ем гипоксической гипоксии проводилась в покое в свободное от тренировочного процесса время, что создавало условия для раздельного влияния на организм спортсмена гипоксической гипоксии и гипоксии нагрузки. Тренировка спортсменов осу­ществлялась в строгом соответствии с планами спортивной подготовки. В ней сохранялись все условия для совершенствования техники и такти­ки соревновательной деятельности.

Для определения эффективности комбинированного метода были проведены многочисленные исследования по выявле­нию его эффективности и механизмов действия.,которые показали следующее:

    Тренировочный эффект комбинированного метода опре­деляется действием на организм спортсменов как гипоксической гипоксии, так и гипоксии нагрузки.

    Нормобарическая ИГТ спортсменов должна проходить на фоне планового тренировочного процесса спортивной тренировки в покое, когда спортсмен может расслабиться и когда усилия его компенсаторных механизмов могут быть направлены на возмещение только гипоксической гипоксии.

    Кроме ИГТ, действующей на спортсменов в покое, их организм испытывает действие гипоксии нагрузки, сопровождающей напряженную мышечную деятельность во время тренировочных нагрузок в плановом тренировочном процессе.

    Комбинированный метод ИГТ - более эффективное тренировочное средством, чем длительная тренировка спортсменов в горах либо в условиях искусственной гипоксической среды в барокамерах. Он лучше сочетанного метода гипоксической трениров­ки, когда спортивные нагрузки выполняются в условиях пониженного парциального давления кислорода. Тренировка в горах или в барокамере существенно снижает работоспособность из-за аддитивного действия гипоксической гипоксии и гипоксии нагрузки, усиливающей развитие тканевой гипоксии, и ее повреждающего действия на организм.

    При комбинированном методе гипоксической тренировки особое значение придается планированию тренировочных нагрузок, их направленности, учету объема и интенсивности в микроциклах спортивной тренировки, во время которых в ча­сы, свободные от спортивных тренировочных занятий, осуществляется ИГТ.

В зависимости от избранных характеристик физической нагрузки все тренировочные упражнения подразделяются на следующие группы:

нагрузки преимущественно аэробного воздействия,

нагрузки смешанного аэробно-анаэробного воздействия,

нагрузки анаэробного гликолитического воздействия,

нагрузки анаэробного алактатного воздействия.

Увеличение объема и интенсивности применяемых тренировочных средств в подготовке пловцов требует необходимости поиска дополнительных средств, позволяющих сократить время развития необходимых адаптационных изменений в организме и существенно повысить уровень спортивных достижений пловцов. В последние годы представители циклических видов спорта уделяют пристальное внимание последствиям применения гипоксической тренировки. Гипоксическая тренировка – метод, основанный на стимулирующем и адаптирующем действии дыхания воздухом с уменьшенным содержанием кислорода. Гипоксическая тренировка основывается на применении строго дозированного дыхания: во время упражнений спортсмен выполняет вдох значительно реже, чем он это делает обычно, и ограничивает тем самым поступление кислорода к клеткам своего организма, величина кислородного долга и содержание молочной кислоты в крови и мышцах спортсмена выше, чем при такой же тренировке с обычным дыханием. Этот метод в свое время применяли легкоатлеты Чехословакии, ГДР и других стран. Исследования американских ученых У. Холлмана и Л. Лизена показали, что в группе испытуемых, тренировавшихся в условиях гипоксии, уровень максимального потребления кислорода возрос в среднем на 16,6%, тогда как в контрольной группе – на 5,5%. Разница довольно значительная и свидетельствует об эффективности тренировки в условиях гипоксии. Тренировка в условиях гипоксии совершенствует и аэробные, и анаэробные возможности организма. Все эти сдвиги в организме ведут к росту работоспособности пловца и на средних (100 м и более), и на длинных (400 м и более) дистанциях. При выполнении упражнения с субмаксимальной скоростью, при гипоксическом дыхании отмечается более высокая частота пульса, нежели при плавании с обычным дыханием. При плавании с максимальной скоростью таких различий не выявлено, поскольку здесь достигается предельная частота сердечных сокращений независимо от варианта дыхания. Нужно отметить, что при переходе с обычного дыхания на вариант с вдохом на второй цикл движения рук частота пульса меняется незначительно. В то же время, при переходе на вариант дыхания с вдохом на каждый третий цикл движения рук повышение частоты пульса достигало 13,8 уд/мин. Но уже через 8 недель разница в частоте пульса при использовании первого и третьего вариантов дыхания составляла 10,6 уд/мин. Все эти данные свидетельствуют о снижении частоты пульса как результат адаптационных изменений физиологических функций организма пловцов. Причина этих изменений – уменьшение количества кислорода, увеличение содержания углекислого газа и молочной кислоты в мышцах спортсмена. Поэтому, как только пловцы привыкли к варианту дыхания с вдохом на каждый второй цикл движения рук, необходим переход на дыхание с вдохом на каждый третий цикл движения рук. В настоящее время проводятся исследования, в задачу которых входит изучение изменений в показателях функциональных возможностей и физической работоспособности пловцов высокой квалификации в зависимости от объема тренировочных нагрузок различной направленности в обычных условиях и в условиях прерывистых гипоксических воздействий, применяемых как дополнительное средство тренировки. Использование прерывистых гипоксических воздействий в качестве дополнительного тренировочного средства значительно модифицирует зависимость «доза-эффект» в отношении нагрузок анаэробного алактатного воздействия. Подобные изменения отмечены и в других видах тренировочных нагрузок. Результаты проведенных исследований показывают, что применение интервальной гипоксической тренировки в практике подготовки высококвалифицированных пловцов позволяет существенно улучшить показатели аэробной и анаэробной работоспособности спортсменов и добиться более высоких спортивных достижений. Поэтому, чтобы добиться высокого уровня подготовленности пловца, в программу его тренировки необходимо включить все методы совершенствования анаэробной и аэробной работоспособности. К высокому уровню кислородного долга не только должны приспособиться все системы и органы, но и пловец сам должен научиться преодолевать неприятные ощущения, связанные с состоянием гипоксии. Для решения этой проблемы в дополнение к обычным методам подготовки пловца полезно использовать и гипоксическую тренировку, которая, изменяя многие функциональные системы организма спортсмена, способствует повышению эффективности его работоспособности.

Плавание. Изучались изменения в показателях функциональных возможностей и физической работоспособности пловцов высокой квалификации в зависимости от объема тренировочных нагрузок различной направленности в обычных условиях и в условиях прерывистых гипоксических воздействий . В эксперименте участвовали 12 пловцов высокой квалификации (перворазрядники и мастера спорта), которые были разделены на две группы: контрольную (КГ) и ЭГ, по 6 человек в каждой. В их подготовке использовались одинаковые тренировочные программы. В КГ применялись традиционные средства и методы тренировки, в ЭГ наряду с традиционными методами тренировки в период отдыха после основных нагрузок как дополнительное средство тренировки применялись различные варианты ИГТ.

Период экспериментальной тренировки длился 3 месяца. Перед началом эксперимента и непосредственно после его завершения спортсмены обеих групп выполняли тест «Повторное плавание 5х100 м вольным стилем» и гипоксическую пробу (вдыхание газовой смеси с 10%-ным содержанием О 2) при снижении степени оксигенации крови SаО 2 от исходного значения (96-98%) до 85%.

В течение 3 месяцев пловцы обеих групп выполняли тренировочные нагрузки различного воздействия примерно в таком соотношении: аэробные – 27%, смешанные аэробно-анаэробные – 53%, анаэробные гликолитические – 13%, анаэробные алактатные – 6%. Общее время тренировок КГ составило 4450 мин, ЭГ – 4024 мин (на 9,5% меньше). При этом спортсмены, прошедшие курс ИГТ, выполняли тест «Плавание 5х100 м) в среднем на 5,4 с быстрее, чем спортсмены, тренировавшиеся по обычной программе. Также более высокие результаты гипоксической пробы были получены в ЭГ: время снижения SаО 2 до 85% у пловцов после ИТГ в среднем наступало на 4 мин быстрее, чем в КГ. Данные по абсолютному значению прироста тестируемых показателей работоспособности пловцов приведены в табл. 1.

Использование ИГТ при подготовке пловцов положительно влияет на эффективность применяемых тренировочных нагрузок, различных по своей физиологической направленности, а также на ускорение процессов восстановления. Это собенно важно на предсоревновательном этапе подготовки, где в качестве основных тренировочных средств применяются интенсивные нагрузки алактатного и анаэробного гликолитического воздействия.

Литература 1. Берштейн Л.Д. О региональной гипоксии покоя и работы. /В кн.: Акклиматизация и тренировка спортсменов в горной местности.- Алма-Ата, 1965.-с.129. 2. Волков Н.И. Закономерности биохимической адаптации в процессе спортивной тренировки: Учебное пособие для слушателей ВШТ ГЦОЛИФКа.- М.: ГЦОЛИФК, 1986.-64 с. 3. Волков Н.И. Гипоксическая тренировка для реабилитации и профилактики заболеваний. /В сб.: Реабилитация и терапия в условиях курорта.- М., 1993.-с. 12-25. 4. Волков Н.И., Коваленко Е.А. и др. Метаболические и энергогенические эффекты сочетанного применения интервальной тренировки и гипоксической гипоксии. //Интервальная гипоксическая тренировка, эффективность, механизмы действия.- Киев, 1992.-с.4. 5. Волков Н.И., Колчинская А.З. "Скрытая" (латентная) гипоксия нагрузки. //Гипоксия Медикал.-1993.-№ 2.- с.30-35. 6. Вторичная тканевая гипоксия. /Под общей ред. А.З. Колчинской.-Киев: Наук. думка, 1983.- 256 с. 7. Интервальная гипоксическая тренировка: эффективность, механизмы действия. /Под ред. А.З. Колчинской.- Киев: ГИФК, "ЕЛТА", 1992.- 159 с. 8. Коваленко Е.А. и др. Импульсный метод активации адаптационных механизмов организма, лечения больных с различными заболеваниями.// Интервальная гипоксическая тренировка, эффективность, механизмы действия.- Киев, 1992.-c.l03. 9. Коваленко Е.А. Гипоксическая тренировка в медицине. //Гипоксия Медикал.- 1993. -N1- с.3-5. 11. Колчинская А.З. Недостаток кислорода и возраст.- Киев: Наукова думка, 1964.- 335 с. 12. Колчинская А.З. Гипоксия нагрузки: Гипоксия нагрузки. Математическое моделирование, прогнозирование и коррекция. /Под ред.А.З.Колчинс-кой.- Киев: АН УССР, ин-т кибернетики им.В.М.Г-лушкова, 1990.- с.27-29. 13. Колчинская А.З. Кислород. Физическое состояние. Работоспособность.- Киев: Наук.думка, 1991.-206с. 14. Колчинская А.З. Гипоксическая тренировка в спорте. //Гипоксикал Медикал /под ред. А.З.Колчинской.- 1993.-N2.-c.36. 15. Колчинская А.З., Ткачук Е.Н., Цыганова Т.Н. Интервальная гипоксическая тренировка спортсменов. /В кн.: Интервальная гипоксическая тренировка, эффективность, механизмы действия.- Киев, 1992.- с.6. 16. Кислородный режим организма и его регулирование. /Под ред. Н.В.Лауэр и А.З.Колчинской.-Киев: Наукова думка, 1965.- 341 с. 17. Кондрашова М.Н. Функциональная гипоксия как фактор повышения мощности рабочего акта. / В кн.: Гипоксия нагрузки, математическое моделирование, прогнозирование и коррекция.- Киев, АН УССР, 1981.-c.30. 18. Малкин В.Б., Гиппенрейтер Е.Б. Острая и хроническая гипоксия.- М.: Наука, 1977.- 317 с. 19. Моногаров В.Д. Развитие и компенсация утомления при напряженной мышечной деятельности. // Теория и практика физической культуры.-1990.-№ 4.- с.43-46. 1982. 20. Шеррер Ж. Физиология труда. /Пер. с франц. под ред. З.Н.Золиной.- М., Медицина, 1973.- 495 с. 21. Югай Н.В. Изменения некоторых биохимических показателей крови у гребцов под влиянием интервальной гипоксической тренировки. // Hypoxia Medical J .- 1992.- № 2.- с. 17-18. 22. Kolchinskaya A.Z., Darsky A.M. A special protocol for calculating the parameters of body oxygen regimen and computer calculation of hypoxia degree. // Hypoxia Medical J.-1993.- N 1-p.10-13

Многие спортсмены пытаются извлечь выгоду из использования в своей подготовке среднегорья, высокогорья, гипоксического или гипероксического оборудования. Особенно это относится к видам спорта на выносливость.

Есть очень хорошая книга трёх авторов Ф.П.Суслова, Е.Б.Гиппенрейтера, Ж.К.Холодова «Спортивная тренировка в условиях среднегорья». Там очень подробно рассказывается о всех аспектах подготовки в горах. Много экспериментальных данных, графиков и таблиц. Она должна быть настольной книгой всех тренеров, кто работает с командами и регулярно выезжает в горы. Если кто-то изучил данную книгу, то ему нет нужды читать мою заметку. Он всё знает. Хотя…

Я хочу обозначить основные моменты подготовки в условиях пониженного или повышенного содержания кислорода в более простом для восприятия виде.

Основные определения и идеи.

Возможно многие знакомы с этим направление в тренировочном процессе. Для остальных вот основные определения, которые помогут ориентироваться в дальнейшем при рассмотрении различных условий тренировок и жизни при пониженном или повышенном содержании кислорода.

Адаптация - приспособление организма к условиям существования (тренировки). Она выражается в следующих основных направлениях:

  • Изменения в органах и тканях в зависимости от интенсивности и качества стимуляции.
  • Изменения в организме и частях, которые делают его более пригодным для жизни в изменённых условиях окружающей среды.

Нормоксия - условия с нормальным содержанием кислорода в воздухе (21% О2) при нормальном давлении, соответствующим давлению на уровне моря (760 мм.рт.ст.)

Гипероксия - условия с повышенным содержанием кислорода (более 21% О2).

Гипоксия - условия с пониженным содержанием кислорода (менее 21% о2) в условиях нормального или пониженного давления (среднегорье, высокогорье).

Есть три различных варианта использования данных условий для получения стойкой адаптации, которая ведет к улучшению результатов.

  1. Жизнь в условиях гипоксии. Стойкие адаптационные изменения получены как результат длительного нахождения или жизни в условиях среднегорья или высокогорья, а также в условиях симулирующих высоту (таких как горные дома или палатки). Долговременная адаптация.
  2. Тренировка в условиях гипоксии. Острые адаптационные изменения которые получены во время тренировки в гипоксической среде. Срочная адаптация.
  3. Тренировка в условиях гипероксии. Острые адаптационные изменения которые получены во время тренировки в гипероксической среде. Срочная адаптация.

Исходя из этого сложилось несколько стратегий использования высоты для улучшения спортивных показателей (далее для единообразия под высотой будем понимать нахождение на высоте более 2000 м).

«Жить высоко - Тренироваться высоко» (Live High - Train High (LHTH )). Ситуация, когда спортсмен живет и тренируется постоянно в условиях гипоксии, в горах (например кенийские бегуны живут и тренируются у себя в горах выше 2000 м над уровнем моря).

Прерывистая гипоксическая тренировка (Intermittent Hypoxic Training (IHT )). Ситуация, когда спортсмен живет на уровне моря (или небольшой высоте) и периодически использует тренировки в условиях гипоксии (подъём в горы, на высоту для тренировки и после возвращение обратно на малую высоту, или использование специального оборудования, которое понижает парциальное давление кислорода во время тренировки в условиях отсутствия высоты).

«Жить высоко - Тренироваться внизу» (Live High- Train Low (LHTL )). Ситуация, когда спортсмен живет в условиях гипоксии (в горах, в горных домах, в гипоксических палатках), но для тренировки спускается вниз, с высоты в нормобарические условия и делает все тренировки в условиях примерно «уровня моря».

«Жить высоко - Тренироваться внизу с повышенным содержанием кислорода О2» (Live High- Train Low with supplemental O2 (LHTLO2 )). Ситуация, когда спортсмен живет в условиях гипоксии (в горах, в горных домах, в гипоксических палатках), но тренируется в условиях гипероксии (использует воздушные смеси с повышенным содержанием кислорода более 21% О2).

Все данные стратегии тренировок приводят к следующим адаптационным изменениям:

Адаптация сердечно-сосудистой системы. Увеличивается способность доставки кислорода к работающим мышцам за счёт повышения всех показателей работы сердца, лёгких, кровеносной системы а также повышения их эффективности работы.

Периферийная адаптация. Во всех органах и тканях организма в условиях гипо- или гипероксии происходят структурные изменения (увеличивается количество митохондрий, повышается активность и количество ферментов), которые помогают работающим мышцам в данных новых условиях.

Центральная адаптация. Это относится к центральной нервной системе, которая увеличивает мышечную импульсацию, что приводит к повышению работоспособности.

Как всё это вместе работает?

Как было сказано есть три варианта использования условий для получения полезной адаптации, которая приводит к повышению работоспособности. Однако следует отметить, что эти три варианта воздействуют на приспособительные способности организма по-разному.

  1. Жизнь в условиях гипоксии (эффект постоянной акклиматизации и адаптации). В последнее время есть некоторые разногласия среди ведущих экспертов по вопросу основного механизма, который объясняет повышение работоспособности в условиях LHTL (или постоянная адаптация в условиях жизни на высоте). Некоторые учёные считают, что единственным результатом жизни в условиях гипоксии (на высоте) является увеличение секреции почками гормона эритропоэтина ЭПО. Эритропоэтин - физиологический стимулятор эритропоэза в костном мозге, что выражается в увеличении количества эритроцитов (повышении гематокрита). Это позволяет крови переносить больше кислорода к работающим мышцам, что приводит к повышению работоспособности. Другими словами это в основном адаптационные изменения в сердечно-сосудистой системе. Другие учёные считают, что постоянное нахождение в условиях гипоксии (жизнь на высоте) вызывают адаптационные изменения на периферии и в центральной нервной системе, что повышает экономичность и эффективность работы спортсмена. Скорее всего это комплексные адаптационные изменения в организме спортсмена в условиях LHTL.
  2. Тренировка в условиях гипоксии (эффект острой акклиматизации и адаптации в условиях LHTH). Многие ученые склоняются к тому, что основным механизмом гипоксической тренировки является периферийная адаптация скелетных мышц (наряду с адаптацией сердечно-сосудистой системы в результате жизни на высоте). На самом деле процессы более сложные. Гипоксия стимулирует синтез белка HIF-1, который воздействует на многие процессы адаптации в организме. Периферийная адаптация выражается в увеличении капилляризации мышц, расширении кровеносных сосудов, увеличении количества окислительных ферментов. Это обеспечивает мышечную деятельность в большей степени за счёт аэробных источников энергии. Негативным последствием тренировок в условиях гипоксии является резкое снижение интенсивности тренировок и снижение тренировочных скоростей, в результате чего уменьшается механическая и нервномышечная стимуляция. Это фиксируется на электромиограммах во время тренировок в условиях гипоксии по сравнению с нормоксией.
  3. Тренировка в условиях гипероксии (эффект острой акклиматизации и адаптации в условиях LHTL и LHTLO2). Данная концепция LHTL наиболее оптимально воздействует на адаптационные процессы в организме спортсмена, позволяя получать долговременную адаптацию от проживания на высоте (или в горных домах, палатках) без ущерба для тренировочного процесса (без снижения интенсивности и тренировочных скоростей). Другими словами важно, чтобы спортсмены длительное время жили в условиях гипоксии, чтобы получить постоянные адаптационные изменения в виде увеличении секреции гормона ЭПО и как следствие увеличение количества эритроцитов в крови (опосредованно увеличение МПК). И в тоже время тренировались на малой высоте, что позволяет выполнять необходимую работу с необходимой для прогрессирования результатов интенсивностью. Это позволяет улучшать нервно-мышечную составляющую и также быстрее восстанавливаться от высокоинтенсивных нагрузок (меньший уровень лактата в крови). Последние исследования в области применения воздушных смесей с повышенным содержанием кислорода О2 также способны стимулировать выше обозначенные адаптационные изменения в организме, что в долгосрочном плане ведут к повышению работоспособности в видах спорта на выносливость. Применение смесей с повышенным содержанием кислорода для улучшения результатов имеет длинную историю. Еще в 1954 году сэр Рождер Баннистер (первый, кто выбежал милю из 4 минут) уже экспериментировал с дополнительным дыханием кислородом. В основном это были идеи использовать кислород для дыхания во время соревнований (для чего необходимо было бежать с баллоном кислорода за плечами). Никто не исследовал в то время долговременную адаптацию, получаемую в результате регулярного применения обогащенных кислородом (содержание кислорода 60-100%) воздушных смесей. Сейчас можно организовать тренировочный процесс на тредмиле, тренажерах и обеспечить поступление обогащённой кислородом воздушной смеси через систему трубок и маску. Спортсмен может выполнять свою работу (бег, передвижение на коньках, велосипеде или лыжероллерах) не неся на себе баллон со смесью. Современные исследования показывают, что используя данные смеси спортсмены способны выдавать большую мощность без накопления лактата в крови на тех же пульсовых режимах, что и в нормоксических условиях. Например велосипедисты при дыхании гипероксической смесью (60% О2) меньше используют мышечный гликоген в качестве источника энергии, и, как следствие, уровень лактата в крови значительно меньше. Также гипероксия снижает выброс адреналина, что снижает уровень ЧСС, и это можно назвать влиянием на нервную систему. Однако необходимы дополнительные исследования по подтверждению улучшения результатов за счет регулярного применения гипероксических смесей в тренировочном процессе. Это направление ещё недостаточно изучено. Также пока мало работ в области внедрения таких тренировок и распределении их по сезону (подготовительный + соревновательный).

Продолжение следует.